1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/pci/pci.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "net/net.h" 33 #include "net/checksum.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/dma.h" 36 #include "qemu/iov.h" 37 #include "qemu/module.h" 38 #include "qemu/range.h" 39 40 #include "e1000x_common.h" 41 #include "trace.h" 42 #include "qom/object.h" 43 44 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 45 46 /* #define E1000_DEBUG */ 47 48 #ifdef E1000_DEBUG 49 enum { 50 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 51 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 52 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 53 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 54 }; 55 #define DBGBIT(x) (1<<DEBUG_##x) 56 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 57 58 #define DBGOUT(what, fmt, ...) do { \ 59 if (debugflags & DBGBIT(what)) \ 60 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 61 } while (0) 62 #else 63 #define DBGOUT(what, fmt, ...) do {} while (0) 64 #endif 65 66 #define IOPORT_SIZE 0x40 67 #define PNPMMIO_SIZE 0x20000 68 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 69 70 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 71 72 /* 73 * HW models: 74 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 75 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 76 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 77 * Others never tested 78 */ 79 80 struct E1000State_st { 81 /*< private >*/ 82 PCIDevice parent_obj; 83 /*< public >*/ 84 85 NICState *nic; 86 NICConf conf; 87 MemoryRegion mmio; 88 MemoryRegion io; 89 90 uint32_t mac_reg[0x8000]; 91 uint16_t phy_reg[0x20]; 92 uint16_t eeprom_data[64]; 93 94 uint32_t rxbuf_size; 95 uint32_t rxbuf_min_shift; 96 struct e1000_tx { 97 unsigned char header[256]; 98 unsigned char vlan_header[4]; 99 /* Fields vlan and data must not be reordered or separated. */ 100 unsigned char vlan[4]; 101 unsigned char data[0x10000]; 102 uint16_t size; 103 unsigned char vlan_needed; 104 unsigned char sum_needed; 105 bool cptse; 106 e1000x_txd_props props; 107 e1000x_txd_props tso_props; 108 uint16_t tso_frames; 109 } tx; 110 111 struct { 112 uint32_t val_in; /* shifted in from guest driver */ 113 uint16_t bitnum_in; 114 uint16_t bitnum_out; 115 uint16_t reading; 116 uint32_t old_eecd; 117 } eecd_state; 118 119 QEMUTimer *autoneg_timer; 120 121 QEMUTimer *mit_timer; /* Mitigation timer. */ 122 bool mit_timer_on; /* Mitigation timer is running. */ 123 bool mit_irq_level; /* Tracks interrupt pin level. */ 124 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 125 126 QEMUTimer *flush_queue_timer; 127 128 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 129 #define E1000_FLAG_AUTONEG_BIT 0 130 #define E1000_FLAG_MIT_BIT 1 131 #define E1000_FLAG_MAC_BIT 2 132 #define E1000_FLAG_TSO_BIT 3 133 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 134 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 135 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 136 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) 137 uint32_t compat_flags; 138 bool received_tx_tso; 139 bool use_tso_for_migration; 140 e1000x_txd_props mig_props; 141 }; 142 typedef struct E1000State_st E1000State; 143 144 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 145 146 struct E1000BaseClass { 147 PCIDeviceClass parent_class; 148 uint16_t phy_id2; 149 }; 150 typedef struct E1000BaseClass E1000BaseClass; 151 152 #define TYPE_E1000_BASE "e1000-base" 153 154 DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass, 155 E1000, TYPE_E1000_BASE) 156 157 158 static void 159 e1000_link_up(E1000State *s) 160 { 161 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 162 163 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 164 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 165 } 166 167 static void 168 e1000_autoneg_done(E1000State *s) 169 { 170 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 171 172 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 173 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 174 } 175 176 static bool 177 have_autoneg(E1000State *s) 178 { 179 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 180 } 181 182 static void 183 set_phy_ctrl(E1000State *s, int index, uint16_t val) 184 { 185 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 186 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 187 MII_CR_RESET | 188 MII_CR_RESTART_AUTO_NEG); 189 190 /* 191 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 192 * migrate during auto negotiation, after migration the link will be 193 * down. 194 */ 195 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 196 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 197 } 198 } 199 200 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 201 [PHY_CTRL] = set_phy_ctrl, 202 }; 203 204 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 205 206 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 207 static const char phy_regcap[0x20] = { 208 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 209 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 210 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 211 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 212 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 213 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 214 [PHY_AUTONEG_EXP] = PHY_R, 215 }; 216 217 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 218 static const uint16_t phy_reg_init[] = { 219 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 220 MII_CR_FULL_DUPLEX | 221 MII_CR_AUTO_NEG_EN, 222 223 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 224 MII_SR_LINK_STATUS | /* link initially up */ 225 MII_SR_AUTONEG_CAPS | 226 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 227 MII_SR_PREAMBLE_SUPPRESS | 228 MII_SR_EXTENDED_STATUS | 229 MII_SR_10T_HD_CAPS | 230 MII_SR_10T_FD_CAPS | 231 MII_SR_100X_HD_CAPS | 232 MII_SR_100X_FD_CAPS, 233 234 [PHY_ID1] = 0x141, 235 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 236 [PHY_AUTONEG_ADV] = 0xde1, 237 [PHY_LP_ABILITY] = 0x1e0, 238 [PHY_1000T_CTRL] = 0x0e00, 239 [PHY_1000T_STATUS] = 0x3c00, 240 [M88E1000_PHY_SPEC_CTRL] = 0x360, 241 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 242 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 243 }; 244 245 static const uint32_t mac_reg_init[] = { 246 [PBA] = 0x00100030, 247 [LEDCTL] = 0x602, 248 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 249 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 250 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 251 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 252 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 253 E1000_STATUS_LU, 254 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 255 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 256 E1000_MANC_RMCP_EN, 257 }; 258 259 /* Helper function, *curr == 0 means the value is not set */ 260 static inline void 261 mit_update_delay(uint32_t *curr, uint32_t value) 262 { 263 if (value && (*curr == 0 || value < *curr)) { 264 *curr = value; 265 } 266 } 267 268 static void 269 set_interrupt_cause(E1000State *s, int index, uint32_t val) 270 { 271 PCIDevice *d = PCI_DEVICE(s); 272 uint32_t pending_ints; 273 uint32_t mit_delay; 274 275 s->mac_reg[ICR] = val; 276 277 /* 278 * Make sure ICR and ICS registers have the same value. 279 * The spec says that the ICS register is write-only. However in practice, 280 * on real hardware ICS is readable, and for reads it has the same value as 281 * ICR (except that ICS does not have the clear on read behaviour of ICR). 282 * 283 * The VxWorks PRO/1000 driver uses this behaviour. 284 */ 285 s->mac_reg[ICS] = val; 286 287 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 288 if (!s->mit_irq_level && pending_ints) { 289 /* 290 * Here we detect a potential raising edge. We postpone raising the 291 * interrupt line if we are inside the mitigation delay window 292 * (s->mit_timer_on == 1). 293 * We provide a partial implementation of interrupt mitigation, 294 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 295 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 296 * RADV; relative timers based on TIDV and RDTR are not implemented. 297 */ 298 if (s->mit_timer_on) { 299 return; 300 } 301 if (chkflag(MIT)) { 302 /* Compute the next mitigation delay according to pending 303 * interrupts and the current values of RADV (provided 304 * RDTR!=0), TADV and ITR. 305 * Then rearm the timer. 306 */ 307 mit_delay = 0; 308 if (s->mit_ide && 309 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 310 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 311 } 312 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 313 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 314 } 315 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 316 317 /* 318 * According to e1000 SPEC, the Ethernet controller guarantees 319 * a maximum observable interrupt rate of 7813 interrupts/sec. 320 * Thus if mit_delay < 500 then the delay should be set to the 321 * minimum delay possible which is 500. 322 */ 323 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 324 325 s->mit_timer_on = 1; 326 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 327 mit_delay * 256); 328 s->mit_ide = 0; 329 } 330 } 331 332 s->mit_irq_level = (pending_ints != 0); 333 pci_set_irq(d, s->mit_irq_level); 334 } 335 336 static void 337 e1000_mit_timer(void *opaque) 338 { 339 E1000State *s = opaque; 340 341 s->mit_timer_on = 0; 342 /* Call set_interrupt_cause to update the irq level (if necessary). */ 343 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 344 } 345 346 static void 347 set_ics(E1000State *s, int index, uint32_t val) 348 { 349 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 350 s->mac_reg[IMS]); 351 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 352 } 353 354 static void 355 e1000_autoneg_timer(void *opaque) 356 { 357 E1000State *s = opaque; 358 if (!qemu_get_queue(s->nic)->link_down) { 359 e1000_autoneg_done(s); 360 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 361 } 362 } 363 364 static void e1000_reset(void *opaque) 365 { 366 E1000State *d = opaque; 367 E1000BaseClass *edc = E1000_GET_CLASS(d); 368 uint8_t *macaddr = d->conf.macaddr.a; 369 370 timer_del(d->autoneg_timer); 371 timer_del(d->mit_timer); 372 timer_del(d->flush_queue_timer); 373 d->mit_timer_on = 0; 374 d->mit_irq_level = 0; 375 d->mit_ide = 0; 376 memset(d->phy_reg, 0, sizeof d->phy_reg); 377 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 378 d->phy_reg[PHY_ID2] = edc->phy_id2; 379 memset(d->mac_reg, 0, sizeof d->mac_reg); 380 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 381 d->rxbuf_min_shift = 1; 382 memset(&d->tx, 0, sizeof d->tx); 383 384 if (qemu_get_queue(d->nic)->link_down) { 385 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 386 } 387 388 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 389 } 390 391 static void 392 set_ctrl(E1000State *s, int index, uint32_t val) 393 { 394 /* RST is self clearing */ 395 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 396 } 397 398 static void 399 e1000_flush_queue_timer(void *opaque) 400 { 401 E1000State *s = opaque; 402 403 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 404 } 405 406 static void 407 set_rx_control(E1000State *s, int index, uint32_t val) 408 { 409 s->mac_reg[RCTL] = val; 410 s->rxbuf_size = e1000x_rxbufsize(val); 411 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 412 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 413 s->mac_reg[RCTL]); 414 timer_mod(s->flush_queue_timer, 415 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); 416 } 417 418 static void 419 set_mdic(E1000State *s, int index, uint32_t val) 420 { 421 uint32_t data = val & E1000_MDIC_DATA_MASK; 422 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 423 424 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 425 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 426 else if (val & E1000_MDIC_OP_READ) { 427 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 428 if (!(phy_regcap[addr] & PHY_R)) { 429 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 430 val |= E1000_MDIC_ERROR; 431 } else 432 val = (val ^ data) | s->phy_reg[addr]; 433 } else if (val & E1000_MDIC_OP_WRITE) { 434 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 435 if (!(phy_regcap[addr] & PHY_W)) { 436 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 437 val |= E1000_MDIC_ERROR; 438 } else { 439 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 440 phyreg_writeops[addr](s, index, data); 441 } else { 442 s->phy_reg[addr] = data; 443 } 444 } 445 } 446 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 447 448 if (val & E1000_MDIC_INT_EN) { 449 set_ics(s, 0, E1000_ICR_MDAC); 450 } 451 } 452 453 static uint32_t 454 get_eecd(E1000State *s, int index) 455 { 456 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 457 458 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 459 s->eecd_state.bitnum_out, s->eecd_state.reading); 460 if (!s->eecd_state.reading || 461 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 462 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 463 ret |= E1000_EECD_DO; 464 return ret; 465 } 466 467 static void 468 set_eecd(E1000State *s, int index, uint32_t val) 469 { 470 uint32_t oldval = s->eecd_state.old_eecd; 471 472 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 473 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 474 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 475 return; 476 } 477 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 478 s->eecd_state.val_in = 0; 479 s->eecd_state.bitnum_in = 0; 480 s->eecd_state.bitnum_out = 0; 481 s->eecd_state.reading = 0; 482 } 483 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 484 return; 485 } 486 if (!(E1000_EECD_SK & val)) { /* falling edge */ 487 s->eecd_state.bitnum_out++; 488 return; 489 } 490 s->eecd_state.val_in <<= 1; 491 if (val & E1000_EECD_DI) 492 s->eecd_state.val_in |= 1; 493 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 494 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 495 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 496 EEPROM_READ_OPCODE_MICROWIRE); 497 } 498 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 499 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 500 s->eecd_state.reading); 501 } 502 503 static uint32_t 504 flash_eerd_read(E1000State *s, int x) 505 { 506 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 507 508 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 509 return (s->mac_reg[EERD]); 510 511 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 512 return (E1000_EEPROM_RW_REG_DONE | r); 513 514 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 515 E1000_EEPROM_RW_REG_DONE | r); 516 } 517 518 static void 519 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 520 { 521 uint32_t sum; 522 523 if (cse && cse < n) 524 n = cse + 1; 525 if (sloc < n-1) { 526 sum = net_checksum_add(n-css, data+css); 527 stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); 528 } 529 } 530 531 static inline void 532 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 533 { 534 if (!memcmp(arr, bcast, sizeof bcast)) { 535 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 536 } else if (arr[0] & 1) { 537 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 538 } 539 } 540 541 static void 542 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 543 { 544 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 545 PTC1023, PTC1522 }; 546 547 NetClientState *nc = qemu_get_queue(s->nic); 548 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 549 nc->info->receive(nc, buf, size); 550 } else { 551 qemu_send_packet(nc, buf, size); 552 } 553 inc_tx_bcast_or_mcast_count(s, buf); 554 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 555 } 556 557 static void 558 xmit_seg(E1000State *s) 559 { 560 uint16_t len; 561 unsigned int frames = s->tx.tso_frames, css, sofar; 562 struct e1000_tx *tp = &s->tx; 563 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; 564 565 if (tp->cptse) { 566 css = props->ipcss; 567 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 568 frames, tp->size, css); 569 if (props->ip) { /* IPv4 */ 570 stw_be_p(tp->data+css+2, tp->size - css); 571 stw_be_p(tp->data+css+4, 572 lduw_be_p(tp->data + css + 4) + frames); 573 } else { /* IPv6 */ 574 stw_be_p(tp->data+css+4, tp->size - css); 575 } 576 css = props->tucss; 577 len = tp->size - css; 578 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); 579 if (props->tcp) { 580 sofar = frames * props->mss; 581 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 582 if (props->paylen - sofar > props->mss) { 583 tp->data[css + 13] &= ~9; /* PSH, FIN */ 584 } else if (frames) { 585 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 586 } 587 } else { /* UDP */ 588 stw_be_p(tp->data+css+4, len); 589 } 590 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 591 unsigned int phsum; 592 // add pseudo-header length before checksum calculation 593 void *sp = tp->data + props->tucso; 594 595 phsum = lduw_be_p(sp) + len; 596 phsum = (phsum >> 16) + (phsum & 0xffff); 597 stw_be_p(sp, phsum); 598 } 599 tp->tso_frames++; 600 } 601 602 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 603 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); 604 } 605 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { 606 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); 607 } 608 if (tp->vlan_needed) { 609 memmove(tp->vlan, tp->data, 4); 610 memmove(tp->data, tp->data + 4, 8); 611 memcpy(tp->data + 8, tp->vlan_header, 4); 612 e1000_send_packet(s, tp->vlan, tp->size + 4); 613 } else { 614 e1000_send_packet(s, tp->data, tp->size); 615 } 616 617 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 618 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 619 s->mac_reg[GPTC] = s->mac_reg[TPT]; 620 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 621 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 622 } 623 624 static void 625 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 626 { 627 PCIDevice *d = PCI_DEVICE(s); 628 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 629 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 630 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 631 unsigned int msh = 0xfffff; 632 uint64_t addr; 633 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 634 struct e1000_tx *tp = &s->tx; 635 636 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 637 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 638 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { 639 e1000x_read_tx_ctx_descr(xp, &tp->tso_props); 640 s->use_tso_for_migration = 1; 641 tp->tso_frames = 0; 642 } else { 643 e1000x_read_tx_ctx_descr(xp, &tp->props); 644 s->use_tso_for_migration = 0; 645 } 646 return; 647 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 648 // data descriptor 649 if (tp->size == 0) { 650 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 651 } 652 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 653 } else { 654 // legacy descriptor 655 tp->cptse = 0; 656 } 657 658 if (e1000x_vlan_enabled(s->mac_reg) && 659 e1000x_is_vlan_txd(txd_lower) && 660 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { 661 tp->vlan_needed = 1; 662 stw_be_p(tp->vlan_header, 663 le16_to_cpu(s->mac_reg[VET])); 664 stw_be_p(tp->vlan_header + 2, 665 le16_to_cpu(dp->upper.fields.special)); 666 } 667 668 addr = le64_to_cpu(dp->buffer_addr); 669 if (tp->cptse) { 670 msh = tp->tso_props.hdr_len + tp->tso_props.mss; 671 do { 672 bytes = split_size; 673 if (tp->size + bytes > msh) 674 bytes = msh - tp->size; 675 676 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 677 pci_dma_read(d, addr, tp->data + tp->size, bytes); 678 sz = tp->size + bytes; 679 if (sz >= tp->tso_props.hdr_len 680 && tp->size < tp->tso_props.hdr_len) { 681 memmove(tp->header, tp->data, tp->tso_props.hdr_len); 682 } 683 tp->size = sz; 684 addr += bytes; 685 if (sz == msh) { 686 xmit_seg(s); 687 memmove(tp->data, tp->header, tp->tso_props.hdr_len); 688 tp->size = tp->tso_props.hdr_len; 689 } 690 split_size -= bytes; 691 } while (bytes && split_size); 692 } else { 693 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 694 pci_dma_read(d, addr, tp->data + tp->size, split_size); 695 tp->size += split_size; 696 } 697 698 if (!(txd_lower & E1000_TXD_CMD_EOP)) 699 return; 700 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { 701 xmit_seg(s); 702 } 703 tp->tso_frames = 0; 704 tp->sum_needed = 0; 705 tp->vlan_needed = 0; 706 tp->size = 0; 707 tp->cptse = 0; 708 } 709 710 static uint32_t 711 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 712 { 713 PCIDevice *d = PCI_DEVICE(s); 714 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 715 716 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 717 return 0; 718 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 719 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 720 dp->upper.data = cpu_to_le32(txd_upper); 721 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 722 &dp->upper, sizeof(dp->upper)); 723 return E1000_ICR_TXDW; 724 } 725 726 static uint64_t tx_desc_base(E1000State *s) 727 { 728 uint64_t bah = s->mac_reg[TDBAH]; 729 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 730 731 return (bah << 32) + bal; 732 } 733 734 static void 735 start_xmit(E1000State *s) 736 { 737 PCIDevice *d = PCI_DEVICE(s); 738 dma_addr_t base; 739 struct e1000_tx_desc desc; 740 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 741 742 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 743 DBGOUT(TX, "tx disabled\n"); 744 return; 745 } 746 747 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 748 base = tx_desc_base(s) + 749 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 750 pci_dma_read(d, base, &desc, sizeof(desc)); 751 752 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 753 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 754 desc.upper.data); 755 756 process_tx_desc(s, &desc); 757 cause |= txdesc_writeback(s, base, &desc); 758 759 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 760 s->mac_reg[TDH] = 0; 761 /* 762 * the following could happen only if guest sw assigns 763 * bogus values to TDT/TDLEN. 764 * there's nothing too intelligent we could do about this. 765 */ 766 if (s->mac_reg[TDH] == tdh_start || 767 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 768 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 769 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 770 break; 771 } 772 } 773 set_ics(s, 0, cause); 774 } 775 776 static int 777 receive_filter(E1000State *s, const uint8_t *buf, int size) 778 { 779 uint32_t rctl = s->mac_reg[RCTL]; 780 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 781 782 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 783 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 784 uint16_t vid = lduw_be_p(buf + 14); 785 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + 786 ((vid >> 5) & 0x7f)); 787 if ((vfta & (1 << (vid & 0x1f))) == 0) 788 return 0; 789 } 790 791 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 792 return 1; 793 } 794 795 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 796 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 797 return 1; 798 } 799 800 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 801 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 802 return 1; 803 } 804 805 return e1000x_rx_group_filter(s->mac_reg, buf); 806 } 807 808 static void 809 e1000_set_link_status(NetClientState *nc) 810 { 811 E1000State *s = qemu_get_nic_opaque(nc); 812 uint32_t old_status = s->mac_reg[STATUS]; 813 814 if (nc->link_down) { 815 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 816 } else { 817 if (have_autoneg(s) && 818 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 819 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 820 } else { 821 e1000_link_up(s); 822 } 823 } 824 825 if (s->mac_reg[STATUS] != old_status) 826 set_ics(s, 0, E1000_ICR_LSC); 827 } 828 829 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 830 { 831 int bufs; 832 /* Fast-path short packets */ 833 if (total_size <= s->rxbuf_size) { 834 return s->mac_reg[RDH] != s->mac_reg[RDT]; 835 } 836 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 837 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 838 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 839 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 840 s->mac_reg[RDT] - s->mac_reg[RDH]; 841 } else { 842 return false; 843 } 844 return total_size <= bufs * s->rxbuf_size; 845 } 846 847 static bool 848 e1000_can_receive(NetClientState *nc) 849 { 850 E1000State *s = qemu_get_nic_opaque(nc); 851 852 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 853 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); 854 } 855 856 static uint64_t rx_desc_base(E1000State *s) 857 { 858 uint64_t bah = s->mac_reg[RDBAH]; 859 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 860 861 return (bah << 32) + bal; 862 } 863 864 static void 865 e1000_receiver_overrun(E1000State *s, size_t size) 866 { 867 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); 868 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); 869 e1000x_inc_reg_if_not_full(s->mac_reg, MPC); 870 set_ics(s, 0, E1000_ICS_RXO); 871 } 872 873 static ssize_t 874 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 875 { 876 E1000State *s = qemu_get_nic_opaque(nc); 877 PCIDevice *d = PCI_DEVICE(s); 878 struct e1000_rx_desc desc; 879 dma_addr_t base; 880 unsigned int n, rdt; 881 uint32_t rdh_start; 882 uint16_t vlan_special = 0; 883 uint8_t vlan_status = 0; 884 uint8_t min_buf[MIN_BUF_SIZE]; 885 struct iovec min_iov; 886 uint8_t *filter_buf = iov->iov_base; 887 size_t size = iov_size(iov, iovcnt); 888 size_t iov_ofs = 0; 889 size_t desc_offset; 890 size_t desc_size; 891 size_t total_size; 892 893 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 894 return -1; 895 } 896 897 if (timer_pending(s->flush_queue_timer)) { 898 return 0; 899 } 900 901 /* Pad to minimum Ethernet frame length */ 902 if (size < sizeof(min_buf)) { 903 iov_to_buf(iov, iovcnt, 0, min_buf, size); 904 memset(&min_buf[size], 0, sizeof(min_buf) - size); 905 min_iov.iov_base = filter_buf = min_buf; 906 min_iov.iov_len = size = sizeof(min_buf); 907 iovcnt = 1; 908 iov = &min_iov; 909 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 910 /* This is very unlikely, but may happen. */ 911 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 912 filter_buf = min_buf; 913 } 914 915 /* Discard oversized packets if !LPE and !SBP. */ 916 if (e1000x_is_oversized(s->mac_reg, size)) { 917 return size; 918 } 919 920 if (!receive_filter(s, filter_buf, size)) { 921 return size; 922 } 923 924 if (e1000x_vlan_enabled(s->mac_reg) && 925 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 926 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); 927 iov_ofs = 4; 928 if (filter_buf == iov->iov_base) { 929 memmove(filter_buf + 4, filter_buf, 12); 930 } else { 931 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 932 while (iov->iov_len <= iov_ofs) { 933 iov_ofs -= iov->iov_len; 934 iov++; 935 } 936 } 937 vlan_status = E1000_RXD_STAT_VP; 938 size -= 4; 939 } 940 941 rdh_start = s->mac_reg[RDH]; 942 desc_offset = 0; 943 total_size = size + e1000x_fcs_len(s->mac_reg); 944 if (!e1000_has_rxbufs(s, total_size)) { 945 e1000_receiver_overrun(s, total_size); 946 return -1; 947 } 948 do { 949 desc_size = total_size - desc_offset; 950 if (desc_size > s->rxbuf_size) { 951 desc_size = s->rxbuf_size; 952 } 953 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 954 pci_dma_read(d, base, &desc, sizeof(desc)); 955 desc.special = vlan_special; 956 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 957 if (desc.buffer_addr) { 958 if (desc_offset < size) { 959 size_t iov_copy; 960 hwaddr ba = le64_to_cpu(desc.buffer_addr); 961 size_t copy_size = size - desc_offset; 962 if (copy_size > s->rxbuf_size) { 963 copy_size = s->rxbuf_size; 964 } 965 do { 966 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 967 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 968 copy_size -= iov_copy; 969 ba += iov_copy; 970 iov_ofs += iov_copy; 971 if (iov_ofs == iov->iov_len) { 972 iov++; 973 iov_ofs = 0; 974 } 975 } while (copy_size); 976 } 977 desc_offset += desc_size; 978 desc.length = cpu_to_le16(desc_size); 979 if (desc_offset >= total_size) { 980 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 981 } else { 982 /* Guest zeroing out status is not a hardware requirement. 983 Clear EOP in case guest didn't do it. */ 984 desc.status &= ~E1000_RXD_STAT_EOP; 985 } 986 } else { // as per intel docs; skip descriptors with null buf addr 987 DBGOUT(RX, "Null RX descriptor!!\n"); 988 } 989 pci_dma_write(d, base, &desc, sizeof(desc)); 990 991 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 992 s->mac_reg[RDH] = 0; 993 /* see comment in start_xmit; same here */ 994 if (s->mac_reg[RDH] == rdh_start || 995 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 996 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 997 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 998 e1000_receiver_overrun(s, total_size); 999 return -1; 1000 } 1001 } while (desc_offset < total_size); 1002 1003 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 1004 1005 n = E1000_ICS_RXT0; 1006 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 1007 rdt += s->mac_reg[RDLEN] / sizeof(desc); 1008 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 1009 s->rxbuf_min_shift) 1010 n |= E1000_ICS_RXDMT0; 1011 1012 set_ics(s, 0, n); 1013 1014 return size; 1015 } 1016 1017 static ssize_t 1018 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 1019 { 1020 const struct iovec iov = { 1021 .iov_base = (uint8_t *)buf, 1022 .iov_len = size 1023 }; 1024 1025 return e1000_receive_iov(nc, &iov, 1); 1026 } 1027 1028 static uint32_t 1029 mac_readreg(E1000State *s, int index) 1030 { 1031 return s->mac_reg[index]; 1032 } 1033 1034 static uint32_t 1035 mac_low4_read(E1000State *s, int index) 1036 { 1037 return s->mac_reg[index] & 0xf; 1038 } 1039 1040 static uint32_t 1041 mac_low11_read(E1000State *s, int index) 1042 { 1043 return s->mac_reg[index] & 0x7ff; 1044 } 1045 1046 static uint32_t 1047 mac_low13_read(E1000State *s, int index) 1048 { 1049 return s->mac_reg[index] & 0x1fff; 1050 } 1051 1052 static uint32_t 1053 mac_low16_read(E1000State *s, int index) 1054 { 1055 return s->mac_reg[index] & 0xffff; 1056 } 1057 1058 static uint32_t 1059 mac_icr_read(E1000State *s, int index) 1060 { 1061 uint32_t ret = s->mac_reg[ICR]; 1062 1063 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1064 set_interrupt_cause(s, 0, 0); 1065 return ret; 1066 } 1067 1068 static uint32_t 1069 mac_read_clr4(E1000State *s, int index) 1070 { 1071 uint32_t ret = s->mac_reg[index]; 1072 1073 s->mac_reg[index] = 0; 1074 return ret; 1075 } 1076 1077 static uint32_t 1078 mac_read_clr8(E1000State *s, int index) 1079 { 1080 uint32_t ret = s->mac_reg[index]; 1081 1082 s->mac_reg[index] = 0; 1083 s->mac_reg[index-1] = 0; 1084 return ret; 1085 } 1086 1087 static void 1088 mac_writereg(E1000State *s, int index, uint32_t val) 1089 { 1090 uint32_t macaddr[2]; 1091 1092 s->mac_reg[index] = val; 1093 1094 if (index == RA + 1) { 1095 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1096 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1097 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1098 } 1099 } 1100 1101 static void 1102 set_rdt(E1000State *s, int index, uint32_t val) 1103 { 1104 s->mac_reg[index] = val & 0xffff; 1105 if (e1000_has_rxbufs(s, 1)) { 1106 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1107 } 1108 } 1109 1110 static void 1111 set_16bit(E1000State *s, int index, uint32_t val) 1112 { 1113 s->mac_reg[index] = val & 0xffff; 1114 } 1115 1116 static void 1117 set_dlen(E1000State *s, int index, uint32_t val) 1118 { 1119 s->mac_reg[index] = val & 0xfff80; 1120 } 1121 1122 static void 1123 set_tctl(E1000State *s, int index, uint32_t val) 1124 { 1125 s->mac_reg[index] = val; 1126 s->mac_reg[TDT] &= 0xffff; 1127 start_xmit(s); 1128 } 1129 1130 static void 1131 set_icr(E1000State *s, int index, uint32_t val) 1132 { 1133 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1134 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1135 } 1136 1137 static void 1138 set_imc(E1000State *s, int index, uint32_t val) 1139 { 1140 s->mac_reg[IMS] &= ~val; 1141 set_ics(s, 0, 0); 1142 } 1143 1144 static void 1145 set_ims(E1000State *s, int index, uint32_t val) 1146 { 1147 s->mac_reg[IMS] |= val; 1148 set_ics(s, 0, 0); 1149 } 1150 1151 #define getreg(x) [x] = mac_readreg 1152 typedef uint32_t (*readops)(E1000State *, int); 1153 static const readops macreg_readops[] = { 1154 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1155 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1156 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1157 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1158 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1159 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1160 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1161 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1162 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1163 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1164 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), 1165 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1166 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1167 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1168 getreg(GOTCL), 1169 1170 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1171 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1172 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1173 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1174 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1175 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1176 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1177 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1178 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1179 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1180 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1181 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1182 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1183 [MPTC] = mac_read_clr4, 1184 [ICR] = mac_icr_read, [EECD] = get_eecd, 1185 [EERD] = flash_eerd_read, 1186 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1187 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1188 [RDFPC] = mac_low13_read, 1189 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1190 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1191 [TDFPC] = mac_low13_read, 1192 [AIT] = mac_low16_read, 1193 1194 [CRCERRS ... MPC] = &mac_readreg, 1195 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1196 [FFLT ... FFLT+6] = &mac_low11_read, 1197 [RA ... RA+31] = &mac_readreg, 1198 [WUPM ... WUPM+31] = &mac_readreg, 1199 [MTA ... MTA+127] = &mac_readreg, 1200 [VFTA ... VFTA+127] = &mac_readreg, 1201 [FFMT ... FFMT+254] = &mac_low4_read, 1202 [FFVT ... FFVT+254] = &mac_readreg, 1203 [PBM ... PBM+16383] = &mac_readreg, 1204 }; 1205 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1206 1207 #define putreg(x) [x] = mac_writereg 1208 typedef void (*writeops)(E1000State *, int, uint32_t); 1209 static const writeops macreg_writeops[] = { 1210 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1211 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1212 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1213 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1214 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1215 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1216 putreg(WUS), putreg(AIT), 1217 1218 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1219 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1220 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1221 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1222 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1223 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1224 [ITR] = set_16bit, 1225 1226 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1227 [FFLT ... FFLT+6] = &mac_writereg, 1228 [RA ... RA+31] = &mac_writereg, 1229 [WUPM ... WUPM+31] = &mac_writereg, 1230 [MTA ... MTA+127] = &mac_writereg, 1231 [VFTA ... VFTA+127] = &mac_writereg, 1232 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1233 [PBM ... PBM+16383] = &mac_writereg, 1234 }; 1235 1236 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1237 1238 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1239 1240 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1241 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1242 * f - flag bits (up to 6 possible flags) 1243 * n - flag needed 1244 * p - partially implenented */ 1245 static const uint8_t mac_reg_access[0x8000] = { 1246 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1247 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1248 1249 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1250 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1251 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1252 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1253 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1254 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1255 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1256 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1257 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1258 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1259 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1260 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1261 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1262 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1263 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1264 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1265 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1266 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1267 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1268 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1269 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1270 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1271 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1272 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1273 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1274 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1275 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1276 [BPTC] = markflag(MAC), 1277 1278 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1279 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1280 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1281 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1282 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1283 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1284 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1285 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1286 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1287 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1288 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1289 }; 1290 1291 static void 1292 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1293 unsigned size) 1294 { 1295 E1000State *s = opaque; 1296 unsigned int index = (addr & 0x1ffff) >> 2; 1297 1298 if (index < NWRITEOPS && macreg_writeops[index]) { 1299 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1300 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1301 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1302 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1303 "It is not fully implemented.\n", index<<2); 1304 } 1305 macreg_writeops[index](s, index, val); 1306 } else { /* "flag needed" bit is set, but the flag is not active */ 1307 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1308 index<<2); 1309 } 1310 } else if (index < NREADOPS && macreg_readops[index]) { 1311 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1312 index<<2, val); 1313 } else { 1314 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1315 index<<2, val); 1316 } 1317 } 1318 1319 static uint64_t 1320 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1321 { 1322 E1000State *s = opaque; 1323 unsigned int index = (addr & 0x1ffff) >> 2; 1324 1325 if (index < NREADOPS && macreg_readops[index]) { 1326 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1327 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1328 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1329 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1330 "It is not fully implemented.\n", index<<2); 1331 } 1332 return macreg_readops[index](s, index); 1333 } else { /* "flag needed" bit is set, but the flag is not active */ 1334 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1335 index<<2); 1336 } 1337 } else { 1338 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1339 } 1340 return 0; 1341 } 1342 1343 static const MemoryRegionOps e1000_mmio_ops = { 1344 .read = e1000_mmio_read, 1345 .write = e1000_mmio_write, 1346 .endianness = DEVICE_LITTLE_ENDIAN, 1347 .impl = { 1348 .min_access_size = 4, 1349 .max_access_size = 4, 1350 }, 1351 }; 1352 1353 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1354 unsigned size) 1355 { 1356 E1000State *s = opaque; 1357 1358 (void)s; 1359 return 0; 1360 } 1361 1362 static void e1000_io_write(void *opaque, hwaddr addr, 1363 uint64_t val, unsigned size) 1364 { 1365 E1000State *s = opaque; 1366 1367 (void)s; 1368 } 1369 1370 static const MemoryRegionOps e1000_io_ops = { 1371 .read = e1000_io_read, 1372 .write = e1000_io_write, 1373 .endianness = DEVICE_LITTLE_ENDIAN, 1374 }; 1375 1376 static bool is_version_1(void *opaque, int version_id) 1377 { 1378 return version_id == 1; 1379 } 1380 1381 static int e1000_pre_save(void *opaque) 1382 { 1383 E1000State *s = opaque; 1384 NetClientState *nc = qemu_get_queue(s->nic); 1385 1386 /* 1387 * If link is down and auto-negotiation is supported and ongoing, 1388 * complete auto-negotiation immediately. This allows us to look 1389 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1390 */ 1391 if (nc->link_down && have_autoneg(s)) { 1392 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1393 } 1394 1395 /* Decide which set of props to migrate in the main structure */ 1396 if (chkflag(TSO) || !s->use_tso_for_migration) { 1397 /* Either we're migrating with the extra subsection, in which 1398 * case the mig_props is always 'props' OR 1399 * we've not got the subsection, but 'props' was the last 1400 * updated. 1401 */ 1402 s->mig_props = s->tx.props; 1403 } else { 1404 /* We're not using the subsection, and 'tso_props' was 1405 * the last updated. 1406 */ 1407 s->mig_props = s->tx.tso_props; 1408 } 1409 return 0; 1410 } 1411 1412 static int e1000_post_load(void *opaque, int version_id) 1413 { 1414 E1000State *s = opaque; 1415 NetClientState *nc = qemu_get_queue(s->nic); 1416 1417 if (!chkflag(MIT)) { 1418 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1419 s->mac_reg[TADV] = 0; 1420 s->mit_irq_level = false; 1421 } 1422 s->mit_ide = 0; 1423 s->mit_timer_on = true; 1424 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); 1425 1426 /* nc.link_down can't be migrated, so infer link_down according 1427 * to link status bit in mac_reg[STATUS]. 1428 * Alternatively, restart link negotiation if it was in progress. */ 1429 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1430 1431 if (have_autoneg(s) && 1432 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1433 nc->link_down = false; 1434 timer_mod(s->autoneg_timer, 1435 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1436 } 1437 1438 s->tx.props = s->mig_props; 1439 if (!s->received_tx_tso) { 1440 /* We received only one set of offload data (tx.props) 1441 * and haven't got tx.tso_props. The best we can do 1442 * is dupe the data. 1443 */ 1444 s->tx.tso_props = s->mig_props; 1445 } 1446 return 0; 1447 } 1448 1449 static int e1000_tx_tso_post_load(void *opaque, int version_id) 1450 { 1451 E1000State *s = opaque; 1452 s->received_tx_tso = true; 1453 return 0; 1454 } 1455 1456 static bool e1000_mit_state_needed(void *opaque) 1457 { 1458 E1000State *s = opaque; 1459 1460 return chkflag(MIT); 1461 } 1462 1463 static bool e1000_full_mac_needed(void *opaque) 1464 { 1465 E1000State *s = opaque; 1466 1467 return chkflag(MAC); 1468 } 1469 1470 static bool e1000_tso_state_needed(void *opaque) 1471 { 1472 E1000State *s = opaque; 1473 1474 return chkflag(TSO); 1475 } 1476 1477 static const VMStateDescription vmstate_e1000_mit_state = { 1478 .name = "e1000/mit_state", 1479 .version_id = 1, 1480 .minimum_version_id = 1, 1481 .needed = e1000_mit_state_needed, 1482 .fields = (VMStateField[]) { 1483 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1484 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1485 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1486 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1487 VMSTATE_BOOL(mit_irq_level, E1000State), 1488 VMSTATE_END_OF_LIST() 1489 } 1490 }; 1491 1492 static const VMStateDescription vmstate_e1000_full_mac_state = { 1493 .name = "e1000/full_mac_state", 1494 .version_id = 1, 1495 .minimum_version_id = 1, 1496 .needed = e1000_full_mac_needed, 1497 .fields = (VMStateField[]) { 1498 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1499 VMSTATE_END_OF_LIST() 1500 } 1501 }; 1502 1503 static const VMStateDescription vmstate_e1000_tx_tso_state = { 1504 .name = "e1000/tx_tso_state", 1505 .version_id = 1, 1506 .minimum_version_id = 1, 1507 .needed = e1000_tso_state_needed, 1508 .post_load = e1000_tx_tso_post_load, 1509 .fields = (VMStateField[]) { 1510 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), 1511 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), 1512 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), 1513 VMSTATE_UINT8(tx.tso_props.tucss, E1000State), 1514 VMSTATE_UINT8(tx.tso_props.tucso, E1000State), 1515 VMSTATE_UINT16(tx.tso_props.tucse, E1000State), 1516 VMSTATE_UINT32(tx.tso_props.paylen, E1000State), 1517 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), 1518 VMSTATE_UINT16(tx.tso_props.mss, E1000State), 1519 VMSTATE_INT8(tx.tso_props.ip, E1000State), 1520 VMSTATE_INT8(tx.tso_props.tcp, E1000State), 1521 VMSTATE_END_OF_LIST() 1522 } 1523 }; 1524 1525 static const VMStateDescription vmstate_e1000 = { 1526 .name = "e1000", 1527 .version_id = 2, 1528 .minimum_version_id = 1, 1529 .pre_save = e1000_pre_save, 1530 .post_load = e1000_post_load, 1531 .fields = (VMStateField[]) { 1532 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1533 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1534 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1535 VMSTATE_UINT32(rxbuf_size, E1000State), 1536 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1537 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1538 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1539 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1540 VMSTATE_UINT16(eecd_state.reading, E1000State), 1541 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1542 VMSTATE_UINT8(mig_props.ipcss, E1000State), 1543 VMSTATE_UINT8(mig_props.ipcso, E1000State), 1544 VMSTATE_UINT16(mig_props.ipcse, E1000State), 1545 VMSTATE_UINT8(mig_props.tucss, E1000State), 1546 VMSTATE_UINT8(mig_props.tucso, E1000State), 1547 VMSTATE_UINT16(mig_props.tucse, E1000State), 1548 VMSTATE_UINT32(mig_props.paylen, E1000State), 1549 VMSTATE_UINT8(mig_props.hdr_len, E1000State), 1550 VMSTATE_UINT16(mig_props.mss, E1000State), 1551 VMSTATE_UINT16(tx.size, E1000State), 1552 VMSTATE_UINT16(tx.tso_frames, E1000State), 1553 VMSTATE_UINT8(tx.sum_needed, E1000State), 1554 VMSTATE_INT8(mig_props.ip, E1000State), 1555 VMSTATE_INT8(mig_props.tcp, E1000State), 1556 VMSTATE_BUFFER(tx.header, E1000State), 1557 VMSTATE_BUFFER(tx.data, E1000State), 1558 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1559 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1560 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1561 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1562 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1563 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1564 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1565 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1566 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1567 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1568 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1569 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1570 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1571 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1572 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1573 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1574 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1575 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1576 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1577 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1578 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1579 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1580 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1581 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1582 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1583 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1584 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1585 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1586 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1587 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1588 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1589 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1590 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1591 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1592 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1593 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1594 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1595 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1596 VMSTATE_UINT32(mac_reg[VET], E1000State), 1597 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1598 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1599 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1600 VMSTATE_END_OF_LIST() 1601 }, 1602 .subsections = (const VMStateDescription*[]) { 1603 &vmstate_e1000_mit_state, 1604 &vmstate_e1000_full_mac_state, 1605 &vmstate_e1000_tx_tso_state, 1606 NULL 1607 } 1608 }; 1609 1610 /* 1611 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1612 * Note: A valid DevId will be inserted during pci_e1000_realize(). 1613 */ 1614 static const uint16_t e1000_eeprom_template[64] = { 1615 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1616 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1617 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1618 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1619 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1620 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1621 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1622 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1623 }; 1624 1625 /* PCI interface */ 1626 1627 static void 1628 e1000_mmio_setup(E1000State *d) 1629 { 1630 int i; 1631 const uint32_t excluded_regs[] = { 1632 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1633 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1634 }; 1635 1636 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1637 "e1000-mmio", PNPMMIO_SIZE); 1638 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1639 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1640 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1641 excluded_regs[i+1] - excluded_regs[i] - 4); 1642 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1643 } 1644 1645 static void 1646 pci_e1000_uninit(PCIDevice *dev) 1647 { 1648 E1000State *d = E1000(dev); 1649 1650 timer_del(d->autoneg_timer); 1651 timer_free(d->autoneg_timer); 1652 timer_del(d->mit_timer); 1653 timer_free(d->mit_timer); 1654 timer_del(d->flush_queue_timer); 1655 timer_free(d->flush_queue_timer); 1656 qemu_del_nic(d->nic); 1657 } 1658 1659 static NetClientInfo net_e1000_info = { 1660 .type = NET_CLIENT_DRIVER_NIC, 1661 .size = sizeof(NICState), 1662 .can_receive = e1000_can_receive, 1663 .receive = e1000_receive, 1664 .receive_iov = e1000_receive_iov, 1665 .link_status_changed = e1000_set_link_status, 1666 }; 1667 1668 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1669 uint32_t val, int len) 1670 { 1671 E1000State *s = E1000(pci_dev); 1672 1673 pci_default_write_config(pci_dev, address, val, len); 1674 1675 if (range_covers_byte(address, len, PCI_COMMAND) && 1676 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1677 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1678 } 1679 } 1680 1681 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1682 { 1683 DeviceState *dev = DEVICE(pci_dev); 1684 E1000State *d = E1000(pci_dev); 1685 uint8_t *pci_conf; 1686 uint8_t *macaddr; 1687 1688 pci_dev->config_write = e1000_write_config; 1689 1690 pci_conf = pci_dev->config; 1691 1692 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1693 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1694 1695 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1696 1697 e1000_mmio_setup(d); 1698 1699 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1700 1701 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1702 1703 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1704 macaddr = d->conf.macaddr.a; 1705 1706 e1000x_core_prepare_eeprom(d->eeprom_data, 1707 e1000_eeprom_template, 1708 sizeof(e1000_eeprom_template), 1709 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1710 macaddr); 1711 1712 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1713 object_get_typename(OBJECT(d)), dev->id, d); 1714 1715 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1716 1717 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1718 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1719 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 1720 e1000_flush_queue_timer, d); 1721 } 1722 1723 static void qdev_e1000_reset(DeviceState *dev) 1724 { 1725 E1000State *d = E1000(dev); 1726 e1000_reset(d); 1727 } 1728 1729 static Property e1000_properties[] = { 1730 DEFINE_NIC_PROPERTIES(E1000State, conf), 1731 DEFINE_PROP_BIT("autonegotiation", E1000State, 1732 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1733 DEFINE_PROP_BIT("mitigation", E1000State, 1734 compat_flags, E1000_FLAG_MIT_BIT, true), 1735 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1736 compat_flags, E1000_FLAG_MAC_BIT, true), 1737 DEFINE_PROP_BIT("migrate_tso_props", E1000State, 1738 compat_flags, E1000_FLAG_TSO_BIT, true), 1739 DEFINE_PROP_END_OF_LIST(), 1740 }; 1741 1742 typedef struct E1000Info { 1743 const char *name; 1744 uint16_t device_id; 1745 uint8_t revision; 1746 uint16_t phy_id2; 1747 } E1000Info; 1748 1749 static void e1000_class_init(ObjectClass *klass, void *data) 1750 { 1751 DeviceClass *dc = DEVICE_CLASS(klass); 1752 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1753 E1000BaseClass *e = E1000_CLASS(klass); 1754 const E1000Info *info = data; 1755 1756 k->realize = pci_e1000_realize; 1757 k->exit = pci_e1000_uninit; 1758 k->romfile = "efi-e1000.rom"; 1759 k->vendor_id = PCI_VENDOR_ID_INTEL; 1760 k->device_id = info->device_id; 1761 k->revision = info->revision; 1762 e->phy_id2 = info->phy_id2; 1763 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1764 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1765 dc->desc = "Intel Gigabit Ethernet"; 1766 dc->reset = qdev_e1000_reset; 1767 dc->vmsd = &vmstate_e1000; 1768 device_class_set_props(dc, e1000_properties); 1769 } 1770 1771 static void e1000_instance_init(Object *obj) 1772 { 1773 E1000State *n = E1000(obj); 1774 device_add_bootindex_property(obj, &n->conf.bootindex, 1775 "bootindex", "/ethernet-phy@0", 1776 DEVICE(n)); 1777 } 1778 1779 static const TypeInfo e1000_base_info = { 1780 .name = TYPE_E1000_BASE, 1781 .parent = TYPE_PCI_DEVICE, 1782 .instance_size = sizeof(E1000State), 1783 .instance_init = e1000_instance_init, 1784 .class_size = sizeof(E1000BaseClass), 1785 .abstract = true, 1786 .interfaces = (InterfaceInfo[]) { 1787 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1788 { }, 1789 }, 1790 }; 1791 1792 static const E1000Info e1000_devices[] = { 1793 { 1794 .name = "e1000", 1795 .device_id = E1000_DEV_ID_82540EM, 1796 .revision = 0x03, 1797 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1798 }, 1799 { 1800 .name = "e1000-82544gc", 1801 .device_id = E1000_DEV_ID_82544GC_COPPER, 1802 .revision = 0x03, 1803 .phy_id2 = E1000_PHY_ID2_82544x, 1804 }, 1805 { 1806 .name = "e1000-82545em", 1807 .device_id = E1000_DEV_ID_82545EM_COPPER, 1808 .revision = 0x03, 1809 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1810 }, 1811 }; 1812 1813 static void e1000_register_types(void) 1814 { 1815 int i; 1816 1817 type_register_static(&e1000_base_info); 1818 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1819 const E1000Info *info = &e1000_devices[i]; 1820 TypeInfo type_info = {}; 1821 1822 type_info.name = info->name; 1823 type_info.parent = TYPE_E1000_BASE; 1824 type_info.class_data = (void *)info; 1825 type_info.class_init = e1000_class_init; 1826 1827 type_register(&type_info); 1828 } 1829 } 1830 1831 type_init(e1000_register_types) 1832