xref: /openbmc/qemu/hw/net/e1000.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * QEMU e1000 emulation
3  *
4  * Software developer's manual:
5  * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
6  *
7  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8  * Copyright (c) 2008 Qumranet
9  * Based on work done by:
10  * Copyright (c) 2007 Dan Aloni
11  * Copyright (c) 2004 Antony T Curtis
12  *
13  * This library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2 of the License, or (at your option) any later version.
17  *
18  * This library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25  */
26 
27 
28 #include "qemu/osdep.h"
29 #include "hw/hw.h"
30 #include "hw/pci/pci.h"
31 #include "net/net.h"
32 #include "net/checksum.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/dma.h"
35 #include "qemu/iov.h"
36 #include "qemu/range.h"
37 
38 #include "e1000x_common.h"
39 #include "trace.h"
40 
41 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
42 
43 /* #define E1000_DEBUG */
44 
45 #ifdef E1000_DEBUG
46 enum {
47     DEBUG_GENERAL,      DEBUG_IO,       DEBUG_MMIO,     DEBUG_INTERRUPT,
48     DEBUG_RX,           DEBUG_TX,       DEBUG_MDIC,     DEBUG_EEPROM,
49     DEBUG_UNKNOWN,      DEBUG_TXSUM,    DEBUG_TXERR,    DEBUG_RXERR,
50     DEBUG_RXFILTER,     DEBUG_PHY,      DEBUG_NOTYET,
51 };
52 #define DBGBIT(x)    (1<<DEBUG_##x)
53 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
54 
55 #define DBGOUT(what, fmt, ...) do { \
56     if (debugflags & DBGBIT(what)) \
57         fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
58     } while (0)
59 #else
60 #define DBGOUT(what, fmt, ...) do {} while (0)
61 #endif
62 
63 #define IOPORT_SIZE       0x40
64 #define PNPMMIO_SIZE      0x20000
65 #define MIN_BUF_SIZE      60 /* Min. octets in an ethernet frame sans FCS */
66 
67 #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
68 
69 /*
70  * HW models:
71  *  E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
72  *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
73  *  E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
74  *  Others never tested
75  */
76 
77 typedef struct E1000State_st {
78     /*< private >*/
79     PCIDevice parent_obj;
80     /*< public >*/
81 
82     NICState *nic;
83     NICConf conf;
84     MemoryRegion mmio;
85     MemoryRegion io;
86 
87     uint32_t mac_reg[0x8000];
88     uint16_t phy_reg[0x20];
89     uint16_t eeprom_data[64];
90 
91     uint32_t rxbuf_size;
92     uint32_t rxbuf_min_shift;
93     struct e1000_tx {
94         unsigned char header[256];
95         unsigned char vlan_header[4];
96         /* Fields vlan and data must not be reordered or separated. */
97         unsigned char vlan[4];
98         unsigned char data[0x10000];
99         uint16_t size;
100         unsigned char vlan_needed;
101         unsigned char sum_needed;
102         bool cptse;
103         e1000x_txd_props props;
104         e1000x_txd_props tso_props;
105         uint16_t tso_frames;
106     } tx;
107 
108     struct {
109         uint32_t val_in;    /* shifted in from guest driver */
110         uint16_t bitnum_in;
111         uint16_t bitnum_out;
112         uint16_t reading;
113         uint32_t old_eecd;
114     } eecd_state;
115 
116     QEMUTimer *autoneg_timer;
117 
118     QEMUTimer *mit_timer;      /* Mitigation timer. */
119     bool mit_timer_on;         /* Mitigation timer is running. */
120     bool mit_irq_level;        /* Tracks interrupt pin level. */
121     uint32_t mit_ide;          /* Tracks E1000_TXD_CMD_IDE bit. */
122 
123     QEMUTimer *flush_queue_timer;
124 
125 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
126 #define E1000_FLAG_AUTONEG_BIT 0
127 #define E1000_FLAG_MIT_BIT 1
128 #define E1000_FLAG_MAC_BIT 2
129 #define E1000_FLAG_TSO_BIT 3
130 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
131 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
132 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
133 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
134     uint32_t compat_flags;
135     bool received_tx_tso;
136     bool use_tso_for_migration;
137     e1000x_txd_props mig_props;
138 } E1000State;
139 
140 #define chkflag(x)     (s->compat_flags & E1000_FLAG_##x)
141 
142 typedef struct E1000BaseClass {
143     PCIDeviceClass parent_class;
144     uint16_t phy_id2;
145 } E1000BaseClass;
146 
147 #define TYPE_E1000_BASE "e1000-base"
148 
149 #define E1000(obj) \
150     OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)
151 
152 #define E1000_DEVICE_CLASS(klass) \
153      OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
154 #define E1000_DEVICE_GET_CLASS(obj) \
155     OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
156 
157 static void
158 e1000_link_up(E1000State *s)
159 {
160     e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
161 
162     /* E1000_STATUS_LU is tested by e1000_can_receive() */
163     qemu_flush_queued_packets(qemu_get_queue(s->nic));
164 }
165 
166 static void
167 e1000_autoneg_done(E1000State *s)
168 {
169     e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
170 
171     /* E1000_STATUS_LU is tested by e1000_can_receive() */
172     qemu_flush_queued_packets(qemu_get_queue(s->nic));
173 }
174 
175 static bool
176 have_autoneg(E1000State *s)
177 {
178     return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
179 }
180 
181 static void
182 set_phy_ctrl(E1000State *s, int index, uint16_t val)
183 {
184     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
185     s->phy_reg[PHY_CTRL] = val & ~(0x3f |
186                                    MII_CR_RESET |
187                                    MII_CR_RESTART_AUTO_NEG);
188 
189     /*
190      * QEMU 1.3 does not support link auto-negotiation emulation, so if we
191      * migrate during auto negotiation, after migration the link will be
192      * down.
193      */
194     if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
195         e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
196     }
197 }
198 
199 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
200     [PHY_CTRL] = set_phy_ctrl,
201 };
202 
203 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
204 
205 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
206 static const char phy_regcap[0x20] = {
207     [PHY_STATUS]      = PHY_R,     [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
208     [PHY_ID1]         = PHY_R,     [M88E1000_PHY_SPEC_CTRL]     = PHY_RW,
209     [PHY_CTRL]        = PHY_RW,    [PHY_1000T_CTRL]             = PHY_RW,
210     [PHY_LP_ABILITY]  = PHY_R,     [PHY_1000T_STATUS]           = PHY_R,
211     [PHY_AUTONEG_ADV] = PHY_RW,    [M88E1000_RX_ERR_CNTR]       = PHY_R,
212     [PHY_ID2]         = PHY_R,     [M88E1000_PHY_SPEC_STATUS]   = PHY_R,
213     [PHY_AUTONEG_EXP] = PHY_R,
214 };
215 
216 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
217 static const uint16_t phy_reg_init[] = {
218     [PHY_CTRL]   = MII_CR_SPEED_SELECT_MSB |
219                    MII_CR_FULL_DUPLEX |
220                    MII_CR_AUTO_NEG_EN,
221 
222     [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
223                    MII_SR_LINK_STATUS |   /* link initially up */
224                    MII_SR_AUTONEG_CAPS |
225                    /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
226                    MII_SR_PREAMBLE_SUPPRESS |
227                    MII_SR_EXTENDED_STATUS |
228                    MII_SR_10T_HD_CAPS |
229                    MII_SR_10T_FD_CAPS |
230                    MII_SR_100X_HD_CAPS |
231                    MII_SR_100X_FD_CAPS,
232 
233     [PHY_ID1] = 0x141,
234     /* [PHY_ID2] configured per DevId, from e1000_reset() */
235     [PHY_AUTONEG_ADV] = 0xde1,
236     [PHY_LP_ABILITY] = 0x1e0,
237     [PHY_1000T_CTRL] = 0x0e00,
238     [PHY_1000T_STATUS] = 0x3c00,
239     [M88E1000_PHY_SPEC_CTRL] = 0x360,
240     [M88E1000_PHY_SPEC_STATUS] = 0xac00,
241     [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
242 };
243 
244 static const uint32_t mac_reg_init[] = {
245     [PBA]     = 0x00100030,
246     [LEDCTL]  = 0x602,
247     [CTRL]    = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
248                 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
249     [STATUS]  = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
250                 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
251                 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
252                 E1000_STATUS_LU,
253     [MANC]    = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
254                 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
255                 E1000_MANC_RMCP_EN,
256 };
257 
258 /* Helper function, *curr == 0 means the value is not set */
259 static inline void
260 mit_update_delay(uint32_t *curr, uint32_t value)
261 {
262     if (value && (*curr == 0 || value < *curr)) {
263         *curr = value;
264     }
265 }
266 
267 static void
268 set_interrupt_cause(E1000State *s, int index, uint32_t val)
269 {
270     PCIDevice *d = PCI_DEVICE(s);
271     uint32_t pending_ints;
272     uint32_t mit_delay;
273 
274     s->mac_reg[ICR] = val;
275 
276     /*
277      * Make sure ICR and ICS registers have the same value.
278      * The spec says that the ICS register is write-only.  However in practice,
279      * on real hardware ICS is readable, and for reads it has the same value as
280      * ICR (except that ICS does not have the clear on read behaviour of ICR).
281      *
282      * The VxWorks PRO/1000 driver uses this behaviour.
283      */
284     s->mac_reg[ICS] = val;
285 
286     pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
287     if (!s->mit_irq_level && pending_ints) {
288         /*
289          * Here we detect a potential raising edge. We postpone raising the
290          * interrupt line if we are inside the mitigation delay window
291          * (s->mit_timer_on == 1).
292          * We provide a partial implementation of interrupt mitigation,
293          * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
294          * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
295          * RADV; relative timers based on TIDV and RDTR are not implemented.
296          */
297         if (s->mit_timer_on) {
298             return;
299         }
300         if (chkflag(MIT)) {
301             /* Compute the next mitigation delay according to pending
302              * interrupts and the current values of RADV (provided
303              * RDTR!=0), TADV and ITR.
304              * Then rearm the timer.
305              */
306             mit_delay = 0;
307             if (s->mit_ide &&
308                     (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
309                 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
310             }
311             if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
312                 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
313             }
314             mit_update_delay(&mit_delay, s->mac_reg[ITR]);
315 
316             /*
317              * According to e1000 SPEC, the Ethernet controller guarantees
318              * a maximum observable interrupt rate of 7813 interrupts/sec.
319              * Thus if mit_delay < 500 then the delay should be set to the
320              * minimum delay possible which is 500.
321              */
322             mit_delay = (mit_delay < 500) ? 500 : mit_delay;
323 
324             s->mit_timer_on = 1;
325             timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
326                       mit_delay * 256);
327             s->mit_ide = 0;
328         }
329     }
330 
331     s->mit_irq_level = (pending_ints != 0);
332     pci_set_irq(d, s->mit_irq_level);
333 }
334 
335 static void
336 e1000_mit_timer(void *opaque)
337 {
338     E1000State *s = opaque;
339 
340     s->mit_timer_on = 0;
341     /* Call set_interrupt_cause to update the irq level (if necessary). */
342     set_interrupt_cause(s, 0, s->mac_reg[ICR]);
343 }
344 
345 static void
346 set_ics(E1000State *s, int index, uint32_t val)
347 {
348     DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
349         s->mac_reg[IMS]);
350     set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
351 }
352 
353 static void
354 e1000_autoneg_timer(void *opaque)
355 {
356     E1000State *s = opaque;
357     if (!qemu_get_queue(s->nic)->link_down) {
358         e1000_autoneg_done(s);
359         set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
360     }
361 }
362 
363 static void e1000_reset(void *opaque)
364 {
365     E1000State *d = opaque;
366     E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
367     uint8_t *macaddr = d->conf.macaddr.a;
368 
369     timer_del(d->autoneg_timer);
370     timer_del(d->mit_timer);
371     timer_del(d->flush_queue_timer);
372     d->mit_timer_on = 0;
373     d->mit_irq_level = 0;
374     d->mit_ide = 0;
375     memset(d->phy_reg, 0, sizeof d->phy_reg);
376     memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
377     d->phy_reg[PHY_ID2] = edc->phy_id2;
378     memset(d->mac_reg, 0, sizeof d->mac_reg);
379     memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
380     d->rxbuf_min_shift = 1;
381     memset(&d->tx, 0, sizeof d->tx);
382 
383     if (qemu_get_queue(d->nic)->link_down) {
384         e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
385     }
386 
387     e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
388 }
389 
390 static void
391 set_ctrl(E1000State *s, int index, uint32_t val)
392 {
393     /* RST is self clearing */
394     s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
395 }
396 
397 static void
398 e1000_flush_queue_timer(void *opaque)
399 {
400     E1000State *s = opaque;
401 
402     qemu_flush_queued_packets(qemu_get_queue(s->nic));
403 }
404 
405 static void
406 set_rx_control(E1000State *s, int index, uint32_t val)
407 {
408     s->mac_reg[RCTL] = val;
409     s->rxbuf_size = e1000x_rxbufsize(val);
410     s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
411     DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
412            s->mac_reg[RCTL]);
413     timer_mod(s->flush_queue_timer,
414               qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
415 }
416 
417 static void
418 set_mdic(E1000State *s, int index, uint32_t val)
419 {
420     uint32_t data = val & E1000_MDIC_DATA_MASK;
421     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
422 
423     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
424         val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
425     else if (val & E1000_MDIC_OP_READ) {
426         DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
427         if (!(phy_regcap[addr] & PHY_R)) {
428             DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
429             val |= E1000_MDIC_ERROR;
430         } else
431             val = (val ^ data) | s->phy_reg[addr];
432     } else if (val & E1000_MDIC_OP_WRITE) {
433         DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
434         if (!(phy_regcap[addr] & PHY_W)) {
435             DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
436             val |= E1000_MDIC_ERROR;
437         } else {
438             if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
439                 phyreg_writeops[addr](s, index, data);
440             } else {
441                 s->phy_reg[addr] = data;
442             }
443         }
444     }
445     s->mac_reg[MDIC] = val | E1000_MDIC_READY;
446 
447     if (val & E1000_MDIC_INT_EN) {
448         set_ics(s, 0, E1000_ICR_MDAC);
449     }
450 }
451 
452 static uint32_t
453 get_eecd(E1000State *s, int index)
454 {
455     uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
456 
457     DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
458            s->eecd_state.bitnum_out, s->eecd_state.reading);
459     if (!s->eecd_state.reading ||
460         ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
461           ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
462         ret |= E1000_EECD_DO;
463     return ret;
464 }
465 
466 static void
467 set_eecd(E1000State *s, int index, uint32_t val)
468 {
469     uint32_t oldval = s->eecd_state.old_eecd;
470 
471     s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
472             E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
473     if (!(E1000_EECD_CS & val)) {            /* CS inactive; nothing to do */
474         return;
475     }
476     if (E1000_EECD_CS & (val ^ oldval)) {    /* CS rise edge; reset state */
477         s->eecd_state.val_in = 0;
478         s->eecd_state.bitnum_in = 0;
479         s->eecd_state.bitnum_out = 0;
480         s->eecd_state.reading = 0;
481     }
482     if (!(E1000_EECD_SK & (val ^ oldval))) {    /* no clock edge */
483         return;
484     }
485     if (!(E1000_EECD_SK & val)) {               /* falling edge */
486         s->eecd_state.bitnum_out++;
487         return;
488     }
489     s->eecd_state.val_in <<= 1;
490     if (val & E1000_EECD_DI)
491         s->eecd_state.val_in |= 1;
492     if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
493         s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
494         s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
495             EEPROM_READ_OPCODE_MICROWIRE);
496     }
497     DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
498            s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
499            s->eecd_state.reading);
500 }
501 
502 static uint32_t
503 flash_eerd_read(E1000State *s, int x)
504 {
505     unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
506 
507     if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
508         return (s->mac_reg[EERD]);
509 
510     if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
511         return (E1000_EEPROM_RW_REG_DONE | r);
512 
513     return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
514            E1000_EEPROM_RW_REG_DONE | r);
515 }
516 
517 static void
518 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
519 {
520     uint32_t sum;
521 
522     if (cse && cse < n)
523         n = cse + 1;
524     if (sloc < n-1) {
525         sum = net_checksum_add(n-css, data+css);
526         stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
527     }
528 }
529 
530 static inline void
531 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
532 {
533     if (!memcmp(arr, bcast, sizeof bcast)) {
534         e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
535     } else if (arr[0] & 1) {
536         e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
537     }
538 }
539 
540 static void
541 e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
542 {
543     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
544                                     PTC1023, PTC1522 };
545 
546     NetClientState *nc = qemu_get_queue(s->nic);
547     if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
548         nc->info->receive(nc, buf, size);
549     } else {
550         qemu_send_packet(nc, buf, size);
551     }
552     inc_tx_bcast_or_mcast_count(s, buf);
553     e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
554 }
555 
556 static void
557 xmit_seg(E1000State *s)
558 {
559     uint16_t len;
560     unsigned int frames = s->tx.tso_frames, css, sofar;
561     struct e1000_tx *tp = &s->tx;
562     struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
563 
564     if (tp->cptse) {
565         css = props->ipcss;
566         DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
567                frames, tp->size, css);
568         if (props->ip) {    /* IPv4 */
569             stw_be_p(tp->data+css+2, tp->size - css);
570             stw_be_p(tp->data+css+4,
571                      lduw_be_p(tp->data + css + 4) + frames);
572         } else {         /* IPv6 */
573             stw_be_p(tp->data+css+4, tp->size - css);
574         }
575         css = props->tucss;
576         len = tp->size - css;
577         DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
578         if (props->tcp) {
579             sofar = frames * props->mss;
580             stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
581             if (props->paylen - sofar > props->mss) {
582                 tp->data[css + 13] &= ~9;    /* PSH, FIN */
583             } else if (frames) {
584                 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
585             }
586         } else {    /* UDP */
587             stw_be_p(tp->data+css+4, len);
588         }
589         if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
590             unsigned int phsum;
591             // add pseudo-header length before checksum calculation
592             void *sp = tp->data + props->tucso;
593 
594             phsum = lduw_be_p(sp) + len;
595             phsum = (phsum >> 16) + (phsum & 0xffff);
596             stw_be_p(sp, phsum);
597         }
598         tp->tso_frames++;
599     }
600 
601     if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
602         putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
603     }
604     if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
605         putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
606     }
607     if (tp->vlan_needed) {
608         memmove(tp->vlan, tp->data, 4);
609         memmove(tp->data, tp->data + 4, 8);
610         memcpy(tp->data + 8, tp->vlan_header, 4);
611         e1000_send_packet(s, tp->vlan, tp->size + 4);
612     } else {
613         e1000_send_packet(s, tp->data, tp->size);
614     }
615 
616     e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
617     e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
618     s->mac_reg[GPTC] = s->mac_reg[TPT];
619     s->mac_reg[GOTCL] = s->mac_reg[TOTL];
620     s->mac_reg[GOTCH] = s->mac_reg[TOTH];
621 }
622 
623 static void
624 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
625 {
626     PCIDevice *d = PCI_DEVICE(s);
627     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
628     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
629     unsigned int split_size = txd_lower & 0xffff, bytes, sz;
630     unsigned int msh = 0xfffff;
631     uint64_t addr;
632     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
633     struct e1000_tx *tp = &s->tx;
634 
635     s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
636     if (dtype == E1000_TXD_CMD_DEXT) {    /* context descriptor */
637         if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
638             e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
639             s->use_tso_for_migration = 1;
640             tp->tso_frames = 0;
641         } else {
642             e1000x_read_tx_ctx_descr(xp, &tp->props);
643             s->use_tso_for_migration = 0;
644         }
645         return;
646     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
647         // data descriptor
648         if (tp->size == 0) {
649             tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
650         }
651         tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
652     } else {
653         // legacy descriptor
654         tp->cptse = 0;
655     }
656 
657     if (e1000x_vlan_enabled(s->mac_reg) &&
658         e1000x_is_vlan_txd(txd_lower) &&
659         (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
660         tp->vlan_needed = 1;
661         stw_be_p(tp->vlan_header,
662                       le16_to_cpu(s->mac_reg[VET]));
663         stw_be_p(tp->vlan_header + 2,
664                       le16_to_cpu(dp->upper.fields.special));
665     }
666 
667     addr = le64_to_cpu(dp->buffer_addr);
668     if (tp->cptse) {
669         msh = tp->tso_props.hdr_len + tp->tso_props.mss;
670         do {
671             bytes = split_size;
672             if (tp->size + bytes > msh)
673                 bytes = msh - tp->size;
674 
675             bytes = MIN(sizeof(tp->data) - tp->size, bytes);
676             pci_dma_read(d, addr, tp->data + tp->size, bytes);
677             sz = tp->size + bytes;
678             if (sz >= tp->tso_props.hdr_len
679                 && tp->size < tp->tso_props.hdr_len) {
680                 memmove(tp->header, tp->data, tp->tso_props.hdr_len);
681             }
682             tp->size = sz;
683             addr += bytes;
684             if (sz == msh) {
685                 xmit_seg(s);
686                 memmove(tp->data, tp->header, tp->tso_props.hdr_len);
687                 tp->size = tp->tso_props.hdr_len;
688             }
689             split_size -= bytes;
690         } while (bytes && split_size);
691     } else {
692         split_size = MIN(sizeof(tp->data) - tp->size, split_size);
693         pci_dma_read(d, addr, tp->data + tp->size, split_size);
694         tp->size += split_size;
695     }
696 
697     if (!(txd_lower & E1000_TXD_CMD_EOP))
698         return;
699     if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
700         xmit_seg(s);
701     }
702     tp->tso_frames = 0;
703     tp->sum_needed = 0;
704     tp->vlan_needed = 0;
705     tp->size = 0;
706     tp->cptse = 0;
707 }
708 
709 static uint32_t
710 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
711 {
712     PCIDevice *d = PCI_DEVICE(s);
713     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
714 
715     if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
716         return 0;
717     txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
718                 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
719     dp->upper.data = cpu_to_le32(txd_upper);
720     pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
721                   &dp->upper, sizeof(dp->upper));
722     return E1000_ICR_TXDW;
723 }
724 
725 static uint64_t tx_desc_base(E1000State *s)
726 {
727     uint64_t bah = s->mac_reg[TDBAH];
728     uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
729 
730     return (bah << 32) + bal;
731 }
732 
733 static void
734 start_xmit(E1000State *s)
735 {
736     PCIDevice *d = PCI_DEVICE(s);
737     dma_addr_t base;
738     struct e1000_tx_desc desc;
739     uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
740 
741     if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
742         DBGOUT(TX, "tx disabled\n");
743         return;
744     }
745 
746     while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
747         base = tx_desc_base(s) +
748                sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
749         pci_dma_read(d, base, &desc, sizeof(desc));
750 
751         DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
752                (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
753                desc.upper.data);
754 
755         process_tx_desc(s, &desc);
756         cause |= txdesc_writeback(s, base, &desc);
757 
758         if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
759             s->mac_reg[TDH] = 0;
760         /*
761          * the following could happen only if guest sw assigns
762          * bogus values to TDT/TDLEN.
763          * there's nothing too intelligent we could do about this.
764          */
765         if (s->mac_reg[TDH] == tdh_start ||
766             tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
767             DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
768                    tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
769             break;
770         }
771     }
772     set_ics(s, 0, cause);
773 }
774 
775 static int
776 receive_filter(E1000State *s, const uint8_t *buf, int size)
777 {
778     uint32_t rctl = s->mac_reg[RCTL];
779     int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
780 
781     if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
782         e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
783         uint16_t vid = lduw_be_p(buf + 14);
784         uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) +
785                                  ((vid >> 5) & 0x7f));
786         if ((vfta & (1 << (vid & 0x1f))) == 0)
787             return 0;
788     }
789 
790     if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
791         return 1;
792     }
793 
794     if (ismcast && (rctl & E1000_RCTL_MPE)) {          /* promiscuous mcast */
795         e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
796         return 1;
797     }
798 
799     if (isbcast && (rctl & E1000_RCTL_BAM)) {          /* broadcast enabled */
800         e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
801         return 1;
802     }
803 
804     return e1000x_rx_group_filter(s->mac_reg, buf);
805 }
806 
807 static void
808 e1000_set_link_status(NetClientState *nc)
809 {
810     E1000State *s = qemu_get_nic_opaque(nc);
811     uint32_t old_status = s->mac_reg[STATUS];
812 
813     if (nc->link_down) {
814         e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
815     } else {
816         if (have_autoneg(s) &&
817             !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
818             e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
819         } else {
820             e1000_link_up(s);
821         }
822     }
823 
824     if (s->mac_reg[STATUS] != old_status)
825         set_ics(s, 0, E1000_ICR_LSC);
826 }
827 
828 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
829 {
830     int bufs;
831     /* Fast-path short packets */
832     if (total_size <= s->rxbuf_size) {
833         return s->mac_reg[RDH] != s->mac_reg[RDT];
834     }
835     if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
836         bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
837     } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
838         bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) +
839             s->mac_reg[RDT] - s->mac_reg[RDH];
840     } else {
841         return false;
842     }
843     return total_size <= bufs * s->rxbuf_size;
844 }
845 
846 static int
847 e1000_can_receive(NetClientState *nc)
848 {
849     E1000State *s = qemu_get_nic_opaque(nc);
850 
851     return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
852         e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
853 }
854 
855 static uint64_t rx_desc_base(E1000State *s)
856 {
857     uint64_t bah = s->mac_reg[RDBAH];
858     uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
859 
860     return (bah << 32) + bal;
861 }
862 
863 static void
864 e1000_receiver_overrun(E1000State *s, size_t size)
865 {
866     trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
867     e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
868     e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
869     set_ics(s, 0, E1000_ICS_RXO);
870 }
871 
872 static ssize_t
873 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
874 {
875     E1000State *s = qemu_get_nic_opaque(nc);
876     PCIDevice *d = PCI_DEVICE(s);
877     struct e1000_rx_desc desc;
878     dma_addr_t base;
879     unsigned int n, rdt;
880     uint32_t rdh_start;
881     uint16_t vlan_special = 0;
882     uint8_t vlan_status = 0;
883     uint8_t min_buf[MIN_BUF_SIZE];
884     struct iovec min_iov;
885     uint8_t *filter_buf = iov->iov_base;
886     size_t size = iov_size(iov, iovcnt);
887     size_t iov_ofs = 0;
888     size_t desc_offset;
889     size_t desc_size;
890     size_t total_size;
891 
892     if (!e1000x_hw_rx_enabled(s->mac_reg)) {
893         return -1;
894     }
895 
896     if (timer_pending(s->flush_queue_timer)) {
897         return 0;
898     }
899 
900     /* Pad to minimum Ethernet frame length */
901     if (size < sizeof(min_buf)) {
902         iov_to_buf(iov, iovcnt, 0, min_buf, size);
903         memset(&min_buf[size], 0, sizeof(min_buf) - size);
904         min_iov.iov_base = filter_buf = min_buf;
905         min_iov.iov_len = size = sizeof(min_buf);
906         iovcnt = 1;
907         iov = &min_iov;
908     } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
909         /* This is very unlikely, but may happen. */
910         iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
911         filter_buf = min_buf;
912     }
913 
914     /* Discard oversized packets if !LPE and !SBP. */
915     if (e1000x_is_oversized(s->mac_reg, size)) {
916         return size;
917     }
918 
919     if (!receive_filter(s, filter_buf, size)) {
920         return size;
921     }
922 
923     if (e1000x_vlan_enabled(s->mac_reg) &&
924         e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
925         vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
926         iov_ofs = 4;
927         if (filter_buf == iov->iov_base) {
928             memmove(filter_buf + 4, filter_buf, 12);
929         } else {
930             iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
931             while (iov->iov_len <= iov_ofs) {
932                 iov_ofs -= iov->iov_len;
933                 iov++;
934             }
935         }
936         vlan_status = E1000_RXD_STAT_VP;
937         size -= 4;
938     }
939 
940     rdh_start = s->mac_reg[RDH];
941     desc_offset = 0;
942     total_size = size + e1000x_fcs_len(s->mac_reg);
943     if (!e1000_has_rxbufs(s, total_size)) {
944         e1000_receiver_overrun(s, total_size);
945         return -1;
946     }
947     do {
948         desc_size = total_size - desc_offset;
949         if (desc_size > s->rxbuf_size) {
950             desc_size = s->rxbuf_size;
951         }
952         base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
953         pci_dma_read(d, base, &desc, sizeof(desc));
954         desc.special = vlan_special;
955         desc.status |= (vlan_status | E1000_RXD_STAT_DD);
956         if (desc.buffer_addr) {
957             if (desc_offset < size) {
958                 size_t iov_copy;
959                 hwaddr ba = le64_to_cpu(desc.buffer_addr);
960                 size_t copy_size = size - desc_offset;
961                 if (copy_size > s->rxbuf_size) {
962                     copy_size = s->rxbuf_size;
963                 }
964                 do {
965                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
966                     pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
967                     copy_size -= iov_copy;
968                     ba += iov_copy;
969                     iov_ofs += iov_copy;
970                     if (iov_ofs == iov->iov_len) {
971                         iov++;
972                         iov_ofs = 0;
973                     }
974                 } while (copy_size);
975             }
976             desc_offset += desc_size;
977             desc.length = cpu_to_le16(desc_size);
978             if (desc_offset >= total_size) {
979                 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
980             } else {
981                 /* Guest zeroing out status is not a hardware requirement.
982                    Clear EOP in case guest didn't do it. */
983                 desc.status &= ~E1000_RXD_STAT_EOP;
984             }
985         } else { // as per intel docs; skip descriptors with null buf addr
986             DBGOUT(RX, "Null RX descriptor!!\n");
987         }
988         pci_dma_write(d, base, &desc, sizeof(desc));
989 
990         if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
991             s->mac_reg[RDH] = 0;
992         /* see comment in start_xmit; same here */
993         if (s->mac_reg[RDH] == rdh_start ||
994             rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
995             DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
996                    rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
997             e1000_receiver_overrun(s, total_size);
998             return -1;
999         }
1000     } while (desc_offset < total_size);
1001 
1002     e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
1003 
1004     n = E1000_ICS_RXT0;
1005     if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
1006         rdt += s->mac_reg[RDLEN] / sizeof(desc);
1007     if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
1008         s->rxbuf_min_shift)
1009         n |= E1000_ICS_RXDMT0;
1010 
1011     set_ics(s, 0, n);
1012 
1013     return size;
1014 }
1015 
1016 static ssize_t
1017 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1018 {
1019     const struct iovec iov = {
1020         .iov_base = (uint8_t *)buf,
1021         .iov_len = size
1022     };
1023 
1024     return e1000_receive_iov(nc, &iov, 1);
1025 }
1026 
1027 static uint32_t
1028 mac_readreg(E1000State *s, int index)
1029 {
1030     return s->mac_reg[index];
1031 }
1032 
1033 static uint32_t
1034 mac_low4_read(E1000State *s, int index)
1035 {
1036     return s->mac_reg[index] & 0xf;
1037 }
1038 
1039 static uint32_t
1040 mac_low11_read(E1000State *s, int index)
1041 {
1042     return s->mac_reg[index] & 0x7ff;
1043 }
1044 
1045 static uint32_t
1046 mac_low13_read(E1000State *s, int index)
1047 {
1048     return s->mac_reg[index] & 0x1fff;
1049 }
1050 
1051 static uint32_t
1052 mac_low16_read(E1000State *s, int index)
1053 {
1054     return s->mac_reg[index] & 0xffff;
1055 }
1056 
1057 static uint32_t
1058 mac_icr_read(E1000State *s, int index)
1059 {
1060     uint32_t ret = s->mac_reg[ICR];
1061 
1062     DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1063     set_interrupt_cause(s, 0, 0);
1064     return ret;
1065 }
1066 
1067 static uint32_t
1068 mac_read_clr4(E1000State *s, int index)
1069 {
1070     uint32_t ret = s->mac_reg[index];
1071 
1072     s->mac_reg[index] = 0;
1073     return ret;
1074 }
1075 
1076 static uint32_t
1077 mac_read_clr8(E1000State *s, int index)
1078 {
1079     uint32_t ret = s->mac_reg[index];
1080 
1081     s->mac_reg[index] = 0;
1082     s->mac_reg[index-1] = 0;
1083     return ret;
1084 }
1085 
1086 static void
1087 mac_writereg(E1000State *s, int index, uint32_t val)
1088 {
1089     uint32_t macaddr[2];
1090 
1091     s->mac_reg[index] = val;
1092 
1093     if (index == RA + 1) {
1094         macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1095         macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1096         qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1097     }
1098 }
1099 
1100 static void
1101 set_rdt(E1000State *s, int index, uint32_t val)
1102 {
1103     s->mac_reg[index] = val & 0xffff;
1104     if (e1000_has_rxbufs(s, 1)) {
1105         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1106     }
1107 }
1108 
1109 static void
1110 set_16bit(E1000State *s, int index, uint32_t val)
1111 {
1112     s->mac_reg[index] = val & 0xffff;
1113 }
1114 
1115 static void
1116 set_dlen(E1000State *s, int index, uint32_t val)
1117 {
1118     s->mac_reg[index] = val & 0xfff80;
1119 }
1120 
1121 static void
1122 set_tctl(E1000State *s, int index, uint32_t val)
1123 {
1124     s->mac_reg[index] = val;
1125     s->mac_reg[TDT] &= 0xffff;
1126     start_xmit(s);
1127 }
1128 
1129 static void
1130 set_icr(E1000State *s, int index, uint32_t val)
1131 {
1132     DBGOUT(INTERRUPT, "set_icr %x\n", val);
1133     set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1134 }
1135 
1136 static void
1137 set_imc(E1000State *s, int index, uint32_t val)
1138 {
1139     s->mac_reg[IMS] &= ~val;
1140     set_ics(s, 0, 0);
1141 }
1142 
1143 static void
1144 set_ims(E1000State *s, int index, uint32_t val)
1145 {
1146     s->mac_reg[IMS] |= val;
1147     set_ics(s, 0, 0);
1148 }
1149 
1150 #define getreg(x)    [x] = mac_readreg
1151 static uint32_t (*macreg_readops[])(E1000State *, int) = {
1152     getreg(PBA),      getreg(RCTL),     getreg(TDH),      getreg(TXDCTL),
1153     getreg(WUFC),     getreg(TDT),      getreg(CTRL),     getreg(LEDCTL),
1154     getreg(MANC),     getreg(MDIC),     getreg(SWSM),     getreg(STATUS),
1155     getreg(TORL),     getreg(TOTL),     getreg(IMS),      getreg(TCTL),
1156     getreg(RDH),      getreg(RDT),      getreg(VET),      getreg(ICS),
1157     getreg(TDBAL),    getreg(TDBAH),    getreg(RDBAH),    getreg(RDBAL),
1158     getreg(TDLEN),    getreg(RDLEN),    getreg(RDTR),     getreg(RADV),
1159     getreg(TADV),     getreg(ITR),      getreg(FCRUC),    getreg(IPAV),
1160     getreg(WUC),      getreg(WUS),      getreg(SCC),      getreg(ECOL),
1161     getreg(MCC),      getreg(LATECOL),  getreg(COLC),     getreg(DC),
1162     getreg(TNCRS),    getreg(SEQEC),    getreg(CEXTERR),  getreg(RLEC),
1163     getreg(XONRXC),   getreg(XONTXC),   getreg(XOFFRXC),  getreg(XOFFTXC),
1164     getreg(RFC),      getreg(RJC),      getreg(RNBC),     getreg(TSCTFC),
1165     getreg(MGTPRC),   getreg(MGTPDC),   getreg(MGTPTC),   getreg(GORCL),
1166     getreg(GOTCL),
1167 
1168     [TOTH]    = mac_read_clr8,      [TORH]    = mac_read_clr8,
1169     [GOTCH]   = mac_read_clr8,      [GORCH]   = mac_read_clr8,
1170     [PRC64]   = mac_read_clr4,      [PRC127]  = mac_read_clr4,
1171     [PRC255]  = mac_read_clr4,      [PRC511]  = mac_read_clr4,
1172     [PRC1023] = mac_read_clr4,      [PRC1522] = mac_read_clr4,
1173     [PTC64]   = mac_read_clr4,      [PTC127]  = mac_read_clr4,
1174     [PTC255]  = mac_read_clr4,      [PTC511]  = mac_read_clr4,
1175     [PTC1023] = mac_read_clr4,      [PTC1522] = mac_read_clr4,
1176     [GPRC]    = mac_read_clr4,      [GPTC]    = mac_read_clr4,
1177     [TPT]     = mac_read_clr4,      [TPR]     = mac_read_clr4,
1178     [RUC]     = mac_read_clr4,      [ROC]     = mac_read_clr4,
1179     [BPRC]    = mac_read_clr4,      [MPRC]    = mac_read_clr4,
1180     [TSCTC]   = mac_read_clr4,      [BPTC]    = mac_read_clr4,
1181     [MPTC]    = mac_read_clr4,
1182     [ICR]     = mac_icr_read,       [EECD]    = get_eecd,
1183     [EERD]    = flash_eerd_read,
1184     [RDFH]    = mac_low13_read,     [RDFT]    = mac_low13_read,
1185     [RDFHS]   = mac_low13_read,     [RDFTS]   = mac_low13_read,
1186     [RDFPC]   = mac_low13_read,
1187     [TDFH]    = mac_low11_read,     [TDFT]    = mac_low11_read,
1188     [TDFHS]   = mac_low13_read,     [TDFTS]   = mac_low13_read,
1189     [TDFPC]   = mac_low13_read,
1190     [AIT]     = mac_low16_read,
1191 
1192     [CRCERRS ... MPC]   = &mac_readreg,
1193     [IP6AT ... IP6AT+3] = &mac_readreg,    [IP4AT ... IP4AT+6] = &mac_readreg,
1194     [FFLT ... FFLT+6]   = &mac_low11_read,
1195     [RA ... RA+31]      = &mac_readreg,
1196     [WUPM ... WUPM+31]  = &mac_readreg,
1197     [MTA ... MTA+127]   = &mac_readreg,
1198     [VFTA ... VFTA+127] = &mac_readreg,
1199     [FFMT ... FFMT+254] = &mac_low4_read,
1200     [FFVT ... FFVT+254] = &mac_readreg,
1201     [PBM ... PBM+16383] = &mac_readreg,
1202 };
1203 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1204 
1205 #define putreg(x)    [x] = mac_writereg
1206 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
1207     putreg(PBA),      putreg(EERD),     putreg(SWSM),     putreg(WUFC),
1208     putreg(TDBAL),    putreg(TDBAH),    putreg(TXDCTL),   putreg(RDBAH),
1209     putreg(RDBAL),    putreg(LEDCTL),   putreg(VET),      putreg(FCRUC),
1210     putreg(TDFH),     putreg(TDFT),     putreg(TDFHS),    putreg(TDFTS),
1211     putreg(TDFPC),    putreg(RDFH),     putreg(RDFT),     putreg(RDFHS),
1212     putreg(RDFTS),    putreg(RDFPC),    putreg(IPAV),     putreg(WUC),
1213     putreg(WUS),      putreg(AIT),
1214 
1215     [TDLEN]  = set_dlen,   [RDLEN]  = set_dlen,       [TCTL] = set_tctl,
1216     [TDT]    = set_tctl,   [MDIC]   = set_mdic,       [ICS]  = set_ics,
1217     [TDH]    = set_16bit,  [RDH]    = set_16bit,      [RDT]  = set_rdt,
1218     [IMC]    = set_imc,    [IMS]    = set_ims,        [ICR]  = set_icr,
1219     [EECD]   = set_eecd,   [RCTL]   = set_rx_control, [CTRL] = set_ctrl,
1220     [RDTR]   = set_16bit,  [RADV]   = set_16bit,      [TADV] = set_16bit,
1221     [ITR]    = set_16bit,
1222 
1223     [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
1224     [FFLT ... FFLT+6]   = &mac_writereg,
1225     [RA ... RA+31]      = &mac_writereg,
1226     [WUPM ... WUPM+31]  = &mac_writereg,
1227     [MTA ... MTA+127]   = &mac_writereg,
1228     [VFTA ... VFTA+127] = &mac_writereg,
1229     [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
1230     [PBM ... PBM+16383] = &mac_writereg,
1231 };
1232 
1233 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1234 
1235 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1236 
1237 #define markflag(x)    ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1238 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1239  * f - flag bits (up to 6 possible flags)
1240  * n - flag needed
1241  * p - partially implenented */
1242 static const uint8_t mac_reg_access[0x8000] = {
1243     [RDTR]    = markflag(MIT),    [TADV]    = markflag(MIT),
1244     [RADV]    = markflag(MIT),    [ITR]     = markflag(MIT),
1245 
1246     [IPAV]    = markflag(MAC),    [WUC]     = markflag(MAC),
1247     [IP6AT]   = markflag(MAC),    [IP4AT]   = markflag(MAC),
1248     [FFVT]    = markflag(MAC),    [WUPM]    = markflag(MAC),
1249     [ECOL]    = markflag(MAC),    [MCC]     = markflag(MAC),
1250     [DC]      = markflag(MAC),    [TNCRS]   = markflag(MAC),
1251     [RLEC]    = markflag(MAC),    [XONRXC]  = markflag(MAC),
1252     [XOFFTXC] = markflag(MAC),    [RFC]     = markflag(MAC),
1253     [TSCTFC]  = markflag(MAC),    [MGTPRC]  = markflag(MAC),
1254     [WUS]     = markflag(MAC),    [AIT]     = markflag(MAC),
1255     [FFLT]    = markflag(MAC),    [FFMT]    = markflag(MAC),
1256     [SCC]     = markflag(MAC),    [FCRUC]   = markflag(MAC),
1257     [LATECOL] = markflag(MAC),    [COLC]    = markflag(MAC),
1258     [SEQEC]   = markflag(MAC),    [CEXTERR] = markflag(MAC),
1259     [XONTXC]  = markflag(MAC),    [XOFFRXC] = markflag(MAC),
1260     [RJC]     = markflag(MAC),    [RNBC]    = markflag(MAC),
1261     [MGTPDC]  = markflag(MAC),    [MGTPTC]  = markflag(MAC),
1262     [RUC]     = markflag(MAC),    [ROC]     = markflag(MAC),
1263     [GORCL]   = markflag(MAC),    [GORCH]   = markflag(MAC),
1264     [GOTCL]   = markflag(MAC),    [GOTCH]   = markflag(MAC),
1265     [BPRC]    = markflag(MAC),    [MPRC]    = markflag(MAC),
1266     [TSCTC]   = markflag(MAC),    [PRC64]   = markflag(MAC),
1267     [PRC127]  = markflag(MAC),    [PRC255]  = markflag(MAC),
1268     [PRC511]  = markflag(MAC),    [PRC1023] = markflag(MAC),
1269     [PRC1522] = markflag(MAC),    [PTC64]   = markflag(MAC),
1270     [PTC127]  = markflag(MAC),    [PTC255]  = markflag(MAC),
1271     [PTC511]  = markflag(MAC),    [PTC1023] = markflag(MAC),
1272     [PTC1522] = markflag(MAC),    [MPTC]    = markflag(MAC),
1273     [BPTC]    = markflag(MAC),
1274 
1275     [TDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1276     [TDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1277     [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1278     [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1279     [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1280     [RDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1281     [RDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1282     [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1283     [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1284     [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1285     [PBM]   = markflag(MAC) | MAC_ACCESS_PARTIAL,
1286 };
1287 
1288 static void
1289 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1290                  unsigned size)
1291 {
1292     E1000State *s = opaque;
1293     unsigned int index = (addr & 0x1ffff) >> 2;
1294 
1295     if (index < NWRITEOPS && macreg_writeops[index]) {
1296         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1297             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1298             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1299                 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1300                        "It is not fully implemented.\n", index<<2);
1301             }
1302             macreg_writeops[index](s, index, val);
1303         } else {    /* "flag needed" bit is set, but the flag is not active */
1304             DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1305                    index<<2);
1306         }
1307     } else if (index < NREADOPS && macreg_readops[index]) {
1308         DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1309                index<<2, val);
1310     } else {
1311         DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1312                index<<2, val);
1313     }
1314 }
1315 
1316 static uint64_t
1317 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1318 {
1319     E1000State *s = opaque;
1320     unsigned int index = (addr & 0x1ffff) >> 2;
1321 
1322     if (index < NREADOPS && macreg_readops[index]) {
1323         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1324             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1325             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1326                 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1327                        "It is not fully implemented.\n", index<<2);
1328             }
1329             return macreg_readops[index](s, index);
1330         } else {    /* "flag needed" bit is set, but the flag is not active */
1331             DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1332                    index<<2);
1333         }
1334     } else {
1335         DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1336     }
1337     return 0;
1338 }
1339 
1340 static const MemoryRegionOps e1000_mmio_ops = {
1341     .read = e1000_mmio_read,
1342     .write = e1000_mmio_write,
1343     .endianness = DEVICE_LITTLE_ENDIAN,
1344     .impl = {
1345         .min_access_size = 4,
1346         .max_access_size = 4,
1347     },
1348 };
1349 
1350 static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1351                               unsigned size)
1352 {
1353     E1000State *s = opaque;
1354 
1355     (void)s;
1356     return 0;
1357 }
1358 
1359 static void e1000_io_write(void *opaque, hwaddr addr,
1360                            uint64_t val, unsigned size)
1361 {
1362     E1000State *s = opaque;
1363 
1364     (void)s;
1365 }
1366 
1367 static const MemoryRegionOps e1000_io_ops = {
1368     .read = e1000_io_read,
1369     .write = e1000_io_write,
1370     .endianness = DEVICE_LITTLE_ENDIAN,
1371 };
1372 
1373 static bool is_version_1(void *opaque, int version_id)
1374 {
1375     return version_id == 1;
1376 }
1377 
1378 static int e1000_pre_save(void *opaque)
1379 {
1380     E1000State *s = opaque;
1381     NetClientState *nc = qemu_get_queue(s->nic);
1382 
1383     /* If the mitigation timer is active, emulate a timeout now. */
1384     if (s->mit_timer_on) {
1385         e1000_mit_timer(s);
1386     }
1387 
1388     /*
1389      * If link is down and auto-negotiation is supported and ongoing,
1390      * complete auto-negotiation immediately. This allows us to look
1391      * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
1392      */
1393     if (nc->link_down && have_autoneg(s)) {
1394         s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
1395     }
1396 
1397     /* Decide which set of props to migrate in the main structure */
1398     if (chkflag(TSO) || !s->use_tso_for_migration) {
1399         /* Either we're migrating with the extra subsection, in which
1400          * case the mig_props is always 'props' OR
1401          * we've not got the subsection, but 'props' was the last
1402          * updated.
1403          */
1404         s->mig_props = s->tx.props;
1405     } else {
1406         /* We're not using the subsection, and 'tso_props' was
1407          * the last updated.
1408          */
1409         s->mig_props = s->tx.tso_props;
1410     }
1411     return 0;
1412 }
1413 
1414 static int e1000_post_load(void *opaque, int version_id)
1415 {
1416     E1000State *s = opaque;
1417     NetClientState *nc = qemu_get_queue(s->nic);
1418 
1419     if (!chkflag(MIT)) {
1420         s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1421             s->mac_reg[TADV] = 0;
1422         s->mit_irq_level = false;
1423     }
1424     s->mit_ide = 0;
1425     s->mit_timer_on = false;
1426 
1427     /* nc.link_down can't be migrated, so infer link_down according
1428      * to link status bit in mac_reg[STATUS].
1429      * Alternatively, restart link negotiation if it was in progress. */
1430     nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1431 
1432     if (have_autoneg(s) &&
1433         !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1434         nc->link_down = false;
1435         timer_mod(s->autoneg_timer,
1436                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1437     }
1438 
1439     s->tx.props = s->mig_props;
1440     if (!s->received_tx_tso) {
1441         /* We received only one set of offload data (tx.props)
1442          * and haven't got tx.tso_props.  The best we can do
1443          * is dupe the data.
1444          */
1445         s->tx.tso_props = s->mig_props;
1446     }
1447     return 0;
1448 }
1449 
1450 static int e1000_tx_tso_post_load(void *opaque, int version_id)
1451 {
1452     E1000State *s = opaque;
1453     s->received_tx_tso = true;
1454     return 0;
1455 }
1456 
1457 static bool e1000_mit_state_needed(void *opaque)
1458 {
1459     E1000State *s = opaque;
1460 
1461     return chkflag(MIT);
1462 }
1463 
1464 static bool e1000_full_mac_needed(void *opaque)
1465 {
1466     E1000State *s = opaque;
1467 
1468     return chkflag(MAC);
1469 }
1470 
1471 static bool e1000_tso_state_needed(void *opaque)
1472 {
1473     E1000State *s = opaque;
1474 
1475     return chkflag(TSO);
1476 }
1477 
1478 static const VMStateDescription vmstate_e1000_mit_state = {
1479     .name = "e1000/mit_state",
1480     .version_id = 1,
1481     .minimum_version_id = 1,
1482     .needed = e1000_mit_state_needed,
1483     .fields = (VMStateField[]) {
1484         VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1485         VMSTATE_UINT32(mac_reg[RADV], E1000State),
1486         VMSTATE_UINT32(mac_reg[TADV], E1000State),
1487         VMSTATE_UINT32(mac_reg[ITR], E1000State),
1488         VMSTATE_BOOL(mit_irq_level, E1000State),
1489         VMSTATE_END_OF_LIST()
1490     }
1491 };
1492 
1493 static const VMStateDescription vmstate_e1000_full_mac_state = {
1494     .name = "e1000/full_mac_state",
1495     .version_id = 1,
1496     .minimum_version_id = 1,
1497     .needed = e1000_full_mac_needed,
1498     .fields = (VMStateField[]) {
1499         VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1500         VMSTATE_END_OF_LIST()
1501     }
1502 };
1503 
1504 static const VMStateDescription vmstate_e1000_tx_tso_state = {
1505     .name = "e1000/tx_tso_state",
1506     .version_id = 1,
1507     .minimum_version_id = 1,
1508     .needed = e1000_tso_state_needed,
1509     .post_load = e1000_tx_tso_post_load,
1510     .fields = (VMStateField[]) {
1511         VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
1512         VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
1513         VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
1514         VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
1515         VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
1516         VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
1517         VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
1518         VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
1519         VMSTATE_UINT16(tx.tso_props.mss, E1000State),
1520         VMSTATE_INT8(tx.tso_props.ip, E1000State),
1521         VMSTATE_INT8(tx.tso_props.tcp, E1000State),
1522         VMSTATE_END_OF_LIST()
1523     }
1524 };
1525 
1526 static const VMStateDescription vmstate_e1000 = {
1527     .name = "e1000",
1528     .version_id = 2,
1529     .minimum_version_id = 1,
1530     .pre_save = e1000_pre_save,
1531     .post_load = e1000_post_load,
1532     .fields = (VMStateField[]) {
1533         VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1534         VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
1535         VMSTATE_UNUSED(4), /* Was mmio_base.  */
1536         VMSTATE_UINT32(rxbuf_size, E1000State),
1537         VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1538         VMSTATE_UINT32(eecd_state.val_in, E1000State),
1539         VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1540         VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1541         VMSTATE_UINT16(eecd_state.reading, E1000State),
1542         VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1543         VMSTATE_UINT8(mig_props.ipcss, E1000State),
1544         VMSTATE_UINT8(mig_props.ipcso, E1000State),
1545         VMSTATE_UINT16(mig_props.ipcse, E1000State),
1546         VMSTATE_UINT8(mig_props.tucss, E1000State),
1547         VMSTATE_UINT8(mig_props.tucso, E1000State),
1548         VMSTATE_UINT16(mig_props.tucse, E1000State),
1549         VMSTATE_UINT32(mig_props.paylen, E1000State),
1550         VMSTATE_UINT8(mig_props.hdr_len, E1000State),
1551         VMSTATE_UINT16(mig_props.mss, E1000State),
1552         VMSTATE_UINT16(tx.size, E1000State),
1553         VMSTATE_UINT16(tx.tso_frames, E1000State),
1554         VMSTATE_UINT8(tx.sum_needed, E1000State),
1555         VMSTATE_INT8(mig_props.ip, E1000State),
1556         VMSTATE_INT8(mig_props.tcp, E1000State),
1557         VMSTATE_BUFFER(tx.header, E1000State),
1558         VMSTATE_BUFFER(tx.data, E1000State),
1559         VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1560         VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1561         VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1562         VMSTATE_UINT32(mac_reg[EECD], E1000State),
1563         VMSTATE_UINT32(mac_reg[EERD], E1000State),
1564         VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1565         VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1566         VMSTATE_UINT32(mac_reg[ICR], E1000State),
1567         VMSTATE_UINT32(mac_reg[ICS], E1000State),
1568         VMSTATE_UINT32(mac_reg[IMC], E1000State),
1569         VMSTATE_UINT32(mac_reg[IMS], E1000State),
1570         VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1571         VMSTATE_UINT32(mac_reg[MANC], E1000State),
1572         VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1573         VMSTATE_UINT32(mac_reg[MPC], E1000State),
1574         VMSTATE_UINT32(mac_reg[PBA], E1000State),
1575         VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1576         VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1577         VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1578         VMSTATE_UINT32(mac_reg[RDH], E1000State),
1579         VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1580         VMSTATE_UINT32(mac_reg[RDT], E1000State),
1581         VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1582         VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1583         VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1584         VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1585         VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1586         VMSTATE_UINT32(mac_reg[TDH], E1000State),
1587         VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1588         VMSTATE_UINT32(mac_reg[TDT], E1000State),
1589         VMSTATE_UINT32(mac_reg[TORH], E1000State),
1590         VMSTATE_UINT32(mac_reg[TORL], E1000State),
1591         VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1592         VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1593         VMSTATE_UINT32(mac_reg[TPR], E1000State),
1594         VMSTATE_UINT32(mac_reg[TPT], E1000State),
1595         VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1596         VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1597         VMSTATE_UINT32(mac_reg[VET], E1000State),
1598         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1599         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1600         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1601         VMSTATE_END_OF_LIST()
1602     },
1603     .subsections = (const VMStateDescription*[]) {
1604         &vmstate_e1000_mit_state,
1605         &vmstate_e1000_full_mac_state,
1606         &vmstate_e1000_tx_tso_state,
1607         NULL
1608     }
1609 };
1610 
1611 /*
1612  * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1613  * Note: A valid DevId will be inserted during pci_e1000_init().
1614  */
1615 static const uint16_t e1000_eeprom_template[64] = {
1616     0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000,
1617     0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1618     0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700,
1619     0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706,
1620     0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff,
1621     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1622     0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1623     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000,
1624 };
1625 
1626 /* PCI interface */
1627 
1628 static void
1629 e1000_mmio_setup(E1000State *d)
1630 {
1631     int i;
1632     const uint32_t excluded_regs[] = {
1633         E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1634         E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1635     };
1636 
1637     memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1638                           "e1000-mmio", PNPMMIO_SIZE);
1639     memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1640     for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1641         memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1642                                      excluded_regs[i+1] - excluded_regs[i] - 4);
1643     memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1644 }
1645 
1646 static void
1647 pci_e1000_uninit(PCIDevice *dev)
1648 {
1649     E1000State *d = E1000(dev);
1650 
1651     timer_del(d->autoneg_timer);
1652     timer_free(d->autoneg_timer);
1653     timer_del(d->mit_timer);
1654     timer_free(d->mit_timer);
1655     timer_del(d->flush_queue_timer);
1656     timer_free(d->flush_queue_timer);
1657     qemu_del_nic(d->nic);
1658 }
1659 
1660 static NetClientInfo net_e1000_info = {
1661     .type = NET_CLIENT_DRIVER_NIC,
1662     .size = sizeof(NICState),
1663     .can_receive = e1000_can_receive,
1664     .receive = e1000_receive,
1665     .receive_iov = e1000_receive_iov,
1666     .link_status_changed = e1000_set_link_status,
1667 };
1668 
1669 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1670                                 uint32_t val, int len)
1671 {
1672     E1000State *s = E1000(pci_dev);
1673 
1674     pci_default_write_config(pci_dev, address, val, len);
1675 
1676     if (range_covers_byte(address, len, PCI_COMMAND) &&
1677         (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1678         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1679     }
1680 }
1681 
1682 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1683 {
1684     DeviceState *dev = DEVICE(pci_dev);
1685     E1000State *d = E1000(pci_dev);
1686     uint8_t *pci_conf;
1687     uint8_t *macaddr;
1688 
1689     pci_dev->config_write = e1000_write_config;
1690 
1691     pci_conf = pci_dev->config;
1692 
1693     /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1694     pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1695 
1696     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1697 
1698     e1000_mmio_setup(d);
1699 
1700     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1701 
1702     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1703 
1704     qemu_macaddr_default_if_unset(&d->conf.macaddr);
1705     macaddr = d->conf.macaddr.a;
1706 
1707     e1000x_core_prepare_eeprom(d->eeprom_data,
1708                                e1000_eeprom_template,
1709                                sizeof(e1000_eeprom_template),
1710                                PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1711                                macaddr);
1712 
1713     d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1714                           object_get_typename(OBJECT(d)), dev->id, d);
1715 
1716     qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1717 
1718     d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1719     d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1720     d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
1721                                         e1000_flush_queue_timer, d);
1722 }
1723 
1724 static void qdev_e1000_reset(DeviceState *dev)
1725 {
1726     E1000State *d = E1000(dev);
1727     e1000_reset(d);
1728 }
1729 
1730 static Property e1000_properties[] = {
1731     DEFINE_NIC_PROPERTIES(E1000State, conf),
1732     DEFINE_PROP_BIT("autonegotiation", E1000State,
1733                     compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1734     DEFINE_PROP_BIT("mitigation", E1000State,
1735                     compat_flags, E1000_FLAG_MIT_BIT, true),
1736     DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1737                     compat_flags, E1000_FLAG_MAC_BIT, true),
1738     DEFINE_PROP_BIT("migrate_tso_props", E1000State,
1739                     compat_flags, E1000_FLAG_TSO_BIT, true),
1740     DEFINE_PROP_END_OF_LIST(),
1741 };
1742 
1743 typedef struct E1000Info {
1744     const char *name;
1745     uint16_t   device_id;
1746     uint8_t    revision;
1747     uint16_t   phy_id2;
1748 } E1000Info;
1749 
1750 static void e1000_class_init(ObjectClass *klass, void *data)
1751 {
1752     DeviceClass *dc = DEVICE_CLASS(klass);
1753     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1754     E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
1755     const E1000Info *info = data;
1756 
1757     k->realize = pci_e1000_realize;
1758     k->exit = pci_e1000_uninit;
1759     k->romfile = "efi-e1000.rom";
1760     k->vendor_id = PCI_VENDOR_ID_INTEL;
1761     k->device_id = info->device_id;
1762     k->revision = info->revision;
1763     e->phy_id2 = info->phy_id2;
1764     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1765     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1766     dc->desc = "Intel Gigabit Ethernet";
1767     dc->reset = qdev_e1000_reset;
1768     dc->vmsd = &vmstate_e1000;
1769     dc->props = e1000_properties;
1770 }
1771 
1772 static void e1000_instance_init(Object *obj)
1773 {
1774     E1000State *n = E1000(obj);
1775     device_add_bootindex_property(obj, &n->conf.bootindex,
1776                                   "bootindex", "/ethernet-phy@0",
1777                                   DEVICE(n), NULL);
1778 }
1779 
1780 static const TypeInfo e1000_base_info = {
1781     .name          = TYPE_E1000_BASE,
1782     .parent        = TYPE_PCI_DEVICE,
1783     .instance_size = sizeof(E1000State),
1784     .instance_init = e1000_instance_init,
1785     .class_size    = sizeof(E1000BaseClass),
1786     .abstract      = true,
1787     .interfaces = (InterfaceInfo[]) {
1788         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1789         { },
1790     },
1791 };
1792 
1793 static const E1000Info e1000_devices[] = {
1794     {
1795         .name      = "e1000",
1796         .device_id = E1000_DEV_ID_82540EM,
1797         .revision  = 0x03,
1798         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1799     },
1800     {
1801         .name      = "e1000-82544gc",
1802         .device_id = E1000_DEV_ID_82544GC_COPPER,
1803         .revision  = 0x03,
1804         .phy_id2   = E1000_PHY_ID2_82544x,
1805     },
1806     {
1807         .name      = "e1000-82545em",
1808         .device_id = E1000_DEV_ID_82545EM_COPPER,
1809         .revision  = 0x03,
1810         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1811     },
1812 };
1813 
1814 static void e1000_register_types(void)
1815 {
1816     int i;
1817 
1818     type_register_static(&e1000_base_info);
1819     for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1820         const E1000Info *info = &e1000_devices[i];
1821         TypeInfo type_info = {};
1822 
1823         type_info.name = info->name;
1824         type_info.parent = TYPE_E1000_BASE;
1825         type_info.class_data = (void *)info;
1826         type_info.class_init = e1000_class_init;
1827         type_info.instance_init = e1000_instance_init;
1828 
1829         type_register(&type_info);
1830     }
1831 }
1832 
1833 type_init(e1000_register_types)
1834