xref: /openbmc/qemu/hw/net/e1000.c (revision 35658f6e)
1 /*
2  * QEMU e1000 emulation
3  *
4  * Software developer's manual:
5  * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
6  *
7  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8  * Copyright (c) 2008 Qumranet
9  * Based on work done by:
10  * Copyright (c) 2007 Dan Aloni
11  * Copyright (c) 2004 Antony T Curtis
12  *
13  * This library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2 of the License, or (at your option) any later version.
17  *
18  * This library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25  */
26 
27 
28 #include "qemu/osdep.h"
29 #include "hw/hw.h"
30 #include "hw/pci/pci.h"
31 #include "net/net.h"
32 #include "net/checksum.h"
33 #include "hw/loader.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/dma.h"
36 #include "qemu/iov.h"
37 #include "qemu/range.h"
38 
39 #include "e1000x_common.h"
40 
41 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
42 
43 #define E1000_DEBUG
44 
45 #ifdef E1000_DEBUG
46 enum {
47     DEBUG_GENERAL,      DEBUG_IO,       DEBUG_MMIO,     DEBUG_INTERRUPT,
48     DEBUG_RX,           DEBUG_TX,       DEBUG_MDIC,     DEBUG_EEPROM,
49     DEBUG_UNKNOWN,      DEBUG_TXSUM,    DEBUG_TXERR,    DEBUG_RXERR,
50     DEBUG_RXFILTER,     DEBUG_PHY,      DEBUG_NOTYET,
51 };
52 #define DBGBIT(x)    (1<<DEBUG_##x)
53 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
54 
55 #define DBGOUT(what, fmt, ...) do { \
56     if (debugflags & DBGBIT(what)) \
57         fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
58     } while (0)
59 #else
60 #define DBGOUT(what, fmt, ...) do {} while (0)
61 #endif
62 
63 #define IOPORT_SIZE       0x40
64 #define PNPMMIO_SIZE      0x20000
65 #define MIN_BUF_SIZE      60 /* Min. octets in an ethernet frame sans FCS */
66 
67 #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
68 
69 /*
70  * HW models:
71  *  E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
72  *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
73  *  E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
74  *  Others never tested
75  */
76 
77 typedef struct E1000State_st {
78     /*< private >*/
79     PCIDevice parent_obj;
80     /*< public >*/
81 
82     NICState *nic;
83     NICConf conf;
84     MemoryRegion mmio;
85     MemoryRegion io;
86 
87     uint32_t mac_reg[0x8000];
88     uint16_t phy_reg[0x20];
89     uint16_t eeprom_data[64];
90 
91     uint32_t rxbuf_size;
92     uint32_t rxbuf_min_shift;
93     struct e1000_tx {
94         unsigned char header[256];
95         unsigned char vlan_header[4];
96         /* Fields vlan and data must not be reordered or separated. */
97         unsigned char vlan[4];
98         unsigned char data[0x10000];
99         uint16_t size;
100         unsigned char vlan_needed;
101         e1000x_txd_props props;
102         uint16_t tso_frames;
103     } tx;
104 
105     struct {
106         uint32_t val_in;    /* shifted in from guest driver */
107         uint16_t bitnum_in;
108         uint16_t bitnum_out;
109         uint16_t reading;
110         uint32_t old_eecd;
111     } eecd_state;
112 
113     QEMUTimer *autoneg_timer;
114 
115     QEMUTimer *mit_timer;      /* Mitigation timer. */
116     bool mit_timer_on;         /* Mitigation timer is running. */
117     bool mit_irq_level;        /* Tracks interrupt pin level. */
118     uint32_t mit_ide;          /* Tracks E1000_TXD_CMD_IDE bit. */
119 
120 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
121 #define E1000_FLAG_AUTONEG_BIT 0
122 #define E1000_FLAG_MIT_BIT 1
123 #define E1000_FLAG_MAC_BIT 2
124 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
125 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
126 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
127     uint32_t compat_flags;
128 } E1000State;
129 
130 #define chkflag(x)     (s->compat_flags & E1000_FLAG_##x)
131 
132 typedef struct E1000BaseClass {
133     PCIDeviceClass parent_class;
134     uint16_t phy_id2;
135 } E1000BaseClass;
136 
137 #define TYPE_E1000_BASE "e1000-base"
138 
139 #define E1000(obj) \
140     OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)
141 
142 #define E1000_DEVICE_CLASS(klass) \
143      OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
144 #define E1000_DEVICE_GET_CLASS(obj) \
145     OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
146 
147 static void
148 e1000_link_up(E1000State *s)
149 {
150     e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
151 
152     /* E1000_STATUS_LU is tested by e1000_can_receive() */
153     qemu_flush_queued_packets(qemu_get_queue(s->nic));
154 }
155 
156 static void
157 e1000_autoneg_done(E1000State *s)
158 {
159     e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
160 
161     /* E1000_STATUS_LU is tested by e1000_can_receive() */
162     qemu_flush_queued_packets(qemu_get_queue(s->nic));
163 }
164 
165 static bool
166 have_autoneg(E1000State *s)
167 {
168     return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
169 }
170 
171 static void
172 set_phy_ctrl(E1000State *s, int index, uint16_t val)
173 {
174     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
175     s->phy_reg[PHY_CTRL] = val & ~(0x3f |
176                                    MII_CR_RESET |
177                                    MII_CR_RESTART_AUTO_NEG);
178 
179     /*
180      * QEMU 1.3 does not support link auto-negotiation emulation, so if we
181      * migrate during auto negotiation, after migration the link will be
182      * down.
183      */
184     if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
185         e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
186     }
187 }
188 
189 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
190     [PHY_CTRL] = set_phy_ctrl,
191 };
192 
193 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
194 
195 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
196 static const char phy_regcap[0x20] = {
197     [PHY_STATUS]      = PHY_R,     [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
198     [PHY_ID1]         = PHY_R,     [M88E1000_PHY_SPEC_CTRL]     = PHY_RW,
199     [PHY_CTRL]        = PHY_RW,    [PHY_1000T_CTRL]             = PHY_RW,
200     [PHY_LP_ABILITY]  = PHY_R,     [PHY_1000T_STATUS]           = PHY_R,
201     [PHY_AUTONEG_ADV] = PHY_RW,    [M88E1000_RX_ERR_CNTR]       = PHY_R,
202     [PHY_ID2]         = PHY_R,     [M88E1000_PHY_SPEC_STATUS]   = PHY_R,
203     [PHY_AUTONEG_EXP] = PHY_R,
204 };
205 
206 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
207 static const uint16_t phy_reg_init[] = {
208     [PHY_CTRL]   = MII_CR_SPEED_SELECT_MSB |
209                    MII_CR_FULL_DUPLEX |
210                    MII_CR_AUTO_NEG_EN,
211 
212     [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
213                    MII_SR_LINK_STATUS |   /* link initially up */
214                    MII_SR_AUTONEG_CAPS |
215                    /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
216                    MII_SR_PREAMBLE_SUPPRESS |
217                    MII_SR_EXTENDED_STATUS |
218                    MII_SR_10T_HD_CAPS |
219                    MII_SR_10T_FD_CAPS |
220                    MII_SR_100X_HD_CAPS |
221                    MII_SR_100X_FD_CAPS,
222 
223     [PHY_ID1] = 0x141,
224     /* [PHY_ID2] configured per DevId, from e1000_reset() */
225     [PHY_AUTONEG_ADV] = 0xde1,
226     [PHY_LP_ABILITY] = 0x1e0,
227     [PHY_1000T_CTRL] = 0x0e00,
228     [PHY_1000T_STATUS] = 0x3c00,
229     [M88E1000_PHY_SPEC_CTRL] = 0x360,
230     [M88E1000_PHY_SPEC_STATUS] = 0xac00,
231     [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
232 };
233 
234 static const uint32_t mac_reg_init[] = {
235     [PBA]     = 0x00100030,
236     [LEDCTL]  = 0x602,
237     [CTRL]    = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
238                 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
239     [STATUS]  = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
240                 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
241                 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
242                 E1000_STATUS_LU,
243     [MANC]    = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
244                 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
245                 E1000_MANC_RMCP_EN,
246 };
247 
248 /* Helper function, *curr == 0 means the value is not set */
249 static inline void
250 mit_update_delay(uint32_t *curr, uint32_t value)
251 {
252     if (value && (*curr == 0 || value < *curr)) {
253         *curr = value;
254     }
255 }
256 
257 static void
258 set_interrupt_cause(E1000State *s, int index, uint32_t val)
259 {
260     PCIDevice *d = PCI_DEVICE(s);
261     uint32_t pending_ints;
262     uint32_t mit_delay;
263 
264     s->mac_reg[ICR] = val;
265 
266     /*
267      * Make sure ICR and ICS registers have the same value.
268      * The spec says that the ICS register is write-only.  However in practice,
269      * on real hardware ICS is readable, and for reads it has the same value as
270      * ICR (except that ICS does not have the clear on read behaviour of ICR).
271      *
272      * The VxWorks PRO/1000 driver uses this behaviour.
273      */
274     s->mac_reg[ICS] = val;
275 
276     pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
277     if (!s->mit_irq_level && pending_ints) {
278         /*
279          * Here we detect a potential raising edge. We postpone raising the
280          * interrupt line if we are inside the mitigation delay window
281          * (s->mit_timer_on == 1).
282          * We provide a partial implementation of interrupt mitigation,
283          * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
284          * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
285          * RADV; relative timers based on TIDV and RDTR are not implemented.
286          */
287         if (s->mit_timer_on) {
288             return;
289         }
290         if (chkflag(MIT)) {
291             /* Compute the next mitigation delay according to pending
292              * interrupts and the current values of RADV (provided
293              * RDTR!=0), TADV and ITR.
294              * Then rearm the timer.
295              */
296             mit_delay = 0;
297             if (s->mit_ide &&
298                     (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
299                 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
300             }
301             if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
302                 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
303             }
304             mit_update_delay(&mit_delay, s->mac_reg[ITR]);
305 
306             /*
307              * According to e1000 SPEC, the Ethernet controller guarantees
308              * a maximum observable interrupt rate of 7813 interrupts/sec.
309              * Thus if mit_delay < 500 then the delay should be set to the
310              * minimum delay possible which is 500.
311              */
312             mit_delay = (mit_delay < 500) ? 500 : mit_delay;
313 
314             s->mit_timer_on = 1;
315             timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
316                       mit_delay * 256);
317             s->mit_ide = 0;
318         }
319     }
320 
321     s->mit_irq_level = (pending_ints != 0);
322     pci_set_irq(d, s->mit_irq_level);
323 }
324 
325 static void
326 e1000_mit_timer(void *opaque)
327 {
328     E1000State *s = opaque;
329 
330     s->mit_timer_on = 0;
331     /* Call set_interrupt_cause to update the irq level (if necessary). */
332     set_interrupt_cause(s, 0, s->mac_reg[ICR]);
333 }
334 
335 static void
336 set_ics(E1000State *s, int index, uint32_t val)
337 {
338     DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
339         s->mac_reg[IMS]);
340     set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
341 }
342 
343 static void
344 e1000_autoneg_timer(void *opaque)
345 {
346     E1000State *s = opaque;
347     if (!qemu_get_queue(s->nic)->link_down) {
348         e1000_autoneg_done(s);
349         set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
350     }
351 }
352 
353 static void e1000_reset(void *opaque)
354 {
355     E1000State *d = opaque;
356     E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
357     uint8_t *macaddr = d->conf.macaddr.a;
358 
359     timer_del(d->autoneg_timer);
360     timer_del(d->mit_timer);
361     d->mit_timer_on = 0;
362     d->mit_irq_level = 0;
363     d->mit_ide = 0;
364     memset(d->phy_reg, 0, sizeof d->phy_reg);
365     memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
366     d->phy_reg[PHY_ID2] = edc->phy_id2;
367     memset(d->mac_reg, 0, sizeof d->mac_reg);
368     memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
369     d->rxbuf_min_shift = 1;
370     memset(&d->tx, 0, sizeof d->tx);
371 
372     if (qemu_get_queue(d->nic)->link_down) {
373         e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
374     }
375 
376     e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
377 }
378 
379 static void
380 set_ctrl(E1000State *s, int index, uint32_t val)
381 {
382     /* RST is self clearing */
383     s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
384 }
385 
386 static void
387 set_rx_control(E1000State *s, int index, uint32_t val)
388 {
389     s->mac_reg[RCTL] = val;
390     s->rxbuf_size = e1000x_rxbufsize(val);
391     s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
392     DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
393            s->mac_reg[RCTL]);
394     qemu_flush_queued_packets(qemu_get_queue(s->nic));
395 }
396 
397 static void
398 set_mdic(E1000State *s, int index, uint32_t val)
399 {
400     uint32_t data = val & E1000_MDIC_DATA_MASK;
401     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
402 
403     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
404         val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
405     else if (val & E1000_MDIC_OP_READ) {
406         DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
407         if (!(phy_regcap[addr] & PHY_R)) {
408             DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
409             val |= E1000_MDIC_ERROR;
410         } else
411             val = (val ^ data) | s->phy_reg[addr];
412     } else if (val & E1000_MDIC_OP_WRITE) {
413         DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
414         if (!(phy_regcap[addr] & PHY_W)) {
415             DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
416             val |= E1000_MDIC_ERROR;
417         } else {
418             if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
419                 phyreg_writeops[addr](s, index, data);
420             } else {
421                 s->phy_reg[addr] = data;
422             }
423         }
424     }
425     s->mac_reg[MDIC] = val | E1000_MDIC_READY;
426 
427     if (val & E1000_MDIC_INT_EN) {
428         set_ics(s, 0, E1000_ICR_MDAC);
429     }
430 }
431 
432 static uint32_t
433 get_eecd(E1000State *s, int index)
434 {
435     uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
436 
437     DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
438            s->eecd_state.bitnum_out, s->eecd_state.reading);
439     if (!s->eecd_state.reading ||
440         ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
441           ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
442         ret |= E1000_EECD_DO;
443     return ret;
444 }
445 
446 static void
447 set_eecd(E1000State *s, int index, uint32_t val)
448 {
449     uint32_t oldval = s->eecd_state.old_eecd;
450 
451     s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
452             E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
453     if (!(E1000_EECD_CS & val)) {            /* CS inactive; nothing to do */
454         return;
455     }
456     if (E1000_EECD_CS & (val ^ oldval)) {    /* CS rise edge; reset state */
457         s->eecd_state.val_in = 0;
458         s->eecd_state.bitnum_in = 0;
459         s->eecd_state.bitnum_out = 0;
460         s->eecd_state.reading = 0;
461     }
462     if (!(E1000_EECD_SK & (val ^ oldval))) {    /* no clock edge */
463         return;
464     }
465     if (!(E1000_EECD_SK & val)) {               /* falling edge */
466         s->eecd_state.bitnum_out++;
467         return;
468     }
469     s->eecd_state.val_in <<= 1;
470     if (val & E1000_EECD_DI)
471         s->eecd_state.val_in |= 1;
472     if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
473         s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
474         s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
475             EEPROM_READ_OPCODE_MICROWIRE);
476     }
477     DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
478            s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
479            s->eecd_state.reading);
480 }
481 
482 static uint32_t
483 flash_eerd_read(E1000State *s, int x)
484 {
485     unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
486 
487     if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
488         return (s->mac_reg[EERD]);
489 
490     if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
491         return (E1000_EEPROM_RW_REG_DONE | r);
492 
493     return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
494            E1000_EEPROM_RW_REG_DONE | r);
495 }
496 
497 static void
498 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
499 {
500     uint32_t sum;
501 
502     if (cse && cse < n)
503         n = cse + 1;
504     if (sloc < n-1) {
505         sum = net_checksum_add(n-css, data+css);
506         stw_be_p(data + sloc, net_checksum_finish(sum));
507     }
508 }
509 
510 static inline void
511 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
512 {
513     if (!memcmp(arr, bcast, sizeof bcast)) {
514         e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
515     } else if (arr[0] & 1) {
516         e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
517     }
518 }
519 
520 static void
521 e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
522 {
523     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
524                                     PTC1023, PTC1522 };
525 
526     NetClientState *nc = qemu_get_queue(s->nic);
527     if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
528         nc->info->receive(nc, buf, size);
529     } else {
530         qemu_send_packet(nc, buf, size);
531     }
532     inc_tx_bcast_or_mcast_count(s, buf);
533     e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
534 }
535 
536 static void
537 xmit_seg(E1000State *s)
538 {
539     uint16_t len, *sp;
540     unsigned int frames = s->tx.tso_frames, css, sofar;
541     struct e1000_tx *tp = &s->tx;
542 
543     if (tp->props.tse && tp->props.cptse) {
544         css = tp->props.ipcss;
545         DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
546                frames, tp->size, css);
547         if (tp->props.ip) {    /* IPv4 */
548             stw_be_p(tp->data+css+2, tp->size - css);
549             stw_be_p(tp->data+css+4,
550                      be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
551         } else {         /* IPv6 */
552             stw_be_p(tp->data+css+4, tp->size - css);
553         }
554         css = tp->props.tucss;
555         len = tp->size - css;
556         DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->props.tcp, css, len);
557         if (tp->props.tcp) {
558             sofar = frames * tp->props.mss;
559             stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
560             if (tp->props.paylen - sofar > tp->props.mss) {
561                 tp->data[css + 13] &= ~9;    /* PSH, FIN */
562             } else if (frames) {
563                 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
564             }
565         } else    /* UDP */
566             stw_be_p(tp->data+css+4, len);
567         if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
568             unsigned int phsum;
569             // add pseudo-header length before checksum calculation
570             sp = (uint16_t *)(tp->data + tp->props.tucso);
571             phsum = be16_to_cpup(sp) + len;
572             phsum = (phsum >> 16) + (phsum & 0xffff);
573             stw_be_p(sp, phsum);
574         }
575         tp->tso_frames++;
576     }
577 
578     if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
579         putsum(tp->data, tp->size, tp->props.tucso,
580                tp->props.tucss, tp->props.tucse);
581     }
582     if (tp->props.sum_needed & E1000_TXD_POPTS_IXSM) {
583         putsum(tp->data, tp->size, tp->props.ipcso,
584                tp->props.ipcss, tp->props.ipcse);
585     }
586     if (tp->vlan_needed) {
587         memmove(tp->vlan, tp->data, 4);
588         memmove(tp->data, tp->data + 4, 8);
589         memcpy(tp->data + 8, tp->vlan_header, 4);
590         e1000_send_packet(s, tp->vlan, tp->size + 4);
591     } else {
592         e1000_send_packet(s, tp->data, tp->size);
593     }
594 
595     e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
596     e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
597     s->mac_reg[GPTC] = s->mac_reg[TPT];
598     s->mac_reg[GOTCL] = s->mac_reg[TOTL];
599     s->mac_reg[GOTCH] = s->mac_reg[TOTH];
600 }
601 
602 static void
603 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
604 {
605     PCIDevice *d = PCI_DEVICE(s);
606     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
607     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
608     unsigned int split_size = txd_lower & 0xffff, bytes, sz;
609     unsigned int msh = 0xfffff;
610     uint64_t addr;
611     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
612     struct e1000_tx *tp = &s->tx;
613 
614     s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
615     if (dtype == E1000_TXD_CMD_DEXT) {    /* context descriptor */
616         e1000x_read_tx_ctx_descr(xp, &tp->props);
617         tp->tso_frames = 0;
618         if (tp->props.tucso == 0) {    /* this is probably wrong */
619             DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
620             tp->props.tucso = tp->props.tucss + (tp->props.tcp ? 16 : 6);
621         }
622         return;
623     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
624         // data descriptor
625         if (tp->size == 0) {
626             tp->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
627         }
628         tp->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
629     } else {
630         // legacy descriptor
631         tp->props.cptse = 0;
632     }
633 
634     if (e1000x_vlan_enabled(s->mac_reg) &&
635         e1000x_is_vlan_txd(txd_lower) &&
636         (tp->props.cptse || txd_lower & E1000_TXD_CMD_EOP)) {
637         tp->vlan_needed = 1;
638         stw_be_p(tp->vlan_header,
639                       le16_to_cpu(s->mac_reg[VET]));
640         stw_be_p(tp->vlan_header + 2,
641                       le16_to_cpu(dp->upper.fields.special));
642     }
643 
644     addr = le64_to_cpu(dp->buffer_addr);
645     if (tp->props.tse && tp->props.cptse) {
646         msh = tp->props.hdr_len + tp->props.mss;
647         do {
648             bytes = split_size;
649             if (tp->size + bytes > msh)
650                 bytes = msh - tp->size;
651 
652             bytes = MIN(sizeof(tp->data) - tp->size, bytes);
653             pci_dma_read(d, addr, tp->data + tp->size, bytes);
654             sz = tp->size + bytes;
655             if (sz >= tp->props.hdr_len && tp->size < tp->props.hdr_len) {
656                 memmove(tp->header, tp->data, tp->props.hdr_len);
657             }
658             tp->size = sz;
659             addr += bytes;
660             if (sz == msh) {
661                 xmit_seg(s);
662                 memmove(tp->data, tp->header, tp->props.hdr_len);
663                 tp->size = tp->props.hdr_len;
664             }
665             split_size -= bytes;
666         } while (bytes && split_size);
667     } else if (!tp->props.tse && tp->props.cptse) {
668         // context descriptor TSE is not set, while data descriptor TSE is set
669         DBGOUT(TXERR, "TCP segmentation error\n");
670     } else {
671         split_size = MIN(sizeof(tp->data) - tp->size, split_size);
672         pci_dma_read(d, addr, tp->data + tp->size, split_size);
673         tp->size += split_size;
674     }
675 
676     if (!(txd_lower & E1000_TXD_CMD_EOP))
677         return;
678     if (!(tp->props.tse && tp->props.cptse && tp->size < tp->props.hdr_len)) {
679         xmit_seg(s);
680     }
681     tp->tso_frames = 0;
682     tp->props.sum_needed = 0;
683     tp->vlan_needed = 0;
684     tp->size = 0;
685     tp->props.cptse = 0;
686 }
687 
688 static uint32_t
689 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
690 {
691     PCIDevice *d = PCI_DEVICE(s);
692     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
693 
694     if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
695         return 0;
696     txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
697                 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
698     dp->upper.data = cpu_to_le32(txd_upper);
699     pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
700                   &dp->upper, sizeof(dp->upper));
701     return E1000_ICR_TXDW;
702 }
703 
704 static uint64_t tx_desc_base(E1000State *s)
705 {
706     uint64_t bah = s->mac_reg[TDBAH];
707     uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
708 
709     return (bah << 32) + bal;
710 }
711 
712 static void
713 start_xmit(E1000State *s)
714 {
715     PCIDevice *d = PCI_DEVICE(s);
716     dma_addr_t base;
717     struct e1000_tx_desc desc;
718     uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
719 
720     if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
721         DBGOUT(TX, "tx disabled\n");
722         return;
723     }
724 
725     while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
726         base = tx_desc_base(s) +
727                sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
728         pci_dma_read(d, base, &desc, sizeof(desc));
729 
730         DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
731                (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
732                desc.upper.data);
733 
734         process_tx_desc(s, &desc);
735         cause |= txdesc_writeback(s, base, &desc);
736 
737         if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
738             s->mac_reg[TDH] = 0;
739         /*
740          * the following could happen only if guest sw assigns
741          * bogus values to TDT/TDLEN.
742          * there's nothing too intelligent we could do about this.
743          */
744         if (s->mac_reg[TDH] == tdh_start ||
745             tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
746             DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
747                    tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
748             break;
749         }
750     }
751     set_ics(s, 0, cause);
752 }
753 
754 static int
755 receive_filter(E1000State *s, const uint8_t *buf, int size)
756 {
757     uint32_t rctl = s->mac_reg[RCTL];
758     int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
759 
760     if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
761         e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
762         uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
763         uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
764                                      ((vid >> 5) & 0x7f));
765         if ((vfta & (1 << (vid & 0x1f))) == 0)
766             return 0;
767     }
768 
769     if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
770         return 1;
771     }
772 
773     if (ismcast && (rctl & E1000_RCTL_MPE)) {          /* promiscuous mcast */
774         e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
775         return 1;
776     }
777 
778     if (isbcast && (rctl & E1000_RCTL_BAM)) {          /* broadcast enabled */
779         e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
780         return 1;
781     }
782 
783     return e1000x_rx_group_filter(s->mac_reg, buf);
784 }
785 
786 static void
787 e1000_set_link_status(NetClientState *nc)
788 {
789     E1000State *s = qemu_get_nic_opaque(nc);
790     uint32_t old_status = s->mac_reg[STATUS];
791 
792     if (nc->link_down) {
793         e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
794     } else {
795         if (have_autoneg(s) &&
796             !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
797             e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
798         } else {
799             e1000_link_up(s);
800         }
801     }
802 
803     if (s->mac_reg[STATUS] != old_status)
804         set_ics(s, 0, E1000_ICR_LSC);
805 }
806 
807 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
808 {
809     int bufs;
810     /* Fast-path short packets */
811     if (total_size <= s->rxbuf_size) {
812         return s->mac_reg[RDH] != s->mac_reg[RDT];
813     }
814     if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
815         bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
816     } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
817         bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) +
818             s->mac_reg[RDT] - s->mac_reg[RDH];
819     } else {
820         return false;
821     }
822     return total_size <= bufs * s->rxbuf_size;
823 }
824 
825 static int
826 e1000_can_receive(NetClientState *nc)
827 {
828     E1000State *s = qemu_get_nic_opaque(nc);
829 
830     return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
831         e1000_has_rxbufs(s, 1);
832 }
833 
834 static uint64_t rx_desc_base(E1000State *s)
835 {
836     uint64_t bah = s->mac_reg[RDBAH];
837     uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
838 
839     return (bah << 32) + bal;
840 }
841 
842 static ssize_t
843 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
844 {
845     E1000State *s = qemu_get_nic_opaque(nc);
846     PCIDevice *d = PCI_DEVICE(s);
847     struct e1000_rx_desc desc;
848     dma_addr_t base;
849     unsigned int n, rdt;
850     uint32_t rdh_start;
851     uint16_t vlan_special = 0;
852     uint8_t vlan_status = 0;
853     uint8_t min_buf[MIN_BUF_SIZE];
854     struct iovec min_iov;
855     uint8_t *filter_buf = iov->iov_base;
856     size_t size = iov_size(iov, iovcnt);
857     size_t iov_ofs = 0;
858     size_t desc_offset;
859     size_t desc_size;
860     size_t total_size;
861 
862     if (!e1000x_hw_rx_enabled(s->mac_reg)) {
863         return -1;
864     }
865 
866     /* Pad to minimum Ethernet frame length */
867     if (size < sizeof(min_buf)) {
868         iov_to_buf(iov, iovcnt, 0, min_buf, size);
869         memset(&min_buf[size], 0, sizeof(min_buf) - size);
870         e1000x_inc_reg_if_not_full(s->mac_reg, RUC);
871         min_iov.iov_base = filter_buf = min_buf;
872         min_iov.iov_len = size = sizeof(min_buf);
873         iovcnt = 1;
874         iov = &min_iov;
875     } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
876         /* This is very unlikely, but may happen. */
877         iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
878         filter_buf = min_buf;
879     }
880 
881     /* Discard oversized packets if !LPE and !SBP. */
882     if (e1000x_is_oversized(s->mac_reg, size)) {
883         return size;
884     }
885 
886     if (!receive_filter(s, filter_buf, size)) {
887         return size;
888     }
889 
890     if (e1000x_vlan_enabled(s->mac_reg) &&
891         e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
892         vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(filter_buf
893                                                                 + 14)));
894         iov_ofs = 4;
895         if (filter_buf == iov->iov_base) {
896             memmove(filter_buf + 4, filter_buf, 12);
897         } else {
898             iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
899             while (iov->iov_len <= iov_ofs) {
900                 iov_ofs -= iov->iov_len;
901                 iov++;
902             }
903         }
904         vlan_status = E1000_RXD_STAT_VP;
905         size -= 4;
906     }
907 
908     rdh_start = s->mac_reg[RDH];
909     desc_offset = 0;
910     total_size = size + e1000x_fcs_len(s->mac_reg);
911     if (!e1000_has_rxbufs(s, total_size)) {
912             set_ics(s, 0, E1000_ICS_RXO);
913             return -1;
914     }
915     do {
916         desc_size = total_size - desc_offset;
917         if (desc_size > s->rxbuf_size) {
918             desc_size = s->rxbuf_size;
919         }
920         base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
921         pci_dma_read(d, base, &desc, sizeof(desc));
922         desc.special = vlan_special;
923         desc.status |= (vlan_status | E1000_RXD_STAT_DD);
924         if (desc.buffer_addr) {
925             if (desc_offset < size) {
926                 size_t iov_copy;
927                 hwaddr ba = le64_to_cpu(desc.buffer_addr);
928                 size_t copy_size = size - desc_offset;
929                 if (copy_size > s->rxbuf_size) {
930                     copy_size = s->rxbuf_size;
931                 }
932                 do {
933                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
934                     pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
935                     copy_size -= iov_copy;
936                     ba += iov_copy;
937                     iov_ofs += iov_copy;
938                     if (iov_ofs == iov->iov_len) {
939                         iov++;
940                         iov_ofs = 0;
941                     }
942                 } while (copy_size);
943             }
944             desc_offset += desc_size;
945             desc.length = cpu_to_le16(desc_size);
946             if (desc_offset >= total_size) {
947                 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
948             } else {
949                 /* Guest zeroing out status is not a hardware requirement.
950                    Clear EOP in case guest didn't do it. */
951                 desc.status &= ~E1000_RXD_STAT_EOP;
952             }
953         } else { // as per intel docs; skip descriptors with null buf addr
954             DBGOUT(RX, "Null RX descriptor!!\n");
955         }
956         pci_dma_write(d, base, &desc, sizeof(desc));
957 
958         if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
959             s->mac_reg[RDH] = 0;
960         /* see comment in start_xmit; same here */
961         if (s->mac_reg[RDH] == rdh_start ||
962             rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
963             DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
964                    rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
965             set_ics(s, 0, E1000_ICS_RXO);
966             return -1;
967         }
968     } while (desc_offset < total_size);
969 
970     e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
971 
972     n = E1000_ICS_RXT0;
973     if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
974         rdt += s->mac_reg[RDLEN] / sizeof(desc);
975     if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
976         s->rxbuf_min_shift)
977         n |= E1000_ICS_RXDMT0;
978 
979     set_ics(s, 0, n);
980 
981     return size;
982 }
983 
984 static ssize_t
985 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
986 {
987     const struct iovec iov = {
988         .iov_base = (uint8_t *)buf,
989         .iov_len = size
990     };
991 
992     return e1000_receive_iov(nc, &iov, 1);
993 }
994 
995 static uint32_t
996 mac_readreg(E1000State *s, int index)
997 {
998     return s->mac_reg[index];
999 }
1000 
1001 static uint32_t
1002 mac_low4_read(E1000State *s, int index)
1003 {
1004     return s->mac_reg[index] & 0xf;
1005 }
1006 
1007 static uint32_t
1008 mac_low11_read(E1000State *s, int index)
1009 {
1010     return s->mac_reg[index] & 0x7ff;
1011 }
1012 
1013 static uint32_t
1014 mac_low13_read(E1000State *s, int index)
1015 {
1016     return s->mac_reg[index] & 0x1fff;
1017 }
1018 
1019 static uint32_t
1020 mac_low16_read(E1000State *s, int index)
1021 {
1022     return s->mac_reg[index] & 0xffff;
1023 }
1024 
1025 static uint32_t
1026 mac_icr_read(E1000State *s, int index)
1027 {
1028     uint32_t ret = s->mac_reg[ICR];
1029 
1030     DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1031     set_interrupt_cause(s, 0, 0);
1032     return ret;
1033 }
1034 
1035 static uint32_t
1036 mac_read_clr4(E1000State *s, int index)
1037 {
1038     uint32_t ret = s->mac_reg[index];
1039 
1040     s->mac_reg[index] = 0;
1041     return ret;
1042 }
1043 
1044 static uint32_t
1045 mac_read_clr8(E1000State *s, int index)
1046 {
1047     uint32_t ret = s->mac_reg[index];
1048 
1049     s->mac_reg[index] = 0;
1050     s->mac_reg[index-1] = 0;
1051     return ret;
1052 }
1053 
1054 static void
1055 mac_writereg(E1000State *s, int index, uint32_t val)
1056 {
1057     uint32_t macaddr[2];
1058 
1059     s->mac_reg[index] = val;
1060 
1061     if (index == RA + 1) {
1062         macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1063         macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1064         qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1065     }
1066 }
1067 
1068 static void
1069 set_rdt(E1000State *s, int index, uint32_t val)
1070 {
1071     s->mac_reg[index] = val & 0xffff;
1072     if (e1000_has_rxbufs(s, 1)) {
1073         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1074     }
1075 }
1076 
1077 static void
1078 set_16bit(E1000State *s, int index, uint32_t val)
1079 {
1080     s->mac_reg[index] = val & 0xffff;
1081 }
1082 
1083 static void
1084 set_dlen(E1000State *s, int index, uint32_t val)
1085 {
1086     s->mac_reg[index] = val & 0xfff80;
1087 }
1088 
1089 static void
1090 set_tctl(E1000State *s, int index, uint32_t val)
1091 {
1092     s->mac_reg[index] = val;
1093     s->mac_reg[TDT] &= 0xffff;
1094     start_xmit(s);
1095 }
1096 
1097 static void
1098 set_icr(E1000State *s, int index, uint32_t val)
1099 {
1100     DBGOUT(INTERRUPT, "set_icr %x\n", val);
1101     set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1102 }
1103 
1104 static void
1105 set_imc(E1000State *s, int index, uint32_t val)
1106 {
1107     s->mac_reg[IMS] &= ~val;
1108     set_ics(s, 0, 0);
1109 }
1110 
1111 static void
1112 set_ims(E1000State *s, int index, uint32_t val)
1113 {
1114     s->mac_reg[IMS] |= val;
1115     set_ics(s, 0, 0);
1116 }
1117 
1118 #define getreg(x)    [x] = mac_readreg
1119 static uint32_t (*macreg_readops[])(E1000State *, int) = {
1120     getreg(PBA),      getreg(RCTL),     getreg(TDH),      getreg(TXDCTL),
1121     getreg(WUFC),     getreg(TDT),      getreg(CTRL),     getreg(LEDCTL),
1122     getreg(MANC),     getreg(MDIC),     getreg(SWSM),     getreg(STATUS),
1123     getreg(TORL),     getreg(TOTL),     getreg(IMS),      getreg(TCTL),
1124     getreg(RDH),      getreg(RDT),      getreg(VET),      getreg(ICS),
1125     getreg(TDBAL),    getreg(TDBAH),    getreg(RDBAH),    getreg(RDBAL),
1126     getreg(TDLEN),    getreg(RDLEN),    getreg(RDTR),     getreg(RADV),
1127     getreg(TADV),     getreg(ITR),      getreg(FCRUC),    getreg(IPAV),
1128     getreg(WUC),      getreg(WUS),      getreg(SCC),      getreg(ECOL),
1129     getreg(MCC),      getreg(LATECOL),  getreg(COLC),     getreg(DC),
1130     getreg(TNCRS),    getreg(SEC),      getreg(CEXTERR),  getreg(RLEC),
1131     getreg(XONRXC),   getreg(XONTXC),   getreg(XOFFRXC),  getreg(XOFFTXC),
1132     getreg(RFC),      getreg(RJC),      getreg(RNBC),     getreg(TSCTFC),
1133     getreg(MGTPRC),   getreg(MGTPDC),   getreg(MGTPTC),   getreg(GORCL),
1134     getreg(GOTCL),
1135 
1136     [TOTH]    = mac_read_clr8,      [TORH]    = mac_read_clr8,
1137     [GOTCH]   = mac_read_clr8,      [GORCH]   = mac_read_clr8,
1138     [PRC64]   = mac_read_clr4,      [PRC127]  = mac_read_clr4,
1139     [PRC255]  = mac_read_clr4,      [PRC511]  = mac_read_clr4,
1140     [PRC1023] = mac_read_clr4,      [PRC1522] = mac_read_clr4,
1141     [PTC64]   = mac_read_clr4,      [PTC127]  = mac_read_clr4,
1142     [PTC255]  = mac_read_clr4,      [PTC511]  = mac_read_clr4,
1143     [PTC1023] = mac_read_clr4,      [PTC1522] = mac_read_clr4,
1144     [GPRC]    = mac_read_clr4,      [GPTC]    = mac_read_clr4,
1145     [TPT]     = mac_read_clr4,      [TPR]     = mac_read_clr4,
1146     [RUC]     = mac_read_clr4,      [ROC]     = mac_read_clr4,
1147     [BPRC]    = mac_read_clr4,      [MPRC]    = mac_read_clr4,
1148     [TSCTC]   = mac_read_clr4,      [BPTC]    = mac_read_clr4,
1149     [MPTC]    = mac_read_clr4,
1150     [ICR]     = mac_icr_read,       [EECD]    = get_eecd,
1151     [EERD]    = flash_eerd_read,
1152     [RDFH]    = mac_low13_read,     [RDFT]    = mac_low13_read,
1153     [RDFHS]   = mac_low13_read,     [RDFTS]   = mac_low13_read,
1154     [RDFPC]   = mac_low13_read,
1155     [TDFH]    = mac_low11_read,     [TDFT]    = mac_low11_read,
1156     [TDFHS]   = mac_low13_read,     [TDFTS]   = mac_low13_read,
1157     [TDFPC]   = mac_low13_read,
1158     [AIT]     = mac_low16_read,
1159 
1160     [CRCERRS ... MPC]   = &mac_readreg,
1161     [IP6AT ... IP6AT+3] = &mac_readreg,    [IP4AT ... IP4AT+6] = &mac_readreg,
1162     [FFLT ... FFLT+6]   = &mac_low11_read,
1163     [RA ... RA+31]      = &mac_readreg,
1164     [WUPM ... WUPM+31]  = &mac_readreg,
1165     [MTA ... MTA+127]   = &mac_readreg,
1166     [VFTA ... VFTA+127] = &mac_readreg,
1167     [FFMT ... FFMT+254] = &mac_low4_read,
1168     [FFVT ... FFVT+254] = &mac_readreg,
1169     [PBM ... PBM+16383] = &mac_readreg,
1170 };
1171 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1172 
1173 #define putreg(x)    [x] = mac_writereg
1174 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
1175     putreg(PBA),      putreg(EERD),     putreg(SWSM),     putreg(WUFC),
1176     putreg(TDBAL),    putreg(TDBAH),    putreg(TXDCTL),   putreg(RDBAH),
1177     putreg(RDBAL),    putreg(LEDCTL),   putreg(VET),      putreg(FCRUC),
1178     putreg(TDFH),     putreg(TDFT),     putreg(TDFHS),    putreg(TDFTS),
1179     putreg(TDFPC),    putreg(RDFH),     putreg(RDFT),     putreg(RDFHS),
1180     putreg(RDFTS),    putreg(RDFPC),    putreg(IPAV),     putreg(WUC),
1181     putreg(WUS),      putreg(AIT),
1182 
1183     [TDLEN]  = set_dlen,   [RDLEN]  = set_dlen,       [TCTL] = set_tctl,
1184     [TDT]    = set_tctl,   [MDIC]   = set_mdic,       [ICS]  = set_ics,
1185     [TDH]    = set_16bit,  [RDH]    = set_16bit,      [RDT]  = set_rdt,
1186     [IMC]    = set_imc,    [IMS]    = set_ims,        [ICR]  = set_icr,
1187     [EECD]   = set_eecd,   [RCTL]   = set_rx_control, [CTRL] = set_ctrl,
1188     [RDTR]   = set_16bit,  [RADV]   = set_16bit,      [TADV] = set_16bit,
1189     [ITR]    = set_16bit,
1190 
1191     [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
1192     [FFLT ... FFLT+6]   = &mac_writereg,
1193     [RA ... RA+31]      = &mac_writereg,
1194     [WUPM ... WUPM+31]  = &mac_writereg,
1195     [MTA ... MTA+127]   = &mac_writereg,
1196     [VFTA ... VFTA+127] = &mac_writereg,
1197     [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
1198     [PBM ... PBM+16383] = &mac_writereg,
1199 };
1200 
1201 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1202 
1203 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1204 
1205 #define markflag(x)    ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1206 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1207  * f - flag bits (up to 6 possible flags)
1208  * n - flag needed
1209  * p - partially implenented */
1210 static const uint8_t mac_reg_access[0x8000] = {
1211     [RDTR]    = markflag(MIT),    [TADV]    = markflag(MIT),
1212     [RADV]    = markflag(MIT),    [ITR]     = markflag(MIT),
1213 
1214     [IPAV]    = markflag(MAC),    [WUC]     = markflag(MAC),
1215     [IP6AT]   = markflag(MAC),    [IP4AT]   = markflag(MAC),
1216     [FFVT]    = markflag(MAC),    [WUPM]    = markflag(MAC),
1217     [ECOL]    = markflag(MAC),    [MCC]     = markflag(MAC),
1218     [DC]      = markflag(MAC),    [TNCRS]   = markflag(MAC),
1219     [RLEC]    = markflag(MAC),    [XONRXC]  = markflag(MAC),
1220     [XOFFTXC] = markflag(MAC),    [RFC]     = markflag(MAC),
1221     [TSCTFC]  = markflag(MAC),    [MGTPRC]  = markflag(MAC),
1222     [WUS]     = markflag(MAC),    [AIT]     = markflag(MAC),
1223     [FFLT]    = markflag(MAC),    [FFMT]    = markflag(MAC),
1224     [SCC]     = markflag(MAC),    [FCRUC]   = markflag(MAC),
1225     [LATECOL] = markflag(MAC),    [COLC]    = markflag(MAC),
1226     [SEC]     = markflag(MAC),    [CEXTERR] = markflag(MAC),
1227     [XONTXC]  = markflag(MAC),    [XOFFRXC] = markflag(MAC),
1228     [RJC]     = markflag(MAC),    [RNBC]    = markflag(MAC),
1229     [MGTPDC]  = markflag(MAC),    [MGTPTC]  = markflag(MAC),
1230     [RUC]     = markflag(MAC),    [ROC]     = markflag(MAC),
1231     [GORCL]   = markflag(MAC),    [GORCH]   = markflag(MAC),
1232     [GOTCL]   = markflag(MAC),    [GOTCH]   = markflag(MAC),
1233     [BPRC]    = markflag(MAC),    [MPRC]    = markflag(MAC),
1234     [TSCTC]   = markflag(MAC),    [PRC64]   = markflag(MAC),
1235     [PRC127]  = markflag(MAC),    [PRC255]  = markflag(MAC),
1236     [PRC511]  = markflag(MAC),    [PRC1023] = markflag(MAC),
1237     [PRC1522] = markflag(MAC),    [PTC64]   = markflag(MAC),
1238     [PTC127]  = markflag(MAC),    [PTC255]  = markflag(MAC),
1239     [PTC511]  = markflag(MAC),    [PTC1023] = markflag(MAC),
1240     [PTC1522] = markflag(MAC),    [MPTC]    = markflag(MAC),
1241     [BPTC]    = markflag(MAC),
1242 
1243     [TDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1244     [TDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1245     [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1246     [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1247     [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1248     [RDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1249     [RDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1250     [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1251     [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1252     [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1253     [PBM]   = markflag(MAC) | MAC_ACCESS_PARTIAL,
1254 };
1255 
1256 static void
1257 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1258                  unsigned size)
1259 {
1260     E1000State *s = opaque;
1261     unsigned int index = (addr & 0x1ffff) >> 2;
1262 
1263     if (index < NWRITEOPS && macreg_writeops[index]) {
1264         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1265             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1266             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1267                 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1268                        "It is not fully implemented.\n", index<<2);
1269             }
1270             macreg_writeops[index](s, index, val);
1271         } else {    /* "flag needed" bit is set, but the flag is not active */
1272             DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1273                    index<<2);
1274         }
1275     } else if (index < NREADOPS && macreg_readops[index]) {
1276         DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1277                index<<2, val);
1278     } else {
1279         DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1280                index<<2, val);
1281     }
1282 }
1283 
1284 static uint64_t
1285 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1286 {
1287     E1000State *s = opaque;
1288     unsigned int index = (addr & 0x1ffff) >> 2;
1289 
1290     if (index < NREADOPS && macreg_readops[index]) {
1291         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1292             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1293             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1294                 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1295                        "It is not fully implemented.\n", index<<2);
1296             }
1297             return macreg_readops[index](s, index);
1298         } else {    /* "flag needed" bit is set, but the flag is not active */
1299             DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1300                    index<<2);
1301         }
1302     } else {
1303         DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1304     }
1305     return 0;
1306 }
1307 
1308 static const MemoryRegionOps e1000_mmio_ops = {
1309     .read = e1000_mmio_read,
1310     .write = e1000_mmio_write,
1311     .endianness = DEVICE_LITTLE_ENDIAN,
1312     .impl = {
1313         .min_access_size = 4,
1314         .max_access_size = 4,
1315     },
1316 };
1317 
1318 static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1319                               unsigned size)
1320 {
1321     E1000State *s = opaque;
1322 
1323     (void)s;
1324     return 0;
1325 }
1326 
1327 static void e1000_io_write(void *opaque, hwaddr addr,
1328                            uint64_t val, unsigned size)
1329 {
1330     E1000State *s = opaque;
1331 
1332     (void)s;
1333 }
1334 
1335 static const MemoryRegionOps e1000_io_ops = {
1336     .read = e1000_io_read,
1337     .write = e1000_io_write,
1338     .endianness = DEVICE_LITTLE_ENDIAN,
1339 };
1340 
1341 static bool is_version_1(void *opaque, int version_id)
1342 {
1343     return version_id == 1;
1344 }
1345 
1346 static void e1000_pre_save(void *opaque)
1347 {
1348     E1000State *s = opaque;
1349     NetClientState *nc = qemu_get_queue(s->nic);
1350 
1351     /* If the mitigation timer is active, emulate a timeout now. */
1352     if (s->mit_timer_on) {
1353         e1000_mit_timer(s);
1354     }
1355 
1356     /*
1357      * If link is down and auto-negotiation is supported and ongoing,
1358      * complete auto-negotiation immediately. This allows us to look
1359      * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
1360      */
1361     if (nc->link_down && have_autoneg(s)) {
1362         s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
1363     }
1364 }
1365 
1366 static int e1000_post_load(void *opaque, int version_id)
1367 {
1368     E1000State *s = opaque;
1369     NetClientState *nc = qemu_get_queue(s->nic);
1370 
1371     if (!chkflag(MIT)) {
1372         s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1373             s->mac_reg[TADV] = 0;
1374         s->mit_irq_level = false;
1375     }
1376     s->mit_ide = 0;
1377     s->mit_timer_on = false;
1378 
1379     /* nc.link_down can't be migrated, so infer link_down according
1380      * to link status bit in mac_reg[STATUS].
1381      * Alternatively, restart link negotiation if it was in progress. */
1382     nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1383 
1384     if (have_autoneg(s) &&
1385         !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1386         nc->link_down = false;
1387         timer_mod(s->autoneg_timer,
1388                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1389     }
1390 
1391     return 0;
1392 }
1393 
1394 static bool e1000_mit_state_needed(void *opaque)
1395 {
1396     E1000State *s = opaque;
1397 
1398     return chkflag(MIT);
1399 }
1400 
1401 static bool e1000_full_mac_needed(void *opaque)
1402 {
1403     E1000State *s = opaque;
1404 
1405     return chkflag(MAC);
1406 }
1407 
1408 static const VMStateDescription vmstate_e1000_mit_state = {
1409     .name = "e1000/mit_state",
1410     .version_id = 1,
1411     .minimum_version_id = 1,
1412     .needed = e1000_mit_state_needed,
1413     .fields = (VMStateField[]) {
1414         VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1415         VMSTATE_UINT32(mac_reg[RADV], E1000State),
1416         VMSTATE_UINT32(mac_reg[TADV], E1000State),
1417         VMSTATE_UINT32(mac_reg[ITR], E1000State),
1418         VMSTATE_BOOL(mit_irq_level, E1000State),
1419         VMSTATE_END_OF_LIST()
1420     }
1421 };
1422 
1423 static const VMStateDescription vmstate_e1000_full_mac_state = {
1424     .name = "e1000/full_mac_state",
1425     .version_id = 1,
1426     .minimum_version_id = 1,
1427     .needed = e1000_full_mac_needed,
1428     .fields = (VMStateField[]) {
1429         VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1430         VMSTATE_END_OF_LIST()
1431     }
1432 };
1433 
1434 static const VMStateDescription vmstate_e1000 = {
1435     .name = "e1000",
1436     .version_id = 2,
1437     .minimum_version_id = 1,
1438     .pre_save = e1000_pre_save,
1439     .post_load = e1000_post_load,
1440     .fields = (VMStateField[]) {
1441         VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1442         VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
1443         VMSTATE_UNUSED(4), /* Was mmio_base.  */
1444         VMSTATE_UINT32(rxbuf_size, E1000State),
1445         VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1446         VMSTATE_UINT32(eecd_state.val_in, E1000State),
1447         VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1448         VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1449         VMSTATE_UINT16(eecd_state.reading, E1000State),
1450         VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1451         VMSTATE_UINT8(tx.props.ipcss, E1000State),
1452         VMSTATE_UINT8(tx.props.ipcso, E1000State),
1453         VMSTATE_UINT16(tx.props.ipcse, E1000State),
1454         VMSTATE_UINT8(tx.props.tucss, E1000State),
1455         VMSTATE_UINT8(tx.props.tucso, E1000State),
1456         VMSTATE_UINT16(tx.props.tucse, E1000State),
1457         VMSTATE_UINT32(tx.props.paylen, E1000State),
1458         VMSTATE_UINT8(tx.props.hdr_len, E1000State),
1459         VMSTATE_UINT16(tx.props.mss, E1000State),
1460         VMSTATE_UINT16(tx.size, E1000State),
1461         VMSTATE_UINT16(tx.tso_frames, E1000State),
1462         VMSTATE_UINT8(tx.props.sum_needed, E1000State),
1463         VMSTATE_INT8(tx.props.ip, E1000State),
1464         VMSTATE_INT8(tx.props.tcp, E1000State),
1465         VMSTATE_BUFFER(tx.header, E1000State),
1466         VMSTATE_BUFFER(tx.data, E1000State),
1467         VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1468         VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1469         VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1470         VMSTATE_UINT32(mac_reg[EECD], E1000State),
1471         VMSTATE_UINT32(mac_reg[EERD], E1000State),
1472         VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1473         VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1474         VMSTATE_UINT32(mac_reg[ICR], E1000State),
1475         VMSTATE_UINT32(mac_reg[ICS], E1000State),
1476         VMSTATE_UINT32(mac_reg[IMC], E1000State),
1477         VMSTATE_UINT32(mac_reg[IMS], E1000State),
1478         VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1479         VMSTATE_UINT32(mac_reg[MANC], E1000State),
1480         VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1481         VMSTATE_UINT32(mac_reg[MPC], E1000State),
1482         VMSTATE_UINT32(mac_reg[PBA], E1000State),
1483         VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1484         VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1485         VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1486         VMSTATE_UINT32(mac_reg[RDH], E1000State),
1487         VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1488         VMSTATE_UINT32(mac_reg[RDT], E1000State),
1489         VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1490         VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1491         VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1492         VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1493         VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1494         VMSTATE_UINT32(mac_reg[TDH], E1000State),
1495         VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1496         VMSTATE_UINT32(mac_reg[TDT], E1000State),
1497         VMSTATE_UINT32(mac_reg[TORH], E1000State),
1498         VMSTATE_UINT32(mac_reg[TORL], E1000State),
1499         VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1500         VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1501         VMSTATE_UINT32(mac_reg[TPR], E1000State),
1502         VMSTATE_UINT32(mac_reg[TPT], E1000State),
1503         VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1504         VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1505         VMSTATE_UINT32(mac_reg[VET], E1000State),
1506         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1507         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1508         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1509         VMSTATE_END_OF_LIST()
1510     },
1511     .subsections = (const VMStateDescription*[]) {
1512         &vmstate_e1000_mit_state,
1513         &vmstate_e1000_full_mac_state,
1514         NULL
1515     }
1516 };
1517 
1518 /*
1519  * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1520  * Note: A valid DevId will be inserted during pci_e1000_init().
1521  */
1522 static const uint16_t e1000_eeprom_template[64] = {
1523     0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000,
1524     0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1525     0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700,
1526     0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706,
1527     0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff,
1528     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1529     0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1530     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000,
1531 };
1532 
1533 /* PCI interface */
1534 
1535 static void
1536 e1000_mmio_setup(E1000State *d)
1537 {
1538     int i;
1539     const uint32_t excluded_regs[] = {
1540         E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1541         E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1542     };
1543 
1544     memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1545                           "e1000-mmio", PNPMMIO_SIZE);
1546     memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1547     for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1548         memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1549                                      excluded_regs[i+1] - excluded_regs[i] - 4);
1550     memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1551 }
1552 
1553 static void
1554 pci_e1000_uninit(PCIDevice *dev)
1555 {
1556     E1000State *d = E1000(dev);
1557 
1558     timer_del(d->autoneg_timer);
1559     timer_free(d->autoneg_timer);
1560     timer_del(d->mit_timer);
1561     timer_free(d->mit_timer);
1562     qemu_del_nic(d->nic);
1563 }
1564 
1565 static NetClientInfo net_e1000_info = {
1566     .type = NET_CLIENT_OPTIONS_KIND_NIC,
1567     .size = sizeof(NICState),
1568     .can_receive = e1000_can_receive,
1569     .receive = e1000_receive,
1570     .receive_iov = e1000_receive_iov,
1571     .link_status_changed = e1000_set_link_status,
1572 };
1573 
1574 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1575                                 uint32_t val, int len)
1576 {
1577     E1000State *s = E1000(pci_dev);
1578 
1579     pci_default_write_config(pci_dev, address, val, len);
1580 
1581     if (range_covers_byte(address, len, PCI_COMMAND) &&
1582         (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1583         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1584     }
1585 }
1586 
1587 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1588 {
1589     DeviceState *dev = DEVICE(pci_dev);
1590     E1000State *d = E1000(pci_dev);
1591     uint8_t *pci_conf;
1592     uint8_t *macaddr;
1593 
1594     pci_dev->config_write = e1000_write_config;
1595 
1596     pci_conf = pci_dev->config;
1597 
1598     /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1599     pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1600 
1601     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1602 
1603     e1000_mmio_setup(d);
1604 
1605     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1606 
1607     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1608 
1609     qemu_macaddr_default_if_unset(&d->conf.macaddr);
1610     macaddr = d->conf.macaddr.a;
1611 
1612     e1000x_core_prepare_eeprom(d->eeprom_data,
1613                                e1000_eeprom_template,
1614                                sizeof(e1000_eeprom_template),
1615                                PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1616                                macaddr);
1617 
1618     d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1619                           object_get_typename(OBJECT(d)), dev->id, d);
1620 
1621     qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1622 
1623     d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1624     d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1625 }
1626 
1627 static void qdev_e1000_reset(DeviceState *dev)
1628 {
1629     E1000State *d = E1000(dev);
1630     e1000_reset(d);
1631 }
1632 
1633 static Property e1000_properties[] = {
1634     DEFINE_NIC_PROPERTIES(E1000State, conf),
1635     DEFINE_PROP_BIT("autonegotiation", E1000State,
1636                     compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1637     DEFINE_PROP_BIT("mitigation", E1000State,
1638                     compat_flags, E1000_FLAG_MIT_BIT, true),
1639     DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1640                     compat_flags, E1000_FLAG_MAC_BIT, true),
1641     DEFINE_PROP_END_OF_LIST(),
1642 };
1643 
1644 typedef struct E1000Info {
1645     const char *name;
1646     uint16_t   device_id;
1647     uint8_t    revision;
1648     uint16_t   phy_id2;
1649 } E1000Info;
1650 
1651 static void e1000_class_init(ObjectClass *klass, void *data)
1652 {
1653     DeviceClass *dc = DEVICE_CLASS(klass);
1654     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1655     E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
1656     const E1000Info *info = data;
1657 
1658     k->realize = pci_e1000_realize;
1659     k->exit = pci_e1000_uninit;
1660     k->romfile = "efi-e1000.rom";
1661     k->vendor_id = PCI_VENDOR_ID_INTEL;
1662     k->device_id = info->device_id;
1663     k->revision = info->revision;
1664     e->phy_id2 = info->phy_id2;
1665     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1666     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1667     dc->desc = "Intel Gigabit Ethernet";
1668     dc->reset = qdev_e1000_reset;
1669     dc->vmsd = &vmstate_e1000;
1670     dc->props = e1000_properties;
1671 }
1672 
1673 static void e1000_instance_init(Object *obj)
1674 {
1675     E1000State *n = E1000(obj);
1676     device_add_bootindex_property(obj, &n->conf.bootindex,
1677                                   "bootindex", "/ethernet-phy@0",
1678                                   DEVICE(n), NULL);
1679 }
1680 
1681 static const TypeInfo e1000_base_info = {
1682     .name          = TYPE_E1000_BASE,
1683     .parent        = TYPE_PCI_DEVICE,
1684     .instance_size = sizeof(E1000State),
1685     .instance_init = e1000_instance_init,
1686     .class_size    = sizeof(E1000BaseClass),
1687     .abstract      = true,
1688 };
1689 
1690 static const E1000Info e1000_devices[] = {
1691     {
1692         .name      = "e1000",
1693         .device_id = E1000_DEV_ID_82540EM,
1694         .revision  = 0x03,
1695         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1696     },
1697     {
1698         .name      = "e1000-82544gc",
1699         .device_id = E1000_DEV_ID_82544GC_COPPER,
1700         .revision  = 0x03,
1701         .phy_id2   = E1000_PHY_ID2_82544x,
1702     },
1703     {
1704         .name      = "e1000-82545em",
1705         .device_id = E1000_DEV_ID_82545EM_COPPER,
1706         .revision  = 0x03,
1707         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1708     },
1709 };
1710 
1711 static void e1000_register_types(void)
1712 {
1713     int i;
1714 
1715     type_register_static(&e1000_base_info);
1716     for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1717         const E1000Info *info = &e1000_devices[i];
1718         TypeInfo type_info = {};
1719 
1720         type_info.name = info->name;
1721         type_info.parent = TYPE_E1000_BASE;
1722         type_info.class_data = (void *)info;
1723         type_info.class_init = e1000_class_init;
1724         type_info.instance_init = e1000_instance_init;
1725 
1726         type_register(&type_info);
1727     }
1728 }
1729 
1730 type_init(e1000_register_types)
1731