1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/hw.h" 30 #include "hw/pci/pci.h" 31 #include "net/net.h" 32 #include "net/checksum.h" 33 #include "hw/loader.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/dma.h" 36 #include "qemu/iov.h" 37 #include "qemu/range.h" 38 39 #include "e1000x_common.h" 40 41 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 42 43 #define E1000_DEBUG 44 45 #ifdef E1000_DEBUG 46 enum { 47 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 48 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 49 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 50 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 51 }; 52 #define DBGBIT(x) (1<<DEBUG_##x) 53 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 54 55 #define DBGOUT(what, fmt, ...) do { \ 56 if (debugflags & DBGBIT(what)) \ 57 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 58 } while (0) 59 #else 60 #define DBGOUT(what, fmt, ...) do {} while (0) 61 #endif 62 63 #define IOPORT_SIZE 0x40 64 #define PNPMMIO_SIZE 0x20000 65 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 66 67 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 68 69 /* 70 * HW models: 71 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 72 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 73 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 74 * Others never tested 75 */ 76 77 typedef struct E1000State_st { 78 /*< private >*/ 79 PCIDevice parent_obj; 80 /*< public >*/ 81 82 NICState *nic; 83 NICConf conf; 84 MemoryRegion mmio; 85 MemoryRegion io; 86 87 uint32_t mac_reg[0x8000]; 88 uint16_t phy_reg[0x20]; 89 uint16_t eeprom_data[64]; 90 91 uint32_t rxbuf_size; 92 uint32_t rxbuf_min_shift; 93 struct e1000_tx { 94 unsigned char header[256]; 95 unsigned char vlan_header[4]; 96 /* Fields vlan and data must not be reordered or separated. */ 97 unsigned char vlan[4]; 98 unsigned char data[0x10000]; 99 uint16_t size; 100 unsigned char vlan_needed; 101 e1000x_txd_props props; 102 uint16_t tso_frames; 103 } tx; 104 105 struct { 106 uint32_t val_in; /* shifted in from guest driver */ 107 uint16_t bitnum_in; 108 uint16_t bitnum_out; 109 uint16_t reading; 110 uint32_t old_eecd; 111 } eecd_state; 112 113 QEMUTimer *autoneg_timer; 114 115 QEMUTimer *mit_timer; /* Mitigation timer. */ 116 bool mit_timer_on; /* Mitigation timer is running. */ 117 bool mit_irq_level; /* Tracks interrupt pin level. */ 118 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 119 120 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 121 #define E1000_FLAG_AUTONEG_BIT 0 122 #define E1000_FLAG_MIT_BIT 1 123 #define E1000_FLAG_MAC_BIT 2 124 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 125 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 126 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 127 uint32_t compat_flags; 128 } E1000State; 129 130 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 131 132 typedef struct E1000BaseClass { 133 PCIDeviceClass parent_class; 134 uint16_t phy_id2; 135 } E1000BaseClass; 136 137 #define TYPE_E1000_BASE "e1000-base" 138 139 #define E1000(obj) \ 140 OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE) 141 142 #define E1000_DEVICE_CLASS(klass) \ 143 OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE) 144 #define E1000_DEVICE_GET_CLASS(obj) \ 145 OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE) 146 147 static void 148 e1000_link_up(E1000State *s) 149 { 150 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 151 152 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 153 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 154 } 155 156 static void 157 e1000_autoneg_done(E1000State *s) 158 { 159 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 160 161 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 162 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 163 } 164 165 static bool 166 have_autoneg(E1000State *s) 167 { 168 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 169 } 170 171 static void 172 set_phy_ctrl(E1000State *s, int index, uint16_t val) 173 { 174 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 175 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 176 MII_CR_RESET | 177 MII_CR_RESTART_AUTO_NEG); 178 179 /* 180 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 181 * migrate during auto negotiation, after migration the link will be 182 * down. 183 */ 184 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 185 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 186 } 187 } 188 189 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 190 [PHY_CTRL] = set_phy_ctrl, 191 }; 192 193 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 194 195 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 196 static const char phy_regcap[0x20] = { 197 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 198 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 199 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 200 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 201 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 202 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 203 [PHY_AUTONEG_EXP] = PHY_R, 204 }; 205 206 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 207 static const uint16_t phy_reg_init[] = { 208 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 209 MII_CR_FULL_DUPLEX | 210 MII_CR_AUTO_NEG_EN, 211 212 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 213 MII_SR_LINK_STATUS | /* link initially up */ 214 MII_SR_AUTONEG_CAPS | 215 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 216 MII_SR_PREAMBLE_SUPPRESS | 217 MII_SR_EXTENDED_STATUS | 218 MII_SR_10T_HD_CAPS | 219 MII_SR_10T_FD_CAPS | 220 MII_SR_100X_HD_CAPS | 221 MII_SR_100X_FD_CAPS, 222 223 [PHY_ID1] = 0x141, 224 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 225 [PHY_AUTONEG_ADV] = 0xde1, 226 [PHY_LP_ABILITY] = 0x1e0, 227 [PHY_1000T_CTRL] = 0x0e00, 228 [PHY_1000T_STATUS] = 0x3c00, 229 [M88E1000_PHY_SPEC_CTRL] = 0x360, 230 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 231 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 232 }; 233 234 static const uint32_t mac_reg_init[] = { 235 [PBA] = 0x00100030, 236 [LEDCTL] = 0x602, 237 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 238 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 239 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 240 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 241 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 242 E1000_STATUS_LU, 243 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 244 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 245 E1000_MANC_RMCP_EN, 246 }; 247 248 /* Helper function, *curr == 0 means the value is not set */ 249 static inline void 250 mit_update_delay(uint32_t *curr, uint32_t value) 251 { 252 if (value && (*curr == 0 || value < *curr)) { 253 *curr = value; 254 } 255 } 256 257 static void 258 set_interrupt_cause(E1000State *s, int index, uint32_t val) 259 { 260 PCIDevice *d = PCI_DEVICE(s); 261 uint32_t pending_ints; 262 uint32_t mit_delay; 263 264 s->mac_reg[ICR] = val; 265 266 /* 267 * Make sure ICR and ICS registers have the same value. 268 * The spec says that the ICS register is write-only. However in practice, 269 * on real hardware ICS is readable, and for reads it has the same value as 270 * ICR (except that ICS does not have the clear on read behaviour of ICR). 271 * 272 * The VxWorks PRO/1000 driver uses this behaviour. 273 */ 274 s->mac_reg[ICS] = val; 275 276 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 277 if (!s->mit_irq_level && pending_ints) { 278 /* 279 * Here we detect a potential raising edge. We postpone raising the 280 * interrupt line if we are inside the mitigation delay window 281 * (s->mit_timer_on == 1). 282 * We provide a partial implementation of interrupt mitigation, 283 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 284 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 285 * RADV; relative timers based on TIDV and RDTR are not implemented. 286 */ 287 if (s->mit_timer_on) { 288 return; 289 } 290 if (chkflag(MIT)) { 291 /* Compute the next mitigation delay according to pending 292 * interrupts and the current values of RADV (provided 293 * RDTR!=0), TADV and ITR. 294 * Then rearm the timer. 295 */ 296 mit_delay = 0; 297 if (s->mit_ide && 298 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 299 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 300 } 301 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 302 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 303 } 304 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 305 306 /* 307 * According to e1000 SPEC, the Ethernet controller guarantees 308 * a maximum observable interrupt rate of 7813 interrupts/sec. 309 * Thus if mit_delay < 500 then the delay should be set to the 310 * minimum delay possible which is 500. 311 */ 312 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 313 314 s->mit_timer_on = 1; 315 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 316 mit_delay * 256); 317 s->mit_ide = 0; 318 } 319 } 320 321 s->mit_irq_level = (pending_ints != 0); 322 pci_set_irq(d, s->mit_irq_level); 323 } 324 325 static void 326 e1000_mit_timer(void *opaque) 327 { 328 E1000State *s = opaque; 329 330 s->mit_timer_on = 0; 331 /* Call set_interrupt_cause to update the irq level (if necessary). */ 332 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 333 } 334 335 static void 336 set_ics(E1000State *s, int index, uint32_t val) 337 { 338 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 339 s->mac_reg[IMS]); 340 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 341 } 342 343 static void 344 e1000_autoneg_timer(void *opaque) 345 { 346 E1000State *s = opaque; 347 if (!qemu_get_queue(s->nic)->link_down) { 348 e1000_autoneg_done(s); 349 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 350 } 351 } 352 353 static void e1000_reset(void *opaque) 354 { 355 E1000State *d = opaque; 356 E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d); 357 uint8_t *macaddr = d->conf.macaddr.a; 358 359 timer_del(d->autoneg_timer); 360 timer_del(d->mit_timer); 361 d->mit_timer_on = 0; 362 d->mit_irq_level = 0; 363 d->mit_ide = 0; 364 memset(d->phy_reg, 0, sizeof d->phy_reg); 365 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 366 d->phy_reg[PHY_ID2] = edc->phy_id2; 367 memset(d->mac_reg, 0, sizeof d->mac_reg); 368 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 369 d->rxbuf_min_shift = 1; 370 memset(&d->tx, 0, sizeof d->tx); 371 372 if (qemu_get_queue(d->nic)->link_down) { 373 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 374 } 375 376 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 377 } 378 379 static void 380 set_ctrl(E1000State *s, int index, uint32_t val) 381 { 382 /* RST is self clearing */ 383 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 384 } 385 386 static void 387 set_rx_control(E1000State *s, int index, uint32_t val) 388 { 389 s->mac_reg[RCTL] = val; 390 s->rxbuf_size = e1000x_rxbufsize(val); 391 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 392 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 393 s->mac_reg[RCTL]); 394 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 395 } 396 397 static void 398 set_mdic(E1000State *s, int index, uint32_t val) 399 { 400 uint32_t data = val & E1000_MDIC_DATA_MASK; 401 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 402 403 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 404 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 405 else if (val & E1000_MDIC_OP_READ) { 406 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 407 if (!(phy_regcap[addr] & PHY_R)) { 408 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 409 val |= E1000_MDIC_ERROR; 410 } else 411 val = (val ^ data) | s->phy_reg[addr]; 412 } else if (val & E1000_MDIC_OP_WRITE) { 413 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 414 if (!(phy_regcap[addr] & PHY_W)) { 415 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 416 val |= E1000_MDIC_ERROR; 417 } else { 418 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 419 phyreg_writeops[addr](s, index, data); 420 } else { 421 s->phy_reg[addr] = data; 422 } 423 } 424 } 425 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 426 427 if (val & E1000_MDIC_INT_EN) { 428 set_ics(s, 0, E1000_ICR_MDAC); 429 } 430 } 431 432 static uint32_t 433 get_eecd(E1000State *s, int index) 434 { 435 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 436 437 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 438 s->eecd_state.bitnum_out, s->eecd_state.reading); 439 if (!s->eecd_state.reading || 440 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 441 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 442 ret |= E1000_EECD_DO; 443 return ret; 444 } 445 446 static void 447 set_eecd(E1000State *s, int index, uint32_t val) 448 { 449 uint32_t oldval = s->eecd_state.old_eecd; 450 451 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 452 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 453 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 454 return; 455 } 456 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 457 s->eecd_state.val_in = 0; 458 s->eecd_state.bitnum_in = 0; 459 s->eecd_state.bitnum_out = 0; 460 s->eecd_state.reading = 0; 461 } 462 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 463 return; 464 } 465 if (!(E1000_EECD_SK & val)) { /* falling edge */ 466 s->eecd_state.bitnum_out++; 467 return; 468 } 469 s->eecd_state.val_in <<= 1; 470 if (val & E1000_EECD_DI) 471 s->eecd_state.val_in |= 1; 472 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 473 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 474 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 475 EEPROM_READ_OPCODE_MICROWIRE); 476 } 477 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 478 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 479 s->eecd_state.reading); 480 } 481 482 static uint32_t 483 flash_eerd_read(E1000State *s, int x) 484 { 485 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 486 487 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 488 return (s->mac_reg[EERD]); 489 490 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 491 return (E1000_EEPROM_RW_REG_DONE | r); 492 493 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 494 E1000_EEPROM_RW_REG_DONE | r); 495 } 496 497 static void 498 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 499 { 500 uint32_t sum; 501 502 if (cse && cse < n) 503 n = cse + 1; 504 if (sloc < n-1) { 505 sum = net_checksum_add(n-css, data+css); 506 stw_be_p(data + sloc, net_checksum_finish(sum)); 507 } 508 } 509 510 static inline void 511 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 512 { 513 if (!memcmp(arr, bcast, sizeof bcast)) { 514 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 515 } else if (arr[0] & 1) { 516 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 517 } 518 } 519 520 static void 521 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 522 { 523 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 524 PTC1023, PTC1522 }; 525 526 NetClientState *nc = qemu_get_queue(s->nic); 527 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 528 nc->info->receive(nc, buf, size); 529 } else { 530 qemu_send_packet(nc, buf, size); 531 } 532 inc_tx_bcast_or_mcast_count(s, buf); 533 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 534 } 535 536 static void 537 xmit_seg(E1000State *s) 538 { 539 uint16_t len, *sp; 540 unsigned int frames = s->tx.tso_frames, css, sofar; 541 struct e1000_tx *tp = &s->tx; 542 543 if (tp->props.tse && tp->props.cptse) { 544 css = tp->props.ipcss; 545 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 546 frames, tp->size, css); 547 if (tp->props.ip) { /* IPv4 */ 548 stw_be_p(tp->data+css+2, tp->size - css); 549 stw_be_p(tp->data+css+4, 550 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames); 551 } else { /* IPv6 */ 552 stw_be_p(tp->data+css+4, tp->size - css); 553 } 554 css = tp->props.tucss; 555 len = tp->size - css; 556 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->props.tcp, css, len); 557 if (tp->props.tcp) { 558 sofar = frames * tp->props.mss; 559 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 560 if (tp->props.paylen - sofar > tp->props.mss) { 561 tp->data[css + 13] &= ~9; /* PSH, FIN */ 562 } else if (frames) { 563 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 564 } 565 } else /* UDP */ 566 stw_be_p(tp->data+css+4, len); 567 if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) { 568 unsigned int phsum; 569 // add pseudo-header length before checksum calculation 570 sp = (uint16_t *)(tp->data + tp->props.tucso); 571 phsum = be16_to_cpup(sp) + len; 572 phsum = (phsum >> 16) + (phsum & 0xffff); 573 stw_be_p(sp, phsum); 574 } 575 tp->tso_frames++; 576 } 577 578 if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) { 579 putsum(tp->data, tp->size, tp->props.tucso, 580 tp->props.tucss, tp->props.tucse); 581 } 582 if (tp->props.sum_needed & E1000_TXD_POPTS_IXSM) { 583 putsum(tp->data, tp->size, tp->props.ipcso, 584 tp->props.ipcss, tp->props.ipcse); 585 } 586 if (tp->vlan_needed) { 587 memmove(tp->vlan, tp->data, 4); 588 memmove(tp->data, tp->data + 4, 8); 589 memcpy(tp->data + 8, tp->vlan_header, 4); 590 e1000_send_packet(s, tp->vlan, tp->size + 4); 591 } else { 592 e1000_send_packet(s, tp->data, tp->size); 593 } 594 595 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 596 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 597 s->mac_reg[GPTC] = s->mac_reg[TPT]; 598 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 599 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 600 } 601 602 static void 603 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 604 { 605 PCIDevice *d = PCI_DEVICE(s); 606 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 607 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 608 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 609 unsigned int msh = 0xfffff; 610 uint64_t addr; 611 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 612 struct e1000_tx *tp = &s->tx; 613 614 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 615 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 616 e1000x_read_tx_ctx_descr(xp, &tp->props); 617 tp->tso_frames = 0; 618 if (tp->props.tucso == 0) { /* this is probably wrong */ 619 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n"); 620 tp->props.tucso = tp->props.tucss + (tp->props.tcp ? 16 : 6); 621 } 622 return; 623 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 624 // data descriptor 625 if (tp->size == 0) { 626 tp->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8; 627 } 628 tp->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 629 } else { 630 // legacy descriptor 631 tp->props.cptse = 0; 632 } 633 634 if (e1000x_vlan_enabled(s->mac_reg) && 635 e1000x_is_vlan_txd(txd_lower) && 636 (tp->props.cptse || txd_lower & E1000_TXD_CMD_EOP)) { 637 tp->vlan_needed = 1; 638 stw_be_p(tp->vlan_header, 639 le16_to_cpu(s->mac_reg[VET])); 640 stw_be_p(tp->vlan_header + 2, 641 le16_to_cpu(dp->upper.fields.special)); 642 } 643 644 addr = le64_to_cpu(dp->buffer_addr); 645 if (tp->props.tse && tp->props.cptse) { 646 msh = tp->props.hdr_len + tp->props.mss; 647 do { 648 bytes = split_size; 649 if (tp->size + bytes > msh) 650 bytes = msh - tp->size; 651 652 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 653 pci_dma_read(d, addr, tp->data + tp->size, bytes); 654 sz = tp->size + bytes; 655 if (sz >= tp->props.hdr_len && tp->size < tp->props.hdr_len) { 656 memmove(tp->header, tp->data, tp->props.hdr_len); 657 } 658 tp->size = sz; 659 addr += bytes; 660 if (sz == msh) { 661 xmit_seg(s); 662 memmove(tp->data, tp->header, tp->props.hdr_len); 663 tp->size = tp->props.hdr_len; 664 } 665 split_size -= bytes; 666 } while (bytes && split_size); 667 } else if (!tp->props.tse && tp->props.cptse) { 668 // context descriptor TSE is not set, while data descriptor TSE is set 669 DBGOUT(TXERR, "TCP segmentation error\n"); 670 } else { 671 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 672 pci_dma_read(d, addr, tp->data + tp->size, split_size); 673 tp->size += split_size; 674 } 675 676 if (!(txd_lower & E1000_TXD_CMD_EOP)) 677 return; 678 if (!(tp->props.tse && tp->props.cptse && tp->size < tp->props.hdr_len)) { 679 xmit_seg(s); 680 } 681 tp->tso_frames = 0; 682 tp->props.sum_needed = 0; 683 tp->vlan_needed = 0; 684 tp->size = 0; 685 tp->props.cptse = 0; 686 } 687 688 static uint32_t 689 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 690 { 691 PCIDevice *d = PCI_DEVICE(s); 692 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 693 694 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 695 return 0; 696 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 697 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 698 dp->upper.data = cpu_to_le32(txd_upper); 699 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 700 &dp->upper, sizeof(dp->upper)); 701 return E1000_ICR_TXDW; 702 } 703 704 static uint64_t tx_desc_base(E1000State *s) 705 { 706 uint64_t bah = s->mac_reg[TDBAH]; 707 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 708 709 return (bah << 32) + bal; 710 } 711 712 static void 713 start_xmit(E1000State *s) 714 { 715 PCIDevice *d = PCI_DEVICE(s); 716 dma_addr_t base; 717 struct e1000_tx_desc desc; 718 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 719 720 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 721 DBGOUT(TX, "tx disabled\n"); 722 return; 723 } 724 725 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 726 base = tx_desc_base(s) + 727 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 728 pci_dma_read(d, base, &desc, sizeof(desc)); 729 730 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 731 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 732 desc.upper.data); 733 734 process_tx_desc(s, &desc); 735 cause |= txdesc_writeback(s, base, &desc); 736 737 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 738 s->mac_reg[TDH] = 0; 739 /* 740 * the following could happen only if guest sw assigns 741 * bogus values to TDT/TDLEN. 742 * there's nothing too intelligent we could do about this. 743 */ 744 if (s->mac_reg[TDH] == tdh_start || 745 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 746 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 747 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 748 break; 749 } 750 } 751 set_ics(s, 0, cause); 752 } 753 754 static int 755 receive_filter(E1000State *s, const uint8_t *buf, int size) 756 { 757 uint32_t rctl = s->mac_reg[RCTL]; 758 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 759 760 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 761 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 762 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14)); 763 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) + 764 ((vid >> 5) & 0x7f)); 765 if ((vfta & (1 << (vid & 0x1f))) == 0) 766 return 0; 767 } 768 769 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 770 return 1; 771 } 772 773 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 774 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 775 return 1; 776 } 777 778 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 779 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 780 return 1; 781 } 782 783 return e1000x_rx_group_filter(s->mac_reg, buf); 784 } 785 786 static void 787 e1000_set_link_status(NetClientState *nc) 788 { 789 E1000State *s = qemu_get_nic_opaque(nc); 790 uint32_t old_status = s->mac_reg[STATUS]; 791 792 if (nc->link_down) { 793 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 794 } else { 795 if (have_autoneg(s) && 796 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 797 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 798 } else { 799 e1000_link_up(s); 800 } 801 } 802 803 if (s->mac_reg[STATUS] != old_status) 804 set_ics(s, 0, E1000_ICR_LSC); 805 } 806 807 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 808 { 809 int bufs; 810 /* Fast-path short packets */ 811 if (total_size <= s->rxbuf_size) { 812 return s->mac_reg[RDH] != s->mac_reg[RDT]; 813 } 814 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 815 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 816 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 817 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 818 s->mac_reg[RDT] - s->mac_reg[RDH]; 819 } else { 820 return false; 821 } 822 return total_size <= bufs * s->rxbuf_size; 823 } 824 825 static int 826 e1000_can_receive(NetClientState *nc) 827 { 828 E1000State *s = qemu_get_nic_opaque(nc); 829 830 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 831 e1000_has_rxbufs(s, 1); 832 } 833 834 static uint64_t rx_desc_base(E1000State *s) 835 { 836 uint64_t bah = s->mac_reg[RDBAH]; 837 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 838 839 return (bah << 32) + bal; 840 } 841 842 static ssize_t 843 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 844 { 845 E1000State *s = qemu_get_nic_opaque(nc); 846 PCIDevice *d = PCI_DEVICE(s); 847 struct e1000_rx_desc desc; 848 dma_addr_t base; 849 unsigned int n, rdt; 850 uint32_t rdh_start; 851 uint16_t vlan_special = 0; 852 uint8_t vlan_status = 0; 853 uint8_t min_buf[MIN_BUF_SIZE]; 854 struct iovec min_iov; 855 uint8_t *filter_buf = iov->iov_base; 856 size_t size = iov_size(iov, iovcnt); 857 size_t iov_ofs = 0; 858 size_t desc_offset; 859 size_t desc_size; 860 size_t total_size; 861 862 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 863 return -1; 864 } 865 866 /* Pad to minimum Ethernet frame length */ 867 if (size < sizeof(min_buf)) { 868 iov_to_buf(iov, iovcnt, 0, min_buf, size); 869 memset(&min_buf[size], 0, sizeof(min_buf) - size); 870 e1000x_inc_reg_if_not_full(s->mac_reg, RUC); 871 min_iov.iov_base = filter_buf = min_buf; 872 min_iov.iov_len = size = sizeof(min_buf); 873 iovcnt = 1; 874 iov = &min_iov; 875 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 876 /* This is very unlikely, but may happen. */ 877 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 878 filter_buf = min_buf; 879 } 880 881 /* Discard oversized packets if !LPE and !SBP. */ 882 if (e1000x_is_oversized(s->mac_reg, size)) { 883 return size; 884 } 885 886 if (!receive_filter(s, filter_buf, size)) { 887 return size; 888 } 889 890 if (e1000x_vlan_enabled(s->mac_reg) && 891 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 892 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(filter_buf 893 + 14))); 894 iov_ofs = 4; 895 if (filter_buf == iov->iov_base) { 896 memmove(filter_buf + 4, filter_buf, 12); 897 } else { 898 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 899 while (iov->iov_len <= iov_ofs) { 900 iov_ofs -= iov->iov_len; 901 iov++; 902 } 903 } 904 vlan_status = E1000_RXD_STAT_VP; 905 size -= 4; 906 } 907 908 rdh_start = s->mac_reg[RDH]; 909 desc_offset = 0; 910 total_size = size + e1000x_fcs_len(s->mac_reg); 911 if (!e1000_has_rxbufs(s, total_size)) { 912 set_ics(s, 0, E1000_ICS_RXO); 913 return -1; 914 } 915 do { 916 desc_size = total_size - desc_offset; 917 if (desc_size > s->rxbuf_size) { 918 desc_size = s->rxbuf_size; 919 } 920 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 921 pci_dma_read(d, base, &desc, sizeof(desc)); 922 desc.special = vlan_special; 923 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 924 if (desc.buffer_addr) { 925 if (desc_offset < size) { 926 size_t iov_copy; 927 hwaddr ba = le64_to_cpu(desc.buffer_addr); 928 size_t copy_size = size - desc_offset; 929 if (copy_size > s->rxbuf_size) { 930 copy_size = s->rxbuf_size; 931 } 932 do { 933 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 934 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 935 copy_size -= iov_copy; 936 ba += iov_copy; 937 iov_ofs += iov_copy; 938 if (iov_ofs == iov->iov_len) { 939 iov++; 940 iov_ofs = 0; 941 } 942 } while (copy_size); 943 } 944 desc_offset += desc_size; 945 desc.length = cpu_to_le16(desc_size); 946 if (desc_offset >= total_size) { 947 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 948 } else { 949 /* Guest zeroing out status is not a hardware requirement. 950 Clear EOP in case guest didn't do it. */ 951 desc.status &= ~E1000_RXD_STAT_EOP; 952 } 953 } else { // as per intel docs; skip descriptors with null buf addr 954 DBGOUT(RX, "Null RX descriptor!!\n"); 955 } 956 pci_dma_write(d, base, &desc, sizeof(desc)); 957 958 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 959 s->mac_reg[RDH] = 0; 960 /* see comment in start_xmit; same here */ 961 if (s->mac_reg[RDH] == rdh_start || 962 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 963 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 964 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 965 set_ics(s, 0, E1000_ICS_RXO); 966 return -1; 967 } 968 } while (desc_offset < total_size); 969 970 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 971 972 n = E1000_ICS_RXT0; 973 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 974 rdt += s->mac_reg[RDLEN] / sizeof(desc); 975 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 976 s->rxbuf_min_shift) 977 n |= E1000_ICS_RXDMT0; 978 979 set_ics(s, 0, n); 980 981 return size; 982 } 983 984 static ssize_t 985 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 986 { 987 const struct iovec iov = { 988 .iov_base = (uint8_t *)buf, 989 .iov_len = size 990 }; 991 992 return e1000_receive_iov(nc, &iov, 1); 993 } 994 995 static uint32_t 996 mac_readreg(E1000State *s, int index) 997 { 998 return s->mac_reg[index]; 999 } 1000 1001 static uint32_t 1002 mac_low4_read(E1000State *s, int index) 1003 { 1004 return s->mac_reg[index] & 0xf; 1005 } 1006 1007 static uint32_t 1008 mac_low11_read(E1000State *s, int index) 1009 { 1010 return s->mac_reg[index] & 0x7ff; 1011 } 1012 1013 static uint32_t 1014 mac_low13_read(E1000State *s, int index) 1015 { 1016 return s->mac_reg[index] & 0x1fff; 1017 } 1018 1019 static uint32_t 1020 mac_low16_read(E1000State *s, int index) 1021 { 1022 return s->mac_reg[index] & 0xffff; 1023 } 1024 1025 static uint32_t 1026 mac_icr_read(E1000State *s, int index) 1027 { 1028 uint32_t ret = s->mac_reg[ICR]; 1029 1030 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1031 set_interrupt_cause(s, 0, 0); 1032 return ret; 1033 } 1034 1035 static uint32_t 1036 mac_read_clr4(E1000State *s, int index) 1037 { 1038 uint32_t ret = s->mac_reg[index]; 1039 1040 s->mac_reg[index] = 0; 1041 return ret; 1042 } 1043 1044 static uint32_t 1045 mac_read_clr8(E1000State *s, int index) 1046 { 1047 uint32_t ret = s->mac_reg[index]; 1048 1049 s->mac_reg[index] = 0; 1050 s->mac_reg[index-1] = 0; 1051 return ret; 1052 } 1053 1054 static void 1055 mac_writereg(E1000State *s, int index, uint32_t val) 1056 { 1057 uint32_t macaddr[2]; 1058 1059 s->mac_reg[index] = val; 1060 1061 if (index == RA + 1) { 1062 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1063 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1064 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1065 } 1066 } 1067 1068 static void 1069 set_rdt(E1000State *s, int index, uint32_t val) 1070 { 1071 s->mac_reg[index] = val & 0xffff; 1072 if (e1000_has_rxbufs(s, 1)) { 1073 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1074 } 1075 } 1076 1077 static void 1078 set_16bit(E1000State *s, int index, uint32_t val) 1079 { 1080 s->mac_reg[index] = val & 0xffff; 1081 } 1082 1083 static void 1084 set_dlen(E1000State *s, int index, uint32_t val) 1085 { 1086 s->mac_reg[index] = val & 0xfff80; 1087 } 1088 1089 static void 1090 set_tctl(E1000State *s, int index, uint32_t val) 1091 { 1092 s->mac_reg[index] = val; 1093 s->mac_reg[TDT] &= 0xffff; 1094 start_xmit(s); 1095 } 1096 1097 static void 1098 set_icr(E1000State *s, int index, uint32_t val) 1099 { 1100 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1101 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1102 } 1103 1104 static void 1105 set_imc(E1000State *s, int index, uint32_t val) 1106 { 1107 s->mac_reg[IMS] &= ~val; 1108 set_ics(s, 0, 0); 1109 } 1110 1111 static void 1112 set_ims(E1000State *s, int index, uint32_t val) 1113 { 1114 s->mac_reg[IMS] |= val; 1115 set_ics(s, 0, 0); 1116 } 1117 1118 #define getreg(x) [x] = mac_readreg 1119 static uint32_t (*macreg_readops[])(E1000State *, int) = { 1120 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1121 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1122 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1123 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1124 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1125 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1126 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1127 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1128 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1129 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1130 getreg(TNCRS), getreg(SEC), getreg(CEXTERR), getreg(RLEC), 1131 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1132 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1133 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1134 getreg(GOTCL), 1135 1136 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1137 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1138 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1139 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1140 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1141 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1142 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1143 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1144 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1145 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1146 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1147 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1148 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1149 [MPTC] = mac_read_clr4, 1150 [ICR] = mac_icr_read, [EECD] = get_eecd, 1151 [EERD] = flash_eerd_read, 1152 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1153 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1154 [RDFPC] = mac_low13_read, 1155 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1156 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1157 [TDFPC] = mac_low13_read, 1158 [AIT] = mac_low16_read, 1159 1160 [CRCERRS ... MPC] = &mac_readreg, 1161 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1162 [FFLT ... FFLT+6] = &mac_low11_read, 1163 [RA ... RA+31] = &mac_readreg, 1164 [WUPM ... WUPM+31] = &mac_readreg, 1165 [MTA ... MTA+127] = &mac_readreg, 1166 [VFTA ... VFTA+127] = &mac_readreg, 1167 [FFMT ... FFMT+254] = &mac_low4_read, 1168 [FFVT ... FFVT+254] = &mac_readreg, 1169 [PBM ... PBM+16383] = &mac_readreg, 1170 }; 1171 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1172 1173 #define putreg(x) [x] = mac_writereg 1174 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { 1175 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1176 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1177 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1178 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1179 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1180 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1181 putreg(WUS), putreg(AIT), 1182 1183 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1184 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1185 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1186 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1187 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1188 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1189 [ITR] = set_16bit, 1190 1191 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1192 [FFLT ... FFLT+6] = &mac_writereg, 1193 [RA ... RA+31] = &mac_writereg, 1194 [WUPM ... WUPM+31] = &mac_writereg, 1195 [MTA ... MTA+127] = &mac_writereg, 1196 [VFTA ... VFTA+127] = &mac_writereg, 1197 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1198 [PBM ... PBM+16383] = &mac_writereg, 1199 }; 1200 1201 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1202 1203 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1204 1205 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1206 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1207 * f - flag bits (up to 6 possible flags) 1208 * n - flag needed 1209 * p - partially implenented */ 1210 static const uint8_t mac_reg_access[0x8000] = { 1211 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1212 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1213 1214 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1215 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1216 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1217 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1218 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1219 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1220 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1221 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1222 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1223 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1224 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1225 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1226 [SEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1227 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1228 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1229 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1230 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1231 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1232 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1233 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1234 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1235 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1236 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1237 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1238 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1239 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1240 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1241 [BPTC] = markflag(MAC), 1242 1243 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1244 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1245 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1246 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1247 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1248 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1249 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1250 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1251 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1252 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1253 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1254 }; 1255 1256 static void 1257 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1258 unsigned size) 1259 { 1260 E1000State *s = opaque; 1261 unsigned int index = (addr & 0x1ffff) >> 2; 1262 1263 if (index < NWRITEOPS && macreg_writeops[index]) { 1264 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1265 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1266 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1267 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1268 "It is not fully implemented.\n", index<<2); 1269 } 1270 macreg_writeops[index](s, index, val); 1271 } else { /* "flag needed" bit is set, but the flag is not active */ 1272 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1273 index<<2); 1274 } 1275 } else if (index < NREADOPS && macreg_readops[index]) { 1276 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1277 index<<2, val); 1278 } else { 1279 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1280 index<<2, val); 1281 } 1282 } 1283 1284 static uint64_t 1285 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1286 { 1287 E1000State *s = opaque; 1288 unsigned int index = (addr & 0x1ffff) >> 2; 1289 1290 if (index < NREADOPS && macreg_readops[index]) { 1291 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1292 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1293 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1294 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1295 "It is not fully implemented.\n", index<<2); 1296 } 1297 return macreg_readops[index](s, index); 1298 } else { /* "flag needed" bit is set, but the flag is not active */ 1299 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1300 index<<2); 1301 } 1302 } else { 1303 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1304 } 1305 return 0; 1306 } 1307 1308 static const MemoryRegionOps e1000_mmio_ops = { 1309 .read = e1000_mmio_read, 1310 .write = e1000_mmio_write, 1311 .endianness = DEVICE_LITTLE_ENDIAN, 1312 .impl = { 1313 .min_access_size = 4, 1314 .max_access_size = 4, 1315 }, 1316 }; 1317 1318 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1319 unsigned size) 1320 { 1321 E1000State *s = opaque; 1322 1323 (void)s; 1324 return 0; 1325 } 1326 1327 static void e1000_io_write(void *opaque, hwaddr addr, 1328 uint64_t val, unsigned size) 1329 { 1330 E1000State *s = opaque; 1331 1332 (void)s; 1333 } 1334 1335 static const MemoryRegionOps e1000_io_ops = { 1336 .read = e1000_io_read, 1337 .write = e1000_io_write, 1338 .endianness = DEVICE_LITTLE_ENDIAN, 1339 }; 1340 1341 static bool is_version_1(void *opaque, int version_id) 1342 { 1343 return version_id == 1; 1344 } 1345 1346 static void e1000_pre_save(void *opaque) 1347 { 1348 E1000State *s = opaque; 1349 NetClientState *nc = qemu_get_queue(s->nic); 1350 1351 /* If the mitigation timer is active, emulate a timeout now. */ 1352 if (s->mit_timer_on) { 1353 e1000_mit_timer(s); 1354 } 1355 1356 /* 1357 * If link is down and auto-negotiation is supported and ongoing, 1358 * complete auto-negotiation immediately. This allows us to look 1359 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1360 */ 1361 if (nc->link_down && have_autoneg(s)) { 1362 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1363 } 1364 } 1365 1366 static int e1000_post_load(void *opaque, int version_id) 1367 { 1368 E1000State *s = opaque; 1369 NetClientState *nc = qemu_get_queue(s->nic); 1370 1371 if (!chkflag(MIT)) { 1372 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1373 s->mac_reg[TADV] = 0; 1374 s->mit_irq_level = false; 1375 } 1376 s->mit_ide = 0; 1377 s->mit_timer_on = false; 1378 1379 /* nc.link_down can't be migrated, so infer link_down according 1380 * to link status bit in mac_reg[STATUS]. 1381 * Alternatively, restart link negotiation if it was in progress. */ 1382 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1383 1384 if (have_autoneg(s) && 1385 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1386 nc->link_down = false; 1387 timer_mod(s->autoneg_timer, 1388 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1389 } 1390 1391 return 0; 1392 } 1393 1394 static bool e1000_mit_state_needed(void *opaque) 1395 { 1396 E1000State *s = opaque; 1397 1398 return chkflag(MIT); 1399 } 1400 1401 static bool e1000_full_mac_needed(void *opaque) 1402 { 1403 E1000State *s = opaque; 1404 1405 return chkflag(MAC); 1406 } 1407 1408 static const VMStateDescription vmstate_e1000_mit_state = { 1409 .name = "e1000/mit_state", 1410 .version_id = 1, 1411 .minimum_version_id = 1, 1412 .needed = e1000_mit_state_needed, 1413 .fields = (VMStateField[]) { 1414 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1415 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1416 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1417 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1418 VMSTATE_BOOL(mit_irq_level, E1000State), 1419 VMSTATE_END_OF_LIST() 1420 } 1421 }; 1422 1423 static const VMStateDescription vmstate_e1000_full_mac_state = { 1424 .name = "e1000/full_mac_state", 1425 .version_id = 1, 1426 .minimum_version_id = 1, 1427 .needed = e1000_full_mac_needed, 1428 .fields = (VMStateField[]) { 1429 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1430 VMSTATE_END_OF_LIST() 1431 } 1432 }; 1433 1434 static const VMStateDescription vmstate_e1000 = { 1435 .name = "e1000", 1436 .version_id = 2, 1437 .minimum_version_id = 1, 1438 .pre_save = e1000_pre_save, 1439 .post_load = e1000_post_load, 1440 .fields = (VMStateField[]) { 1441 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1442 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1443 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1444 VMSTATE_UINT32(rxbuf_size, E1000State), 1445 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1446 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1447 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1448 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1449 VMSTATE_UINT16(eecd_state.reading, E1000State), 1450 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1451 VMSTATE_UINT8(tx.props.ipcss, E1000State), 1452 VMSTATE_UINT8(tx.props.ipcso, E1000State), 1453 VMSTATE_UINT16(tx.props.ipcse, E1000State), 1454 VMSTATE_UINT8(tx.props.tucss, E1000State), 1455 VMSTATE_UINT8(tx.props.tucso, E1000State), 1456 VMSTATE_UINT16(tx.props.tucse, E1000State), 1457 VMSTATE_UINT32(tx.props.paylen, E1000State), 1458 VMSTATE_UINT8(tx.props.hdr_len, E1000State), 1459 VMSTATE_UINT16(tx.props.mss, E1000State), 1460 VMSTATE_UINT16(tx.size, E1000State), 1461 VMSTATE_UINT16(tx.tso_frames, E1000State), 1462 VMSTATE_UINT8(tx.props.sum_needed, E1000State), 1463 VMSTATE_INT8(tx.props.ip, E1000State), 1464 VMSTATE_INT8(tx.props.tcp, E1000State), 1465 VMSTATE_BUFFER(tx.header, E1000State), 1466 VMSTATE_BUFFER(tx.data, E1000State), 1467 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1468 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1469 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1470 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1471 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1472 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1473 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1474 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1475 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1476 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1477 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1478 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1479 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1480 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1481 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1482 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1483 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1484 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1485 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1486 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1487 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1488 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1489 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1490 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1491 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1492 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1493 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1494 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1495 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1496 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1497 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1498 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1499 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1500 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1501 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1502 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1503 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1504 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1505 VMSTATE_UINT32(mac_reg[VET], E1000State), 1506 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1507 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1508 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1509 VMSTATE_END_OF_LIST() 1510 }, 1511 .subsections = (const VMStateDescription*[]) { 1512 &vmstate_e1000_mit_state, 1513 &vmstate_e1000_full_mac_state, 1514 NULL 1515 } 1516 }; 1517 1518 /* 1519 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1520 * Note: A valid DevId will be inserted during pci_e1000_init(). 1521 */ 1522 static const uint16_t e1000_eeprom_template[64] = { 1523 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1524 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1525 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1526 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1527 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1528 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1529 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1530 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1531 }; 1532 1533 /* PCI interface */ 1534 1535 static void 1536 e1000_mmio_setup(E1000State *d) 1537 { 1538 int i; 1539 const uint32_t excluded_regs[] = { 1540 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1541 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1542 }; 1543 1544 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1545 "e1000-mmio", PNPMMIO_SIZE); 1546 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1547 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1548 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1549 excluded_regs[i+1] - excluded_regs[i] - 4); 1550 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1551 } 1552 1553 static void 1554 pci_e1000_uninit(PCIDevice *dev) 1555 { 1556 E1000State *d = E1000(dev); 1557 1558 timer_del(d->autoneg_timer); 1559 timer_free(d->autoneg_timer); 1560 timer_del(d->mit_timer); 1561 timer_free(d->mit_timer); 1562 qemu_del_nic(d->nic); 1563 } 1564 1565 static NetClientInfo net_e1000_info = { 1566 .type = NET_CLIENT_OPTIONS_KIND_NIC, 1567 .size = sizeof(NICState), 1568 .can_receive = e1000_can_receive, 1569 .receive = e1000_receive, 1570 .receive_iov = e1000_receive_iov, 1571 .link_status_changed = e1000_set_link_status, 1572 }; 1573 1574 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1575 uint32_t val, int len) 1576 { 1577 E1000State *s = E1000(pci_dev); 1578 1579 pci_default_write_config(pci_dev, address, val, len); 1580 1581 if (range_covers_byte(address, len, PCI_COMMAND) && 1582 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1583 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1584 } 1585 } 1586 1587 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1588 { 1589 DeviceState *dev = DEVICE(pci_dev); 1590 E1000State *d = E1000(pci_dev); 1591 uint8_t *pci_conf; 1592 uint8_t *macaddr; 1593 1594 pci_dev->config_write = e1000_write_config; 1595 1596 pci_conf = pci_dev->config; 1597 1598 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1599 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1600 1601 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1602 1603 e1000_mmio_setup(d); 1604 1605 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1606 1607 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1608 1609 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1610 macaddr = d->conf.macaddr.a; 1611 1612 e1000x_core_prepare_eeprom(d->eeprom_data, 1613 e1000_eeprom_template, 1614 sizeof(e1000_eeprom_template), 1615 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1616 macaddr); 1617 1618 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1619 object_get_typename(OBJECT(d)), dev->id, d); 1620 1621 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1622 1623 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1624 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1625 } 1626 1627 static void qdev_e1000_reset(DeviceState *dev) 1628 { 1629 E1000State *d = E1000(dev); 1630 e1000_reset(d); 1631 } 1632 1633 static Property e1000_properties[] = { 1634 DEFINE_NIC_PROPERTIES(E1000State, conf), 1635 DEFINE_PROP_BIT("autonegotiation", E1000State, 1636 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1637 DEFINE_PROP_BIT("mitigation", E1000State, 1638 compat_flags, E1000_FLAG_MIT_BIT, true), 1639 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1640 compat_flags, E1000_FLAG_MAC_BIT, true), 1641 DEFINE_PROP_END_OF_LIST(), 1642 }; 1643 1644 typedef struct E1000Info { 1645 const char *name; 1646 uint16_t device_id; 1647 uint8_t revision; 1648 uint16_t phy_id2; 1649 } E1000Info; 1650 1651 static void e1000_class_init(ObjectClass *klass, void *data) 1652 { 1653 DeviceClass *dc = DEVICE_CLASS(klass); 1654 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1655 E1000BaseClass *e = E1000_DEVICE_CLASS(klass); 1656 const E1000Info *info = data; 1657 1658 k->realize = pci_e1000_realize; 1659 k->exit = pci_e1000_uninit; 1660 k->romfile = "efi-e1000.rom"; 1661 k->vendor_id = PCI_VENDOR_ID_INTEL; 1662 k->device_id = info->device_id; 1663 k->revision = info->revision; 1664 e->phy_id2 = info->phy_id2; 1665 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1666 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1667 dc->desc = "Intel Gigabit Ethernet"; 1668 dc->reset = qdev_e1000_reset; 1669 dc->vmsd = &vmstate_e1000; 1670 dc->props = e1000_properties; 1671 } 1672 1673 static void e1000_instance_init(Object *obj) 1674 { 1675 E1000State *n = E1000(obj); 1676 device_add_bootindex_property(obj, &n->conf.bootindex, 1677 "bootindex", "/ethernet-phy@0", 1678 DEVICE(n), NULL); 1679 } 1680 1681 static const TypeInfo e1000_base_info = { 1682 .name = TYPE_E1000_BASE, 1683 .parent = TYPE_PCI_DEVICE, 1684 .instance_size = sizeof(E1000State), 1685 .instance_init = e1000_instance_init, 1686 .class_size = sizeof(E1000BaseClass), 1687 .abstract = true, 1688 }; 1689 1690 static const E1000Info e1000_devices[] = { 1691 { 1692 .name = "e1000", 1693 .device_id = E1000_DEV_ID_82540EM, 1694 .revision = 0x03, 1695 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1696 }, 1697 { 1698 .name = "e1000-82544gc", 1699 .device_id = E1000_DEV_ID_82544GC_COPPER, 1700 .revision = 0x03, 1701 .phy_id2 = E1000_PHY_ID2_82544x, 1702 }, 1703 { 1704 .name = "e1000-82545em", 1705 .device_id = E1000_DEV_ID_82545EM_COPPER, 1706 .revision = 0x03, 1707 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1708 }, 1709 }; 1710 1711 static void e1000_register_types(void) 1712 { 1713 int i; 1714 1715 type_register_static(&e1000_base_info); 1716 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1717 const E1000Info *info = &e1000_devices[i]; 1718 TypeInfo type_info = {}; 1719 1720 type_info.name = info->name; 1721 type_info.parent = TYPE_E1000_BASE; 1722 type_info.class_data = (void *)info; 1723 type_info.class_init = e1000_class_init; 1724 type_info.instance_init = e1000_instance_init; 1725 1726 type_register(&type_info); 1727 } 1728 } 1729 1730 type_init(e1000_register_types) 1731