1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/pci/pci.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "net/eth.h" 33 #include "net/net.h" 34 #include "net/checksum.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/dma.h" 37 #include "qemu/iov.h" 38 #include "qemu/module.h" 39 #include "qemu/range.h" 40 41 #include "e1000x_common.h" 42 #include "trace.h" 43 #include "qom/object.h" 44 45 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 46 47 /* #define E1000_DEBUG */ 48 49 #ifdef E1000_DEBUG 50 enum { 51 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 52 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 53 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 54 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 55 }; 56 #define DBGBIT(x) (1<<DEBUG_##x) 57 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 58 59 #define DBGOUT(what, fmt, ...) do { \ 60 if (debugflags & DBGBIT(what)) \ 61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 62 } while (0) 63 #else 64 #define DBGOUT(what, fmt, ...) do {} while (0) 65 #endif 66 67 #define IOPORT_SIZE 0x40 68 #define PNPMMIO_SIZE 0x20000 69 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 70 71 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 72 73 /* 74 * HW models: 75 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 76 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 77 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 78 * Others never tested 79 */ 80 81 struct E1000State_st { 82 /*< private >*/ 83 PCIDevice parent_obj; 84 /*< public >*/ 85 86 NICState *nic; 87 NICConf conf; 88 MemoryRegion mmio; 89 MemoryRegion io; 90 91 uint32_t mac_reg[0x8000]; 92 uint16_t phy_reg[0x20]; 93 uint16_t eeprom_data[64]; 94 95 uint32_t rxbuf_size; 96 uint32_t rxbuf_min_shift; 97 struct e1000_tx { 98 unsigned char header[256]; 99 unsigned char vlan_header[4]; 100 /* Fields vlan and data must not be reordered or separated. */ 101 unsigned char vlan[4]; 102 unsigned char data[0x10000]; 103 uint16_t size; 104 unsigned char vlan_needed; 105 unsigned char sum_needed; 106 bool cptse; 107 e1000x_txd_props props; 108 e1000x_txd_props tso_props; 109 uint16_t tso_frames; 110 } tx; 111 112 struct { 113 uint32_t val_in; /* shifted in from guest driver */ 114 uint16_t bitnum_in; 115 uint16_t bitnum_out; 116 uint16_t reading; 117 uint32_t old_eecd; 118 } eecd_state; 119 120 QEMUTimer *autoneg_timer; 121 122 QEMUTimer *mit_timer; /* Mitigation timer. */ 123 bool mit_timer_on; /* Mitigation timer is running. */ 124 bool mit_irq_level; /* Tracks interrupt pin level. */ 125 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 126 127 QEMUTimer *flush_queue_timer; 128 129 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 130 #define E1000_FLAG_AUTONEG_BIT 0 131 #define E1000_FLAG_MIT_BIT 1 132 #define E1000_FLAG_MAC_BIT 2 133 #define E1000_FLAG_TSO_BIT 3 134 #define E1000_FLAG_VET_BIT 4 135 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 136 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 137 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 138 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) 139 #define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT) 140 141 uint32_t compat_flags; 142 bool received_tx_tso; 143 bool use_tso_for_migration; 144 e1000x_txd_props mig_props; 145 }; 146 typedef struct E1000State_st E1000State; 147 148 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 149 150 struct E1000BaseClass { 151 PCIDeviceClass parent_class; 152 uint16_t phy_id2; 153 }; 154 typedef struct E1000BaseClass E1000BaseClass; 155 156 #define TYPE_E1000_BASE "e1000-base" 157 158 DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass, 159 E1000, TYPE_E1000_BASE) 160 161 162 static void 163 e1000_link_up(E1000State *s) 164 { 165 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 166 167 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 168 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 169 } 170 171 static void 172 e1000_autoneg_done(E1000State *s) 173 { 174 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 175 176 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 177 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 178 } 179 180 static bool 181 have_autoneg(E1000State *s) 182 { 183 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 184 } 185 186 static void 187 set_phy_ctrl(E1000State *s, int index, uint16_t val) 188 { 189 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 190 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 191 MII_CR_RESET | 192 MII_CR_RESTART_AUTO_NEG); 193 194 /* 195 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 196 * migrate during auto negotiation, after migration the link will be 197 * down. 198 */ 199 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 200 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 201 } 202 } 203 204 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 205 [PHY_CTRL] = set_phy_ctrl, 206 }; 207 208 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 209 210 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 211 static const char phy_regcap[0x20] = { 212 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 213 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 214 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 215 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 216 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 217 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 218 [PHY_AUTONEG_EXP] = PHY_R, 219 }; 220 221 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 222 static const uint16_t phy_reg_init[] = { 223 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 224 MII_CR_FULL_DUPLEX | 225 MII_CR_AUTO_NEG_EN, 226 227 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 228 MII_SR_LINK_STATUS | /* link initially up */ 229 MII_SR_AUTONEG_CAPS | 230 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 231 MII_SR_PREAMBLE_SUPPRESS | 232 MII_SR_EXTENDED_STATUS | 233 MII_SR_10T_HD_CAPS | 234 MII_SR_10T_FD_CAPS | 235 MII_SR_100X_HD_CAPS | 236 MII_SR_100X_FD_CAPS, 237 238 [PHY_ID1] = 0x141, 239 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 240 [PHY_AUTONEG_ADV] = 0xde1, 241 [PHY_LP_ABILITY] = 0x1e0, 242 [PHY_1000T_CTRL] = 0x0e00, 243 [PHY_1000T_STATUS] = 0x3c00, 244 [M88E1000_PHY_SPEC_CTRL] = 0x360, 245 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 246 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 247 }; 248 249 static const uint32_t mac_reg_init[] = { 250 [PBA] = 0x00100030, 251 [LEDCTL] = 0x602, 252 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 253 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 254 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 255 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 256 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 257 E1000_STATUS_LU, 258 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 259 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 260 E1000_MANC_RMCP_EN, 261 }; 262 263 /* Helper function, *curr == 0 means the value is not set */ 264 static inline void 265 mit_update_delay(uint32_t *curr, uint32_t value) 266 { 267 if (value && (*curr == 0 || value < *curr)) { 268 *curr = value; 269 } 270 } 271 272 static void 273 set_interrupt_cause(E1000State *s, int index, uint32_t val) 274 { 275 PCIDevice *d = PCI_DEVICE(s); 276 uint32_t pending_ints; 277 uint32_t mit_delay; 278 279 s->mac_reg[ICR] = val; 280 281 /* 282 * Make sure ICR and ICS registers have the same value. 283 * The spec says that the ICS register is write-only. However in practice, 284 * on real hardware ICS is readable, and for reads it has the same value as 285 * ICR (except that ICS does not have the clear on read behaviour of ICR). 286 * 287 * The VxWorks PRO/1000 driver uses this behaviour. 288 */ 289 s->mac_reg[ICS] = val; 290 291 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 292 if (!s->mit_irq_level && pending_ints) { 293 /* 294 * Here we detect a potential raising edge. We postpone raising the 295 * interrupt line if we are inside the mitigation delay window 296 * (s->mit_timer_on == 1). 297 * We provide a partial implementation of interrupt mitigation, 298 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 299 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 300 * RADV; relative timers based on TIDV and RDTR are not implemented. 301 */ 302 if (s->mit_timer_on) { 303 return; 304 } 305 if (chkflag(MIT)) { 306 /* Compute the next mitigation delay according to pending 307 * interrupts and the current values of RADV (provided 308 * RDTR!=0), TADV and ITR. 309 * Then rearm the timer. 310 */ 311 mit_delay = 0; 312 if (s->mit_ide && 313 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 314 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 315 } 316 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 317 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 318 } 319 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 320 321 /* 322 * According to e1000 SPEC, the Ethernet controller guarantees 323 * a maximum observable interrupt rate of 7813 interrupts/sec. 324 * Thus if mit_delay < 500 then the delay should be set to the 325 * minimum delay possible which is 500. 326 */ 327 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 328 329 s->mit_timer_on = 1; 330 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 331 mit_delay * 256); 332 s->mit_ide = 0; 333 } 334 } 335 336 s->mit_irq_level = (pending_ints != 0); 337 pci_set_irq(d, s->mit_irq_level); 338 } 339 340 static void 341 e1000_mit_timer(void *opaque) 342 { 343 E1000State *s = opaque; 344 345 s->mit_timer_on = 0; 346 /* Call set_interrupt_cause to update the irq level (if necessary). */ 347 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 348 } 349 350 static void 351 set_ics(E1000State *s, int index, uint32_t val) 352 { 353 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 354 s->mac_reg[IMS]); 355 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 356 } 357 358 static void 359 e1000_autoneg_timer(void *opaque) 360 { 361 E1000State *s = opaque; 362 if (!qemu_get_queue(s->nic)->link_down) { 363 e1000_autoneg_done(s); 364 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 365 } 366 } 367 368 static bool e1000_vet_init_need(void *opaque) 369 { 370 E1000State *s = opaque; 371 372 return chkflag(VET); 373 } 374 375 static void e1000_reset(void *opaque) 376 { 377 E1000State *d = opaque; 378 E1000BaseClass *edc = E1000_GET_CLASS(d); 379 uint8_t *macaddr = d->conf.macaddr.a; 380 381 timer_del(d->autoneg_timer); 382 timer_del(d->mit_timer); 383 timer_del(d->flush_queue_timer); 384 d->mit_timer_on = 0; 385 d->mit_irq_level = 0; 386 d->mit_ide = 0; 387 memset(d->phy_reg, 0, sizeof d->phy_reg); 388 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 389 d->phy_reg[PHY_ID2] = edc->phy_id2; 390 memset(d->mac_reg, 0, sizeof d->mac_reg); 391 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 392 d->rxbuf_min_shift = 1; 393 memset(&d->tx, 0, sizeof d->tx); 394 395 if (qemu_get_queue(d->nic)->link_down) { 396 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 397 } 398 399 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 400 401 if (e1000_vet_init_need(d)) { 402 d->mac_reg[VET] = ETH_P_VLAN; 403 } 404 } 405 406 static void 407 set_ctrl(E1000State *s, int index, uint32_t val) 408 { 409 /* RST is self clearing */ 410 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 411 } 412 413 static void 414 e1000_flush_queue_timer(void *opaque) 415 { 416 E1000State *s = opaque; 417 418 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 419 } 420 421 static void 422 set_rx_control(E1000State *s, int index, uint32_t val) 423 { 424 s->mac_reg[RCTL] = val; 425 s->rxbuf_size = e1000x_rxbufsize(val); 426 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 427 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 428 s->mac_reg[RCTL]); 429 timer_mod(s->flush_queue_timer, 430 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); 431 } 432 433 static void 434 set_mdic(E1000State *s, int index, uint32_t val) 435 { 436 uint32_t data = val & E1000_MDIC_DATA_MASK; 437 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 438 439 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 440 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 441 else if (val & E1000_MDIC_OP_READ) { 442 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 443 if (!(phy_regcap[addr] & PHY_R)) { 444 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 445 val |= E1000_MDIC_ERROR; 446 } else 447 val = (val ^ data) | s->phy_reg[addr]; 448 } else if (val & E1000_MDIC_OP_WRITE) { 449 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 450 if (!(phy_regcap[addr] & PHY_W)) { 451 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 452 val |= E1000_MDIC_ERROR; 453 } else { 454 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 455 phyreg_writeops[addr](s, index, data); 456 } else { 457 s->phy_reg[addr] = data; 458 } 459 } 460 } 461 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 462 463 if (val & E1000_MDIC_INT_EN) { 464 set_ics(s, 0, E1000_ICR_MDAC); 465 } 466 } 467 468 static uint32_t 469 get_eecd(E1000State *s, int index) 470 { 471 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 472 473 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 474 s->eecd_state.bitnum_out, s->eecd_state.reading); 475 if (!s->eecd_state.reading || 476 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 477 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 478 ret |= E1000_EECD_DO; 479 return ret; 480 } 481 482 static void 483 set_eecd(E1000State *s, int index, uint32_t val) 484 { 485 uint32_t oldval = s->eecd_state.old_eecd; 486 487 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 488 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 489 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 490 return; 491 } 492 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 493 s->eecd_state.val_in = 0; 494 s->eecd_state.bitnum_in = 0; 495 s->eecd_state.bitnum_out = 0; 496 s->eecd_state.reading = 0; 497 } 498 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 499 return; 500 } 501 if (!(E1000_EECD_SK & val)) { /* falling edge */ 502 s->eecd_state.bitnum_out++; 503 return; 504 } 505 s->eecd_state.val_in <<= 1; 506 if (val & E1000_EECD_DI) 507 s->eecd_state.val_in |= 1; 508 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 509 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 510 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 511 EEPROM_READ_OPCODE_MICROWIRE); 512 } 513 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 514 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 515 s->eecd_state.reading); 516 } 517 518 static uint32_t 519 flash_eerd_read(E1000State *s, int x) 520 { 521 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 522 523 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 524 return (s->mac_reg[EERD]); 525 526 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 527 return (E1000_EEPROM_RW_REG_DONE | r); 528 529 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 530 E1000_EEPROM_RW_REG_DONE | r); 531 } 532 533 static void 534 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 535 { 536 uint32_t sum; 537 538 if (cse && cse < n) 539 n = cse + 1; 540 if (sloc < n-1) { 541 sum = net_checksum_add(n-css, data+css); 542 stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); 543 } 544 } 545 546 static inline void 547 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 548 { 549 if (!memcmp(arr, bcast, sizeof bcast)) { 550 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 551 } else if (arr[0] & 1) { 552 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 553 } 554 } 555 556 static void 557 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 558 { 559 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 560 PTC1023, PTC1522 }; 561 562 NetClientState *nc = qemu_get_queue(s->nic); 563 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 564 qemu_receive_packet(nc, buf, size); 565 } else { 566 qemu_send_packet(nc, buf, size); 567 } 568 inc_tx_bcast_or_mcast_count(s, buf); 569 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 570 } 571 572 static void 573 xmit_seg(E1000State *s) 574 { 575 uint16_t len; 576 unsigned int frames = s->tx.tso_frames, css, sofar; 577 struct e1000_tx *tp = &s->tx; 578 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; 579 580 if (tp->cptse) { 581 css = props->ipcss; 582 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 583 frames, tp->size, css); 584 if (props->ip) { /* IPv4 */ 585 stw_be_p(tp->data+css+2, tp->size - css); 586 stw_be_p(tp->data+css+4, 587 lduw_be_p(tp->data + css + 4) + frames); 588 } else { /* IPv6 */ 589 stw_be_p(tp->data+css+4, tp->size - css); 590 } 591 css = props->tucss; 592 len = tp->size - css; 593 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); 594 if (props->tcp) { 595 sofar = frames * props->mss; 596 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 597 if (props->paylen - sofar > props->mss) { 598 tp->data[css + 13] &= ~9; /* PSH, FIN */ 599 } else if (frames) { 600 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 601 } 602 } else { /* UDP */ 603 stw_be_p(tp->data+css+4, len); 604 } 605 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 606 unsigned int phsum; 607 // add pseudo-header length before checksum calculation 608 void *sp = tp->data + props->tucso; 609 610 phsum = lduw_be_p(sp) + len; 611 phsum = (phsum >> 16) + (phsum & 0xffff); 612 stw_be_p(sp, phsum); 613 } 614 tp->tso_frames++; 615 } 616 617 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 618 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); 619 } 620 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { 621 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); 622 } 623 if (tp->vlan_needed) { 624 memmove(tp->vlan, tp->data, 4); 625 memmove(tp->data, tp->data + 4, 8); 626 memcpy(tp->data + 8, tp->vlan_header, 4); 627 e1000_send_packet(s, tp->vlan, tp->size + 4); 628 } else { 629 e1000_send_packet(s, tp->data, tp->size); 630 } 631 632 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 633 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 634 s->mac_reg[GPTC] = s->mac_reg[TPT]; 635 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 636 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 637 } 638 639 static void 640 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 641 { 642 PCIDevice *d = PCI_DEVICE(s); 643 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 644 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 645 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 646 unsigned int msh = 0xfffff; 647 uint64_t addr; 648 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 649 struct e1000_tx *tp = &s->tx; 650 651 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 652 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 653 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { 654 e1000x_read_tx_ctx_descr(xp, &tp->tso_props); 655 s->use_tso_for_migration = 1; 656 tp->tso_frames = 0; 657 } else { 658 e1000x_read_tx_ctx_descr(xp, &tp->props); 659 s->use_tso_for_migration = 0; 660 } 661 return; 662 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 663 // data descriptor 664 if (tp->size == 0) { 665 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 666 } 667 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 668 } else { 669 // legacy descriptor 670 tp->cptse = 0; 671 } 672 673 if (e1000x_vlan_enabled(s->mac_reg) && 674 e1000x_is_vlan_txd(txd_lower) && 675 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { 676 tp->vlan_needed = 1; 677 stw_be_p(tp->vlan_header, 678 le16_to_cpu(s->mac_reg[VET])); 679 stw_be_p(tp->vlan_header + 2, 680 le16_to_cpu(dp->upper.fields.special)); 681 } 682 683 addr = le64_to_cpu(dp->buffer_addr); 684 if (tp->cptse) { 685 msh = tp->tso_props.hdr_len + tp->tso_props.mss; 686 do { 687 bytes = split_size; 688 if (tp->size >= msh) { 689 goto eop; 690 } 691 if (tp->size + bytes > msh) 692 bytes = msh - tp->size; 693 694 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 695 pci_dma_read(d, addr, tp->data + tp->size, bytes); 696 sz = tp->size + bytes; 697 if (sz >= tp->tso_props.hdr_len 698 && tp->size < tp->tso_props.hdr_len) { 699 memmove(tp->header, tp->data, tp->tso_props.hdr_len); 700 } 701 tp->size = sz; 702 addr += bytes; 703 if (sz == msh) { 704 xmit_seg(s); 705 memmove(tp->data, tp->header, tp->tso_props.hdr_len); 706 tp->size = tp->tso_props.hdr_len; 707 } 708 split_size -= bytes; 709 } while (bytes && split_size); 710 } else { 711 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 712 pci_dma_read(d, addr, tp->data + tp->size, split_size); 713 tp->size += split_size; 714 } 715 716 eop: 717 if (!(txd_lower & E1000_TXD_CMD_EOP)) 718 return; 719 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { 720 xmit_seg(s); 721 } 722 tp->tso_frames = 0; 723 tp->sum_needed = 0; 724 tp->vlan_needed = 0; 725 tp->size = 0; 726 tp->cptse = 0; 727 } 728 729 static uint32_t 730 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 731 { 732 PCIDevice *d = PCI_DEVICE(s); 733 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 734 735 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 736 return 0; 737 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 738 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 739 dp->upper.data = cpu_to_le32(txd_upper); 740 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 741 &dp->upper, sizeof(dp->upper)); 742 return E1000_ICR_TXDW; 743 } 744 745 static uint64_t tx_desc_base(E1000State *s) 746 { 747 uint64_t bah = s->mac_reg[TDBAH]; 748 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 749 750 return (bah << 32) + bal; 751 } 752 753 static void 754 start_xmit(E1000State *s) 755 { 756 PCIDevice *d = PCI_DEVICE(s); 757 dma_addr_t base; 758 struct e1000_tx_desc desc; 759 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 760 761 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 762 DBGOUT(TX, "tx disabled\n"); 763 return; 764 } 765 766 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 767 base = tx_desc_base(s) + 768 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 769 pci_dma_read(d, base, &desc, sizeof(desc)); 770 771 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 772 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 773 desc.upper.data); 774 775 process_tx_desc(s, &desc); 776 cause |= txdesc_writeback(s, base, &desc); 777 778 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 779 s->mac_reg[TDH] = 0; 780 /* 781 * the following could happen only if guest sw assigns 782 * bogus values to TDT/TDLEN. 783 * there's nothing too intelligent we could do about this. 784 */ 785 if (s->mac_reg[TDH] == tdh_start || 786 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 787 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 788 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 789 break; 790 } 791 } 792 set_ics(s, 0, cause); 793 } 794 795 static int 796 receive_filter(E1000State *s, const uint8_t *buf, int size) 797 { 798 uint32_t rctl = s->mac_reg[RCTL]; 799 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 800 801 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 802 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 803 uint16_t vid = lduw_be_p(buf + 14); 804 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + 805 ((vid >> 5) & 0x7f)); 806 if ((vfta & (1 << (vid & 0x1f))) == 0) 807 return 0; 808 } 809 810 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 811 return 1; 812 } 813 814 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 815 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 816 return 1; 817 } 818 819 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 820 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 821 return 1; 822 } 823 824 return e1000x_rx_group_filter(s->mac_reg, buf); 825 } 826 827 static void 828 e1000_set_link_status(NetClientState *nc) 829 { 830 E1000State *s = qemu_get_nic_opaque(nc); 831 uint32_t old_status = s->mac_reg[STATUS]; 832 833 if (nc->link_down) { 834 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 835 } else { 836 if (have_autoneg(s) && 837 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 838 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 839 } else { 840 e1000_link_up(s); 841 } 842 } 843 844 if (s->mac_reg[STATUS] != old_status) 845 set_ics(s, 0, E1000_ICR_LSC); 846 } 847 848 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 849 { 850 int bufs; 851 /* Fast-path short packets */ 852 if (total_size <= s->rxbuf_size) { 853 return s->mac_reg[RDH] != s->mac_reg[RDT]; 854 } 855 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 856 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 857 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 858 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 859 s->mac_reg[RDT] - s->mac_reg[RDH]; 860 } else { 861 return false; 862 } 863 return total_size <= bufs * s->rxbuf_size; 864 } 865 866 static bool 867 e1000_can_receive(NetClientState *nc) 868 { 869 E1000State *s = qemu_get_nic_opaque(nc); 870 871 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 872 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); 873 } 874 875 static uint64_t rx_desc_base(E1000State *s) 876 { 877 uint64_t bah = s->mac_reg[RDBAH]; 878 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 879 880 return (bah << 32) + bal; 881 } 882 883 static void 884 e1000_receiver_overrun(E1000State *s, size_t size) 885 { 886 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); 887 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); 888 e1000x_inc_reg_if_not_full(s->mac_reg, MPC); 889 set_ics(s, 0, E1000_ICS_RXO); 890 } 891 892 static ssize_t 893 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 894 { 895 E1000State *s = qemu_get_nic_opaque(nc); 896 PCIDevice *d = PCI_DEVICE(s); 897 struct e1000_rx_desc desc; 898 dma_addr_t base; 899 unsigned int n, rdt; 900 uint32_t rdh_start; 901 uint16_t vlan_special = 0; 902 uint8_t vlan_status = 0; 903 uint8_t min_buf[MIN_BUF_SIZE]; 904 struct iovec min_iov; 905 uint8_t *filter_buf = iov->iov_base; 906 size_t size = iov_size(iov, iovcnt); 907 size_t iov_ofs = 0; 908 size_t desc_offset; 909 size_t desc_size; 910 size_t total_size; 911 912 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 913 return -1; 914 } 915 916 if (timer_pending(s->flush_queue_timer)) { 917 return 0; 918 } 919 920 /* Pad to minimum Ethernet frame length */ 921 if (size < sizeof(min_buf)) { 922 iov_to_buf(iov, iovcnt, 0, min_buf, size); 923 memset(&min_buf[size], 0, sizeof(min_buf) - size); 924 min_iov.iov_base = filter_buf = min_buf; 925 min_iov.iov_len = size = sizeof(min_buf); 926 iovcnt = 1; 927 iov = &min_iov; 928 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 929 /* This is very unlikely, but may happen. */ 930 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 931 filter_buf = min_buf; 932 } 933 934 /* Discard oversized packets if !LPE and !SBP. */ 935 if (e1000x_is_oversized(s->mac_reg, size)) { 936 return size; 937 } 938 939 if (!receive_filter(s, filter_buf, size)) { 940 return size; 941 } 942 943 if (e1000x_vlan_enabled(s->mac_reg) && 944 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 945 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); 946 iov_ofs = 4; 947 if (filter_buf == iov->iov_base) { 948 memmove(filter_buf + 4, filter_buf, 12); 949 } else { 950 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 951 while (iov->iov_len <= iov_ofs) { 952 iov_ofs -= iov->iov_len; 953 iov++; 954 } 955 } 956 vlan_status = E1000_RXD_STAT_VP; 957 size -= 4; 958 } 959 960 rdh_start = s->mac_reg[RDH]; 961 desc_offset = 0; 962 total_size = size + e1000x_fcs_len(s->mac_reg); 963 if (!e1000_has_rxbufs(s, total_size)) { 964 e1000_receiver_overrun(s, total_size); 965 return -1; 966 } 967 do { 968 desc_size = total_size - desc_offset; 969 if (desc_size > s->rxbuf_size) { 970 desc_size = s->rxbuf_size; 971 } 972 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 973 pci_dma_read(d, base, &desc, sizeof(desc)); 974 desc.special = vlan_special; 975 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 976 if (desc.buffer_addr) { 977 if (desc_offset < size) { 978 size_t iov_copy; 979 hwaddr ba = le64_to_cpu(desc.buffer_addr); 980 size_t copy_size = size - desc_offset; 981 if (copy_size > s->rxbuf_size) { 982 copy_size = s->rxbuf_size; 983 } 984 do { 985 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 986 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 987 copy_size -= iov_copy; 988 ba += iov_copy; 989 iov_ofs += iov_copy; 990 if (iov_ofs == iov->iov_len) { 991 iov++; 992 iov_ofs = 0; 993 } 994 } while (copy_size); 995 } 996 desc_offset += desc_size; 997 desc.length = cpu_to_le16(desc_size); 998 if (desc_offset >= total_size) { 999 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 1000 } else { 1001 /* Guest zeroing out status is not a hardware requirement. 1002 Clear EOP in case guest didn't do it. */ 1003 desc.status &= ~E1000_RXD_STAT_EOP; 1004 } 1005 } else { // as per intel docs; skip descriptors with null buf addr 1006 DBGOUT(RX, "Null RX descriptor!!\n"); 1007 } 1008 pci_dma_write(d, base, &desc, sizeof(desc)); 1009 1010 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 1011 s->mac_reg[RDH] = 0; 1012 /* see comment in start_xmit; same here */ 1013 if (s->mac_reg[RDH] == rdh_start || 1014 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 1015 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 1016 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 1017 e1000_receiver_overrun(s, total_size); 1018 return -1; 1019 } 1020 } while (desc_offset < total_size); 1021 1022 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 1023 1024 n = E1000_ICS_RXT0; 1025 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 1026 rdt += s->mac_reg[RDLEN] / sizeof(desc); 1027 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 1028 s->rxbuf_min_shift) 1029 n |= E1000_ICS_RXDMT0; 1030 1031 set_ics(s, 0, n); 1032 1033 return size; 1034 } 1035 1036 static ssize_t 1037 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 1038 { 1039 const struct iovec iov = { 1040 .iov_base = (uint8_t *)buf, 1041 .iov_len = size 1042 }; 1043 1044 return e1000_receive_iov(nc, &iov, 1); 1045 } 1046 1047 static uint32_t 1048 mac_readreg(E1000State *s, int index) 1049 { 1050 return s->mac_reg[index]; 1051 } 1052 1053 static uint32_t 1054 mac_low4_read(E1000State *s, int index) 1055 { 1056 return s->mac_reg[index] & 0xf; 1057 } 1058 1059 static uint32_t 1060 mac_low11_read(E1000State *s, int index) 1061 { 1062 return s->mac_reg[index] & 0x7ff; 1063 } 1064 1065 static uint32_t 1066 mac_low13_read(E1000State *s, int index) 1067 { 1068 return s->mac_reg[index] & 0x1fff; 1069 } 1070 1071 static uint32_t 1072 mac_low16_read(E1000State *s, int index) 1073 { 1074 return s->mac_reg[index] & 0xffff; 1075 } 1076 1077 static uint32_t 1078 mac_icr_read(E1000State *s, int index) 1079 { 1080 uint32_t ret = s->mac_reg[ICR]; 1081 1082 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1083 set_interrupt_cause(s, 0, 0); 1084 return ret; 1085 } 1086 1087 static uint32_t 1088 mac_read_clr4(E1000State *s, int index) 1089 { 1090 uint32_t ret = s->mac_reg[index]; 1091 1092 s->mac_reg[index] = 0; 1093 return ret; 1094 } 1095 1096 static uint32_t 1097 mac_read_clr8(E1000State *s, int index) 1098 { 1099 uint32_t ret = s->mac_reg[index]; 1100 1101 s->mac_reg[index] = 0; 1102 s->mac_reg[index-1] = 0; 1103 return ret; 1104 } 1105 1106 static void 1107 mac_writereg(E1000State *s, int index, uint32_t val) 1108 { 1109 uint32_t macaddr[2]; 1110 1111 s->mac_reg[index] = val; 1112 1113 if (index == RA + 1) { 1114 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1115 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1116 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1117 } 1118 } 1119 1120 static void 1121 set_rdt(E1000State *s, int index, uint32_t val) 1122 { 1123 s->mac_reg[index] = val & 0xffff; 1124 if (e1000_has_rxbufs(s, 1)) { 1125 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1126 } 1127 } 1128 1129 static void 1130 set_16bit(E1000State *s, int index, uint32_t val) 1131 { 1132 s->mac_reg[index] = val & 0xffff; 1133 } 1134 1135 static void 1136 set_dlen(E1000State *s, int index, uint32_t val) 1137 { 1138 s->mac_reg[index] = val & 0xfff80; 1139 } 1140 1141 static void 1142 set_tctl(E1000State *s, int index, uint32_t val) 1143 { 1144 s->mac_reg[index] = val; 1145 s->mac_reg[TDT] &= 0xffff; 1146 start_xmit(s); 1147 } 1148 1149 static void 1150 set_icr(E1000State *s, int index, uint32_t val) 1151 { 1152 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1153 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1154 } 1155 1156 static void 1157 set_imc(E1000State *s, int index, uint32_t val) 1158 { 1159 s->mac_reg[IMS] &= ~val; 1160 set_ics(s, 0, 0); 1161 } 1162 1163 static void 1164 set_ims(E1000State *s, int index, uint32_t val) 1165 { 1166 s->mac_reg[IMS] |= val; 1167 set_ics(s, 0, 0); 1168 } 1169 1170 #define getreg(x) [x] = mac_readreg 1171 typedef uint32_t (*readops)(E1000State *, int); 1172 static const readops macreg_readops[] = { 1173 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1174 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1175 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1176 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1177 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1178 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1179 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1180 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1181 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1182 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1183 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), 1184 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1185 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1186 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1187 getreg(GOTCL), 1188 1189 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1190 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1191 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1192 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1193 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1194 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1195 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1196 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1197 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1198 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1199 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1200 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1201 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1202 [MPTC] = mac_read_clr4, 1203 [ICR] = mac_icr_read, [EECD] = get_eecd, 1204 [EERD] = flash_eerd_read, 1205 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1206 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1207 [RDFPC] = mac_low13_read, 1208 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1209 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1210 [TDFPC] = mac_low13_read, 1211 [AIT] = mac_low16_read, 1212 1213 [CRCERRS ... MPC] = &mac_readreg, 1214 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1215 [FFLT ... FFLT+6] = &mac_low11_read, 1216 [RA ... RA+31] = &mac_readreg, 1217 [WUPM ... WUPM+31] = &mac_readreg, 1218 [MTA ... MTA+127] = &mac_readreg, 1219 [VFTA ... VFTA+127] = &mac_readreg, 1220 [FFMT ... FFMT+254] = &mac_low4_read, 1221 [FFVT ... FFVT+254] = &mac_readreg, 1222 [PBM ... PBM+16383] = &mac_readreg, 1223 }; 1224 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1225 1226 #define putreg(x) [x] = mac_writereg 1227 typedef void (*writeops)(E1000State *, int, uint32_t); 1228 static const writeops macreg_writeops[] = { 1229 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1230 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1231 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1232 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1233 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1234 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1235 putreg(WUS), putreg(AIT), 1236 1237 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1238 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1239 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1240 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1241 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1242 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1243 [ITR] = set_16bit, 1244 1245 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1246 [FFLT ... FFLT+6] = &mac_writereg, 1247 [RA ... RA+31] = &mac_writereg, 1248 [WUPM ... WUPM+31] = &mac_writereg, 1249 [MTA ... MTA+127] = &mac_writereg, 1250 [VFTA ... VFTA+127] = &mac_writereg, 1251 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1252 [PBM ... PBM+16383] = &mac_writereg, 1253 }; 1254 1255 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1256 1257 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1258 1259 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1260 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1261 * f - flag bits (up to 6 possible flags) 1262 * n - flag needed 1263 * p - partially implenented */ 1264 static const uint8_t mac_reg_access[0x8000] = { 1265 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1266 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1267 1268 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1269 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1270 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1271 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1272 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1273 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1274 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1275 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1276 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1277 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1278 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1279 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1280 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1281 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1282 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1283 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1284 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1285 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1286 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1287 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1288 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1289 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1290 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1291 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1292 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1293 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1294 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1295 [BPTC] = markflag(MAC), 1296 1297 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1298 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1299 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1300 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1301 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1302 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1303 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1304 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1305 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1306 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1307 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1308 }; 1309 1310 static void 1311 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1312 unsigned size) 1313 { 1314 E1000State *s = opaque; 1315 unsigned int index = (addr & 0x1ffff) >> 2; 1316 1317 if (index < NWRITEOPS && macreg_writeops[index]) { 1318 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1319 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1320 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1321 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1322 "It is not fully implemented.\n", index<<2); 1323 } 1324 macreg_writeops[index](s, index, val); 1325 } else { /* "flag needed" bit is set, but the flag is not active */ 1326 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1327 index<<2); 1328 } 1329 } else if (index < NREADOPS && macreg_readops[index]) { 1330 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1331 index<<2, val); 1332 } else { 1333 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1334 index<<2, val); 1335 } 1336 } 1337 1338 static uint64_t 1339 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1340 { 1341 E1000State *s = opaque; 1342 unsigned int index = (addr & 0x1ffff) >> 2; 1343 1344 if (index < NREADOPS && macreg_readops[index]) { 1345 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1346 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1347 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1348 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1349 "It is not fully implemented.\n", index<<2); 1350 } 1351 return macreg_readops[index](s, index); 1352 } else { /* "flag needed" bit is set, but the flag is not active */ 1353 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1354 index<<2); 1355 } 1356 } else { 1357 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1358 } 1359 return 0; 1360 } 1361 1362 static const MemoryRegionOps e1000_mmio_ops = { 1363 .read = e1000_mmio_read, 1364 .write = e1000_mmio_write, 1365 .endianness = DEVICE_LITTLE_ENDIAN, 1366 .impl = { 1367 .min_access_size = 4, 1368 .max_access_size = 4, 1369 }, 1370 }; 1371 1372 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1373 unsigned size) 1374 { 1375 E1000State *s = opaque; 1376 1377 (void)s; 1378 return 0; 1379 } 1380 1381 static void e1000_io_write(void *opaque, hwaddr addr, 1382 uint64_t val, unsigned size) 1383 { 1384 E1000State *s = opaque; 1385 1386 (void)s; 1387 } 1388 1389 static const MemoryRegionOps e1000_io_ops = { 1390 .read = e1000_io_read, 1391 .write = e1000_io_write, 1392 .endianness = DEVICE_LITTLE_ENDIAN, 1393 }; 1394 1395 static bool is_version_1(void *opaque, int version_id) 1396 { 1397 return version_id == 1; 1398 } 1399 1400 static int e1000_pre_save(void *opaque) 1401 { 1402 E1000State *s = opaque; 1403 NetClientState *nc = qemu_get_queue(s->nic); 1404 1405 /* 1406 * If link is down and auto-negotiation is supported and ongoing, 1407 * complete auto-negotiation immediately. This allows us to look 1408 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1409 */ 1410 if (nc->link_down && have_autoneg(s)) { 1411 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1412 } 1413 1414 /* Decide which set of props to migrate in the main structure */ 1415 if (chkflag(TSO) || !s->use_tso_for_migration) { 1416 /* Either we're migrating with the extra subsection, in which 1417 * case the mig_props is always 'props' OR 1418 * we've not got the subsection, but 'props' was the last 1419 * updated. 1420 */ 1421 s->mig_props = s->tx.props; 1422 } else { 1423 /* We're not using the subsection, and 'tso_props' was 1424 * the last updated. 1425 */ 1426 s->mig_props = s->tx.tso_props; 1427 } 1428 return 0; 1429 } 1430 1431 static int e1000_post_load(void *opaque, int version_id) 1432 { 1433 E1000State *s = opaque; 1434 NetClientState *nc = qemu_get_queue(s->nic); 1435 1436 if (!chkflag(MIT)) { 1437 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1438 s->mac_reg[TADV] = 0; 1439 s->mit_irq_level = false; 1440 } 1441 s->mit_ide = 0; 1442 s->mit_timer_on = true; 1443 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); 1444 1445 /* nc.link_down can't be migrated, so infer link_down according 1446 * to link status bit in mac_reg[STATUS]. 1447 * Alternatively, restart link negotiation if it was in progress. */ 1448 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1449 1450 if (have_autoneg(s) && 1451 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1452 nc->link_down = false; 1453 timer_mod(s->autoneg_timer, 1454 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1455 } 1456 1457 s->tx.props = s->mig_props; 1458 if (!s->received_tx_tso) { 1459 /* We received only one set of offload data (tx.props) 1460 * and haven't got tx.tso_props. The best we can do 1461 * is dupe the data. 1462 */ 1463 s->tx.tso_props = s->mig_props; 1464 } 1465 return 0; 1466 } 1467 1468 static int e1000_tx_tso_post_load(void *opaque, int version_id) 1469 { 1470 E1000State *s = opaque; 1471 s->received_tx_tso = true; 1472 return 0; 1473 } 1474 1475 static bool e1000_mit_state_needed(void *opaque) 1476 { 1477 E1000State *s = opaque; 1478 1479 return chkflag(MIT); 1480 } 1481 1482 static bool e1000_full_mac_needed(void *opaque) 1483 { 1484 E1000State *s = opaque; 1485 1486 return chkflag(MAC); 1487 } 1488 1489 static bool e1000_tso_state_needed(void *opaque) 1490 { 1491 E1000State *s = opaque; 1492 1493 return chkflag(TSO); 1494 } 1495 1496 static const VMStateDescription vmstate_e1000_mit_state = { 1497 .name = "e1000/mit_state", 1498 .version_id = 1, 1499 .minimum_version_id = 1, 1500 .needed = e1000_mit_state_needed, 1501 .fields = (VMStateField[]) { 1502 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1503 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1504 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1505 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1506 VMSTATE_BOOL(mit_irq_level, E1000State), 1507 VMSTATE_END_OF_LIST() 1508 } 1509 }; 1510 1511 static const VMStateDescription vmstate_e1000_full_mac_state = { 1512 .name = "e1000/full_mac_state", 1513 .version_id = 1, 1514 .minimum_version_id = 1, 1515 .needed = e1000_full_mac_needed, 1516 .fields = (VMStateField[]) { 1517 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1518 VMSTATE_END_OF_LIST() 1519 } 1520 }; 1521 1522 static const VMStateDescription vmstate_e1000_tx_tso_state = { 1523 .name = "e1000/tx_tso_state", 1524 .version_id = 1, 1525 .minimum_version_id = 1, 1526 .needed = e1000_tso_state_needed, 1527 .post_load = e1000_tx_tso_post_load, 1528 .fields = (VMStateField[]) { 1529 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), 1530 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), 1531 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), 1532 VMSTATE_UINT8(tx.tso_props.tucss, E1000State), 1533 VMSTATE_UINT8(tx.tso_props.tucso, E1000State), 1534 VMSTATE_UINT16(tx.tso_props.tucse, E1000State), 1535 VMSTATE_UINT32(tx.tso_props.paylen, E1000State), 1536 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), 1537 VMSTATE_UINT16(tx.tso_props.mss, E1000State), 1538 VMSTATE_INT8(tx.tso_props.ip, E1000State), 1539 VMSTATE_INT8(tx.tso_props.tcp, E1000State), 1540 VMSTATE_END_OF_LIST() 1541 } 1542 }; 1543 1544 static const VMStateDescription vmstate_e1000 = { 1545 .name = "e1000", 1546 .version_id = 2, 1547 .minimum_version_id = 1, 1548 .pre_save = e1000_pre_save, 1549 .post_load = e1000_post_load, 1550 .fields = (VMStateField[]) { 1551 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1552 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1553 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1554 VMSTATE_UINT32(rxbuf_size, E1000State), 1555 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1556 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1557 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1558 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1559 VMSTATE_UINT16(eecd_state.reading, E1000State), 1560 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1561 VMSTATE_UINT8(mig_props.ipcss, E1000State), 1562 VMSTATE_UINT8(mig_props.ipcso, E1000State), 1563 VMSTATE_UINT16(mig_props.ipcse, E1000State), 1564 VMSTATE_UINT8(mig_props.tucss, E1000State), 1565 VMSTATE_UINT8(mig_props.tucso, E1000State), 1566 VMSTATE_UINT16(mig_props.tucse, E1000State), 1567 VMSTATE_UINT32(mig_props.paylen, E1000State), 1568 VMSTATE_UINT8(mig_props.hdr_len, E1000State), 1569 VMSTATE_UINT16(mig_props.mss, E1000State), 1570 VMSTATE_UINT16(tx.size, E1000State), 1571 VMSTATE_UINT16(tx.tso_frames, E1000State), 1572 VMSTATE_UINT8(tx.sum_needed, E1000State), 1573 VMSTATE_INT8(mig_props.ip, E1000State), 1574 VMSTATE_INT8(mig_props.tcp, E1000State), 1575 VMSTATE_BUFFER(tx.header, E1000State), 1576 VMSTATE_BUFFER(tx.data, E1000State), 1577 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1578 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1579 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1580 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1581 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1582 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1583 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1584 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1585 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1586 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1587 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1588 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1589 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1590 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1591 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1592 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1593 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1594 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1595 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1596 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1597 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1598 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1599 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1600 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1601 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1602 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1603 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1604 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1605 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1606 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1607 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1608 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1609 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1610 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1611 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1612 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1613 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1614 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1615 VMSTATE_UINT32(mac_reg[VET], E1000State), 1616 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1617 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1618 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1619 VMSTATE_END_OF_LIST() 1620 }, 1621 .subsections = (const VMStateDescription*[]) { 1622 &vmstate_e1000_mit_state, 1623 &vmstate_e1000_full_mac_state, 1624 &vmstate_e1000_tx_tso_state, 1625 NULL 1626 } 1627 }; 1628 1629 /* 1630 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1631 * Note: A valid DevId will be inserted during pci_e1000_realize(). 1632 */ 1633 static const uint16_t e1000_eeprom_template[64] = { 1634 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1635 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1636 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1637 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1638 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1639 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1640 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1641 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1642 }; 1643 1644 /* PCI interface */ 1645 1646 static void 1647 e1000_mmio_setup(E1000State *d) 1648 { 1649 int i; 1650 const uint32_t excluded_regs[] = { 1651 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1652 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1653 }; 1654 1655 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1656 "e1000-mmio", PNPMMIO_SIZE); 1657 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1658 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1659 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1660 excluded_regs[i+1] - excluded_regs[i] - 4); 1661 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1662 } 1663 1664 static void 1665 pci_e1000_uninit(PCIDevice *dev) 1666 { 1667 E1000State *d = E1000(dev); 1668 1669 timer_free(d->autoneg_timer); 1670 timer_free(d->mit_timer); 1671 timer_free(d->flush_queue_timer); 1672 qemu_del_nic(d->nic); 1673 } 1674 1675 static NetClientInfo net_e1000_info = { 1676 .type = NET_CLIENT_DRIVER_NIC, 1677 .size = sizeof(NICState), 1678 .can_receive = e1000_can_receive, 1679 .receive = e1000_receive, 1680 .receive_iov = e1000_receive_iov, 1681 .link_status_changed = e1000_set_link_status, 1682 }; 1683 1684 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1685 uint32_t val, int len) 1686 { 1687 E1000State *s = E1000(pci_dev); 1688 1689 pci_default_write_config(pci_dev, address, val, len); 1690 1691 if (range_covers_byte(address, len, PCI_COMMAND) && 1692 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1693 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1694 } 1695 } 1696 1697 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1698 { 1699 DeviceState *dev = DEVICE(pci_dev); 1700 E1000State *d = E1000(pci_dev); 1701 uint8_t *pci_conf; 1702 uint8_t *macaddr; 1703 1704 pci_dev->config_write = e1000_write_config; 1705 1706 pci_conf = pci_dev->config; 1707 1708 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1709 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1710 1711 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1712 1713 e1000_mmio_setup(d); 1714 1715 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1716 1717 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1718 1719 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1720 macaddr = d->conf.macaddr.a; 1721 1722 e1000x_core_prepare_eeprom(d->eeprom_data, 1723 e1000_eeprom_template, 1724 sizeof(e1000_eeprom_template), 1725 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1726 macaddr); 1727 1728 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1729 object_get_typename(OBJECT(d)), dev->id, d); 1730 1731 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1732 1733 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1734 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1735 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 1736 e1000_flush_queue_timer, d); 1737 } 1738 1739 static void qdev_e1000_reset(DeviceState *dev) 1740 { 1741 E1000State *d = E1000(dev); 1742 e1000_reset(d); 1743 } 1744 1745 static Property e1000_properties[] = { 1746 DEFINE_NIC_PROPERTIES(E1000State, conf), 1747 DEFINE_PROP_BIT("autonegotiation", E1000State, 1748 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1749 DEFINE_PROP_BIT("mitigation", E1000State, 1750 compat_flags, E1000_FLAG_MIT_BIT, true), 1751 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1752 compat_flags, E1000_FLAG_MAC_BIT, true), 1753 DEFINE_PROP_BIT("migrate_tso_props", E1000State, 1754 compat_flags, E1000_FLAG_TSO_BIT, true), 1755 DEFINE_PROP_BIT("init-vet", E1000State, 1756 compat_flags, E1000_FLAG_VET_BIT, true), 1757 DEFINE_PROP_END_OF_LIST(), 1758 }; 1759 1760 typedef struct E1000Info { 1761 const char *name; 1762 uint16_t device_id; 1763 uint8_t revision; 1764 uint16_t phy_id2; 1765 } E1000Info; 1766 1767 static void e1000_class_init(ObjectClass *klass, void *data) 1768 { 1769 DeviceClass *dc = DEVICE_CLASS(klass); 1770 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1771 E1000BaseClass *e = E1000_CLASS(klass); 1772 const E1000Info *info = data; 1773 1774 k->realize = pci_e1000_realize; 1775 k->exit = pci_e1000_uninit; 1776 k->romfile = "efi-e1000.rom"; 1777 k->vendor_id = PCI_VENDOR_ID_INTEL; 1778 k->device_id = info->device_id; 1779 k->revision = info->revision; 1780 e->phy_id2 = info->phy_id2; 1781 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1782 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1783 dc->desc = "Intel Gigabit Ethernet"; 1784 dc->reset = qdev_e1000_reset; 1785 dc->vmsd = &vmstate_e1000; 1786 device_class_set_props(dc, e1000_properties); 1787 } 1788 1789 static void e1000_instance_init(Object *obj) 1790 { 1791 E1000State *n = E1000(obj); 1792 device_add_bootindex_property(obj, &n->conf.bootindex, 1793 "bootindex", "/ethernet-phy@0", 1794 DEVICE(n)); 1795 } 1796 1797 static const TypeInfo e1000_base_info = { 1798 .name = TYPE_E1000_BASE, 1799 .parent = TYPE_PCI_DEVICE, 1800 .instance_size = sizeof(E1000State), 1801 .instance_init = e1000_instance_init, 1802 .class_size = sizeof(E1000BaseClass), 1803 .abstract = true, 1804 .interfaces = (InterfaceInfo[]) { 1805 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1806 { }, 1807 }, 1808 }; 1809 1810 static const E1000Info e1000_devices[] = { 1811 { 1812 .name = "e1000", 1813 .device_id = E1000_DEV_ID_82540EM, 1814 .revision = 0x03, 1815 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1816 }, 1817 { 1818 .name = "e1000-82544gc", 1819 .device_id = E1000_DEV_ID_82544GC_COPPER, 1820 .revision = 0x03, 1821 .phy_id2 = E1000_PHY_ID2_82544x, 1822 }, 1823 { 1824 .name = "e1000-82545em", 1825 .device_id = E1000_DEV_ID_82545EM_COPPER, 1826 .revision = 0x03, 1827 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1828 }, 1829 }; 1830 1831 static void e1000_register_types(void) 1832 { 1833 int i; 1834 1835 type_register_static(&e1000_base_info); 1836 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1837 const E1000Info *info = &e1000_devices[i]; 1838 TypeInfo type_info = {}; 1839 1840 type_info.name = info->name; 1841 type_info.parent = TYPE_E1000_BASE; 1842 type_info.class_data = (void *)info; 1843 type_info.class_init = e1000_class_init; 1844 1845 type_register(&type_info); 1846 } 1847 } 1848 1849 type_init(e1000_register_types) 1850