1 /* 2 * QEMU Cadence GEM emulation 3 * 4 * Copyright (c) 2011 Xilinx, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> /* For crc32 */ 27 28 #include "hw/irq.h" 29 #include "hw/net/cadence_gem.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "qapi/error.h" 33 #include "qemu/log.h" 34 #include "qemu/module.h" 35 #include "sysemu/dma.h" 36 #include "net/checksum.h" 37 38 #ifdef CADENCE_GEM_ERR_DEBUG 39 #define DB_PRINT(...) do { \ 40 fprintf(stderr, ": %s: ", __func__); \ 41 fprintf(stderr, ## __VA_ARGS__); \ 42 } while (0) 43 #else 44 #define DB_PRINT(...) 45 #endif 46 47 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */ 48 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */ 49 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */ 50 #define GEM_USERIO (0x0000000C/4) /* User IO reg */ 51 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */ 52 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */ 53 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */ 54 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */ 55 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */ 56 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */ 57 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */ 58 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */ 59 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */ 60 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */ 61 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */ 62 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */ 63 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */ 64 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */ 65 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */ 66 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */ 67 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */ 68 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */ 69 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */ 70 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */ 71 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */ 72 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */ 73 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */ 74 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */ 75 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */ 76 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */ 77 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */ 78 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */ 79 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */ 80 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */ 81 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */ 82 #define GEM_MODID (0x000000FC/4) /* Module ID reg */ 83 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */ 84 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */ 85 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */ 86 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */ 87 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */ 88 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */ 89 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */ 90 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */ 91 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */ 92 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */ 93 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */ 94 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */ 95 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */ 96 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */ 97 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */ 98 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */ 99 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */ 100 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */ 101 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */ 102 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */ 103 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */ 104 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */ 105 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */ 106 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */ 107 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */ 108 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */ 109 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */ 110 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */ 111 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */ 112 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */ 113 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */ 114 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */ 115 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */ 116 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */ 117 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */ 118 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */ 119 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */ 120 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */ 121 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */ 122 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */ 123 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */ 124 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */ 125 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */ 126 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */ 127 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */ 128 129 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */ 130 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */ 131 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */ 132 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */ 133 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */ 134 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */ 135 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */ 136 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */ 137 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */ 138 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */ 139 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */ 140 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */ 141 142 /* Design Configuration Registers */ 143 #define GEM_DESCONF (0x00000280/4) 144 #define GEM_DESCONF2 (0x00000284/4) 145 #define GEM_DESCONF3 (0x00000288/4) 146 #define GEM_DESCONF4 (0x0000028C/4) 147 #define GEM_DESCONF5 (0x00000290/4) 148 #define GEM_DESCONF6 (0x00000294/4) 149 #define GEM_DESCONF6_64B_MASK (1U << 23) 150 #define GEM_DESCONF7 (0x00000298/4) 151 152 #define GEM_INT_Q1_STATUS (0x00000400 / 4) 153 #define GEM_INT_Q1_MASK (0x00000640 / 4) 154 155 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4) 156 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6) 157 158 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4) 159 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6) 160 161 #define GEM_TBQPH (0x000004C8 / 4) 162 #define GEM_RBQPH (0x000004D4 / 4) 163 164 #define GEM_INT_Q1_ENABLE (0x00000600 / 4) 165 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6) 166 167 #define GEM_INT_Q1_DISABLE (0x00000620 / 4) 168 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6) 169 170 #define GEM_INT_Q1_MASK (0x00000640 / 4) 171 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6) 172 173 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4) 174 175 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29) 176 #define GEM_ST1R_DSTC_ENABLE (1 << 28) 177 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12) 178 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1) 179 #define GEM_ST1R_DSTC_MATCH_SHIFT (4) 180 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1) 181 #define GEM_ST1R_QUEUE_SHIFT (0) 182 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1) 183 184 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4) 185 186 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18) 187 #define GEM_ST2R_COMPARE_A_SHIFT (13) 188 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1) 189 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12) 190 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9) 191 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \ 192 + 1) 193 #define GEM_ST2R_QUEUE_SHIFT (0) 194 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1) 195 196 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4) 197 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4) 198 199 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7) 200 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1) 201 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0) 202 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1) 203 204 /*****************************************/ 205 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */ 206 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */ 207 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */ 208 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */ 209 210 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */ 211 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */ 212 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */ 213 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */ 214 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */ 215 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */ 216 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */ 217 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */ 218 219 #define GEM_DMACFG_ADDR_64B (1U << 30) 220 #define GEM_DMACFG_TX_BD_EXT (1U << 29) 221 #define GEM_DMACFG_RX_BD_EXT (1U << 28) 222 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */ 223 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */ 224 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */ 225 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */ 226 227 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */ 228 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */ 229 230 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */ 231 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */ 232 233 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */ 234 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */ 235 #define GEM_INT_TXUSED 0x00000008 236 #define GEM_INT_RXUSED 0x00000004 237 #define GEM_INT_RXCMPL 0x00000002 238 239 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */ 240 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */ 241 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */ 242 #define GEM_PHYMNTNC_ADDR_SHFT 23 243 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */ 244 #define GEM_PHYMNTNC_REG_SHIFT 18 245 246 /* Marvell PHY definitions */ 247 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */ 248 249 #define PHY_REG_CONTROL 0 250 #define PHY_REG_STATUS 1 251 #define PHY_REG_PHYID1 2 252 #define PHY_REG_PHYID2 3 253 #define PHY_REG_ANEGADV 4 254 #define PHY_REG_LINKPABIL 5 255 #define PHY_REG_ANEGEXP 6 256 #define PHY_REG_NEXTP 7 257 #define PHY_REG_LINKPNEXTP 8 258 #define PHY_REG_100BTCTRL 9 259 #define PHY_REG_1000BTSTAT 10 260 #define PHY_REG_EXTSTAT 15 261 #define PHY_REG_PHYSPCFC_CTL 16 262 #define PHY_REG_PHYSPCFC_ST 17 263 #define PHY_REG_INT_EN 18 264 #define PHY_REG_INT_ST 19 265 #define PHY_REG_EXT_PHYSPCFC_CTL 20 266 #define PHY_REG_RXERR 21 267 #define PHY_REG_EACD 22 268 #define PHY_REG_LED 24 269 #define PHY_REG_LED_OVRD 25 270 #define PHY_REG_EXT_PHYSPCFC_CTL2 26 271 #define PHY_REG_EXT_PHYSPCFC_ST 27 272 #define PHY_REG_CABLE_DIAG 28 273 274 #define PHY_REG_CONTROL_RST 0x8000 275 #define PHY_REG_CONTROL_LOOP 0x4000 276 #define PHY_REG_CONTROL_ANEG 0x1000 277 #define PHY_REG_CONTROL_ANRESTART 0x0200 278 279 #define PHY_REG_STATUS_LINK 0x0004 280 #define PHY_REG_STATUS_ANEGCMPL 0x0020 281 282 #define PHY_REG_INT_ST_ANEGCMPL 0x0800 283 #define PHY_REG_INT_ST_LINKC 0x0400 284 #define PHY_REG_INT_ST_ENERGY 0x0010 285 286 /***********************************************************************/ 287 #define GEM_RX_REJECT (-1) 288 #define GEM_RX_PROMISCUOUS_ACCEPT (-2) 289 #define GEM_RX_BROADCAST_ACCEPT (-3) 290 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4) 291 #define GEM_RX_UNICAST_HASH_ACCEPT (-5) 292 293 #define GEM_RX_SAR_ACCEPT 0 294 295 /***********************************************************************/ 296 297 #define DESC_1_USED 0x80000000 298 #define DESC_1_LENGTH 0x00001FFF 299 300 #define DESC_1_TX_WRAP 0x40000000 301 #define DESC_1_TX_LAST 0x00008000 302 303 #define DESC_0_RX_WRAP 0x00000002 304 #define DESC_0_RX_OWNERSHIP 0x00000001 305 306 #define R_DESC_1_RX_SAR_SHIFT 25 307 #define R_DESC_1_RX_SAR_LENGTH 2 308 #define R_DESC_1_RX_SAR_MATCH (1 << 27) 309 #define R_DESC_1_RX_UNICAST_HASH (1 << 29) 310 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30) 311 #define R_DESC_1_RX_BROADCAST (1 << 31) 312 313 #define DESC_1_RX_SOF 0x00004000 314 #define DESC_1_RX_EOF 0x00008000 315 316 #define GEM_MODID_VALUE 0x00020118 317 318 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) 319 { 320 uint64_t ret = desc[0]; 321 322 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 323 ret |= (uint64_t)desc[2] << 32; 324 } 325 return ret; 326 } 327 328 static inline unsigned tx_desc_get_used(uint32_t *desc) 329 { 330 return (desc[1] & DESC_1_USED) ? 1 : 0; 331 } 332 333 static inline void tx_desc_set_used(uint32_t *desc) 334 { 335 desc[1] |= DESC_1_USED; 336 } 337 338 static inline unsigned tx_desc_get_wrap(uint32_t *desc) 339 { 340 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0; 341 } 342 343 static inline unsigned tx_desc_get_last(uint32_t *desc) 344 { 345 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0; 346 } 347 348 static inline void tx_desc_set_last(uint32_t *desc) 349 { 350 desc[1] |= DESC_1_TX_LAST; 351 } 352 353 static inline unsigned tx_desc_get_length(uint32_t *desc) 354 { 355 return desc[1] & DESC_1_LENGTH; 356 } 357 358 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue) 359 { 360 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue); 361 DB_PRINT("bufaddr: 0x%08x\n", *desc); 362 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc)); 363 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc)); 364 DB_PRINT("last: %d\n", tx_desc_get_last(desc)); 365 DB_PRINT("length: %d\n", tx_desc_get_length(desc)); 366 } 367 368 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) 369 { 370 uint64_t ret = desc[0] & ~0x3UL; 371 372 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 373 ret |= (uint64_t)desc[2] << 32; 374 } 375 return ret; 376 } 377 378 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx) 379 { 380 int ret = 2; 381 382 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 383 ret += 2; 384 } 385 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT 386 : GEM_DMACFG_TX_BD_EXT)) { 387 ret += 2; 388 } 389 390 assert(ret <= DESC_MAX_NUM_WORDS); 391 return ret; 392 } 393 394 static inline unsigned rx_desc_get_wrap(uint32_t *desc) 395 { 396 return desc[0] & DESC_0_RX_WRAP ? 1 : 0; 397 } 398 399 static inline unsigned rx_desc_get_ownership(uint32_t *desc) 400 { 401 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0; 402 } 403 404 static inline void rx_desc_set_ownership(uint32_t *desc) 405 { 406 desc[0] |= DESC_0_RX_OWNERSHIP; 407 } 408 409 static inline void rx_desc_set_sof(uint32_t *desc) 410 { 411 desc[1] |= DESC_1_RX_SOF; 412 } 413 414 static inline void rx_desc_set_eof(uint32_t *desc) 415 { 416 desc[1] |= DESC_1_RX_EOF; 417 } 418 419 static inline void rx_desc_set_length(uint32_t *desc, unsigned len) 420 { 421 desc[1] &= ~DESC_1_LENGTH; 422 desc[1] |= len; 423 } 424 425 static inline void rx_desc_set_broadcast(uint32_t *desc) 426 { 427 desc[1] |= R_DESC_1_RX_BROADCAST; 428 } 429 430 static inline void rx_desc_set_unicast_hash(uint32_t *desc) 431 { 432 desc[1] |= R_DESC_1_RX_UNICAST_HASH; 433 } 434 435 static inline void rx_desc_set_multicast_hash(uint32_t *desc) 436 { 437 desc[1] |= R_DESC_1_RX_MULTICAST_HASH; 438 } 439 440 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx) 441 { 442 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH, 443 sar_idx); 444 desc[1] |= R_DESC_1_RX_SAR_MATCH; 445 } 446 447 /* The broadcast MAC address: 0xFFFFFFFFFFFF */ 448 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 449 450 /* 451 * gem_init_register_masks: 452 * One time initialization. 453 * Set masks to identify which register bits have magical clear properties 454 */ 455 static void gem_init_register_masks(CadenceGEMState *s) 456 { 457 /* Mask of register bits which are read only */ 458 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro)); 459 s->regs_ro[GEM_NWCTRL] = 0xFFF80000; 460 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF; 461 s->regs_ro[GEM_DMACFG] = 0x8E00F000; 462 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08; 463 s->regs_ro[GEM_RXQBASE] = 0x00000003; 464 s->regs_ro[GEM_TXQBASE] = 0x00000003; 465 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0; 466 s->regs_ro[GEM_ISR] = 0xFFFFFFFF; 467 s->regs_ro[GEM_IMR] = 0xFFFFFFFF; 468 s->regs_ro[GEM_MODID] = 0xFFFFFFFF; 469 470 /* Mask of register bits which are clear on read */ 471 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc)); 472 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF; 473 474 /* Mask of register bits which are write 1 to clear */ 475 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c)); 476 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7; 477 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F; 478 479 /* Mask of register bits which are write only */ 480 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo)); 481 s->regs_wo[GEM_NWCTRL] = 0x00073E60; 482 s->regs_wo[GEM_IER] = 0x07FFFFFF; 483 s->regs_wo[GEM_IDR] = 0x07FFFFFF; 484 } 485 486 /* 487 * phy_update_link: 488 * Make the emulated PHY link state match the QEMU "interface" state. 489 */ 490 static void phy_update_link(CadenceGEMState *s) 491 { 492 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down); 493 494 /* Autonegotiation status mirrors link status. */ 495 if (qemu_get_queue(s->nic)->link_down) { 496 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL | 497 PHY_REG_STATUS_LINK); 498 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC; 499 } else { 500 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL | 501 PHY_REG_STATUS_LINK); 502 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC | 503 PHY_REG_INT_ST_ANEGCMPL | 504 PHY_REG_INT_ST_ENERGY); 505 } 506 } 507 508 static int gem_can_receive(NetClientState *nc) 509 { 510 CadenceGEMState *s; 511 int i; 512 513 s = qemu_get_nic_opaque(nc); 514 515 /* Do nothing if receive is not enabled. */ 516 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) { 517 if (s->can_rx_state != 1) { 518 s->can_rx_state = 1; 519 DB_PRINT("can't receive - no enable\n"); 520 } 521 return 0; 522 } 523 524 for (i = 0; i < s->num_priority_queues; i++) { 525 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) { 526 break; 527 } 528 }; 529 530 if (i == s->num_priority_queues) { 531 if (s->can_rx_state != 2) { 532 s->can_rx_state = 2; 533 DB_PRINT("can't receive - all the buffer descriptors are busy\n"); 534 } 535 return 0; 536 } 537 538 if (s->can_rx_state != 0) { 539 s->can_rx_state = 0; 540 DB_PRINT("can receive\n"); 541 } 542 return 1; 543 } 544 545 /* 546 * gem_update_int_status: 547 * Raise or lower interrupt based on current status. 548 */ 549 static void gem_update_int_status(CadenceGEMState *s) 550 { 551 int i; 552 553 if (!s->regs[GEM_ISR]) { 554 /* ISR isn't set, clear all the interrupts */ 555 for (i = 0; i < s->num_priority_queues; ++i) { 556 qemu_set_irq(s->irq[i], 0); 557 } 558 return; 559 } 560 561 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to 562 * check it again. 563 */ 564 if (s->num_priority_queues == 1) { 565 /* No priority queues, just trigger the interrupt */ 566 DB_PRINT("asserting int.\n"); 567 qemu_set_irq(s->irq[0], 1); 568 return; 569 } 570 571 for (i = 0; i < s->num_priority_queues; ++i) { 572 if (s->regs[GEM_INT_Q1_STATUS + i]) { 573 DB_PRINT("asserting int. (q=%d)\n", i); 574 qemu_set_irq(s->irq[i], 1); 575 } 576 } 577 } 578 579 /* 580 * gem_receive_updatestats: 581 * Increment receive statistics. 582 */ 583 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet, 584 unsigned bytes) 585 { 586 uint64_t octets; 587 588 /* Total octets (bytes) received */ 589 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) | 590 s->regs[GEM_OCTRXHI]; 591 octets += bytes; 592 s->regs[GEM_OCTRXLO] = octets >> 32; 593 s->regs[GEM_OCTRXHI] = octets; 594 595 /* Error-free Frames received */ 596 s->regs[GEM_RXCNT]++; 597 598 /* Error-free Broadcast Frames counter */ 599 if (!memcmp(packet, broadcast_addr, 6)) { 600 s->regs[GEM_RXBROADCNT]++; 601 } 602 603 /* Error-free Multicast Frames counter */ 604 if (packet[0] == 0x01) { 605 s->regs[GEM_RXMULTICNT]++; 606 } 607 608 if (bytes <= 64) { 609 s->regs[GEM_RX64CNT]++; 610 } else if (bytes <= 127) { 611 s->regs[GEM_RX65CNT]++; 612 } else if (bytes <= 255) { 613 s->regs[GEM_RX128CNT]++; 614 } else if (bytes <= 511) { 615 s->regs[GEM_RX256CNT]++; 616 } else if (bytes <= 1023) { 617 s->regs[GEM_RX512CNT]++; 618 } else if (bytes <= 1518) { 619 s->regs[GEM_RX1024CNT]++; 620 } else { 621 s->regs[GEM_RX1519CNT]++; 622 } 623 } 624 625 /* 626 * Get the MAC Address bit from the specified position 627 */ 628 static unsigned get_bit(const uint8_t *mac, unsigned bit) 629 { 630 unsigned byte; 631 632 byte = mac[bit / 8]; 633 byte >>= (bit & 0x7); 634 byte &= 1; 635 636 return byte; 637 } 638 639 /* 640 * Calculate a GEM MAC Address hash index 641 */ 642 static unsigned calc_mac_hash(const uint8_t *mac) 643 { 644 int index_bit, mac_bit; 645 unsigned hash_index; 646 647 hash_index = 0; 648 mac_bit = 5; 649 for (index_bit = 5; index_bit >= 0; index_bit--) { 650 hash_index |= (get_bit(mac, mac_bit) ^ 651 get_bit(mac, mac_bit + 6) ^ 652 get_bit(mac, mac_bit + 12) ^ 653 get_bit(mac, mac_bit + 18) ^ 654 get_bit(mac, mac_bit + 24) ^ 655 get_bit(mac, mac_bit + 30) ^ 656 get_bit(mac, mac_bit + 36) ^ 657 get_bit(mac, mac_bit + 42)) << index_bit; 658 mac_bit--; 659 } 660 661 return hash_index; 662 } 663 664 /* 665 * gem_mac_address_filter: 666 * Accept or reject this destination address? 667 * Returns: 668 * GEM_RX_REJECT: reject 669 * >= 0: Specific address accept (which matched SAR is returned) 670 * others for various other modes of accept: 671 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT, 672 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT 673 */ 674 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet) 675 { 676 uint8_t *gem_spaddr; 677 int i; 678 679 /* Promiscuous mode? */ 680 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) { 681 return GEM_RX_PROMISCUOUS_ACCEPT; 682 } 683 684 if (!memcmp(packet, broadcast_addr, 6)) { 685 /* Reject broadcast packets? */ 686 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) { 687 return GEM_RX_REJECT; 688 } 689 return GEM_RX_BROADCAST_ACCEPT; 690 } 691 692 /* Accept packets -w- hash match? */ 693 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) || 694 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) { 695 unsigned hash_index; 696 697 hash_index = calc_mac_hash(packet); 698 if (hash_index < 32) { 699 if (s->regs[GEM_HASHLO] & (1<<hash_index)) { 700 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT : 701 GEM_RX_UNICAST_HASH_ACCEPT; 702 } 703 } else { 704 hash_index -= 32; 705 if (s->regs[GEM_HASHHI] & (1<<hash_index)) { 706 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT : 707 GEM_RX_UNICAST_HASH_ACCEPT; 708 } 709 } 710 } 711 712 /* Check all 4 specific addresses */ 713 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]); 714 for (i = 3; i >= 0; i--) { 715 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) { 716 return GEM_RX_SAR_ACCEPT + i; 717 } 718 } 719 720 /* No address match; reject the packet */ 721 return GEM_RX_REJECT; 722 } 723 724 /* Figure out which queue the received data should be sent to */ 725 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr, 726 unsigned rxbufsize) 727 { 728 uint32_t reg; 729 bool matched, mismatched; 730 int i, j; 731 732 for (i = 0; i < s->num_type1_screeners; i++) { 733 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i]; 734 matched = false; 735 mismatched = false; 736 737 /* Screening is based on UDP Port */ 738 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) { 739 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23]; 740 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT, 741 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) { 742 matched = true; 743 } else { 744 mismatched = true; 745 } 746 } 747 748 /* Screening is based on DS/TC */ 749 if (reg & GEM_ST1R_DSTC_ENABLE) { 750 uint8_t dscp = rxbuf_ptr[14 + 1]; 751 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT, 752 GEM_ST1R_DSTC_MATCH_WIDTH)) { 753 matched = true; 754 } else { 755 mismatched = true; 756 } 757 } 758 759 if (matched && !mismatched) { 760 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH); 761 } 762 } 763 764 for (i = 0; i < s->num_type2_screeners; i++) { 765 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i]; 766 matched = false; 767 mismatched = false; 768 769 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) { 770 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13]; 771 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT, 772 GEM_ST2R_ETHERTYPE_INDEX_WIDTH); 773 774 if (et_idx > s->num_type2_screeners) { 775 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype " 776 "register index: %d\n", et_idx); 777 } 778 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 + 779 et_idx]) { 780 matched = true; 781 } else { 782 mismatched = true; 783 } 784 } 785 786 /* Compare A, B, C */ 787 for (j = 0; j < 3; j++) { 788 uint32_t cr0, cr1, mask; 789 uint16_t rx_cmp; 790 int offset; 791 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6, 792 GEM_ST2R_COMPARE_WIDTH); 793 794 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) { 795 continue; 796 } 797 if (cr_idx > s->num_type2_screeners) { 798 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare " 799 "register index: %d\n", cr_idx); 800 } 801 802 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2]; 803 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1]; 804 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT, 805 GEM_T2CW1_OFFSET_VALUE_WIDTH); 806 807 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT, 808 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) { 809 case 3: /* Skip UDP header */ 810 qemu_log_mask(LOG_UNIMP, "TCP compare offsets" 811 "unimplemented - assuming UDP\n"); 812 offset += 8; 813 /* Fallthrough */ 814 case 2: /* skip the IP header */ 815 offset += 20; 816 /* Fallthrough */ 817 case 1: /* Count from after the ethertype */ 818 offset += 14; 819 break; 820 case 0: 821 /* Offset from start of frame */ 822 break; 823 } 824 825 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset]; 826 mask = extract32(cr0, 0, 16); 827 828 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) { 829 matched = true; 830 } else { 831 mismatched = true; 832 } 833 } 834 835 if (matched && !mismatched) { 836 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH); 837 } 838 } 839 840 /* We made it here, assume it's queue 0 */ 841 return 0; 842 } 843 844 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q) 845 { 846 hwaddr desc_addr = 0; 847 848 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 849 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH]; 850 } 851 desc_addr <<= 32; 852 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q]; 853 return desc_addr; 854 } 855 856 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q) 857 { 858 return gem_get_desc_addr(s, true, q); 859 } 860 861 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q) 862 { 863 return gem_get_desc_addr(s, false, q); 864 } 865 866 static void gem_get_rx_desc(CadenceGEMState *s, int q) 867 { 868 hwaddr desc_addr = gem_get_rx_desc_addr(s, q); 869 870 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr); 871 872 /* read current descriptor */ 873 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, 874 (uint8_t *)s->rx_desc[q], 875 sizeof(uint32_t) * gem_get_desc_len(s, true)); 876 877 /* Descriptor owned by software ? */ 878 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) { 879 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr); 880 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF; 881 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]); 882 /* Handle interrupt consequences */ 883 gem_update_int_status(s); 884 } 885 } 886 887 /* 888 * gem_receive: 889 * Fit a packet handed to us by QEMU into the receive descriptor ring. 890 */ 891 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size) 892 { 893 CadenceGEMState *s; 894 unsigned rxbufsize, bytes_to_copy; 895 unsigned rxbuf_offset; 896 uint8_t rxbuf[2048]; 897 uint8_t *rxbuf_ptr; 898 bool first_desc = true; 899 int maf; 900 int q = 0; 901 902 s = qemu_get_nic_opaque(nc); 903 904 /* Is this destination MAC address "for us" ? */ 905 maf = gem_mac_address_filter(s, buf); 906 if (maf == GEM_RX_REJECT) { 907 return -1; 908 } 909 910 /* Discard packets with receive length error enabled ? */ 911 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) { 912 unsigned type_len; 913 914 /* Fish the ethertype / length field out of the RX packet */ 915 type_len = buf[12] << 8 | buf[13]; 916 /* It is a length field, not an ethertype */ 917 if (type_len < 0x600) { 918 if (size < type_len) { 919 /* discard */ 920 return -1; 921 } 922 } 923 } 924 925 /* 926 * Determine configured receive buffer offset (probably 0) 927 */ 928 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >> 929 GEM_NWCFG_BUFF_OFST_S; 930 931 /* The configure size of each receive buffer. Determines how many 932 * buffers needed to hold this packet. 933 */ 934 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >> 935 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL; 936 bytes_to_copy = size; 937 938 /* Hardware allows a zero value here but warns against it. To avoid QEMU 939 * indefinite loops we enforce a minimum value here 940 */ 941 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) { 942 rxbufsize = GEM_DMACFG_RBUFSZ_MUL; 943 } 944 945 /* Pad to minimum length. Assume FCS field is stripped, logic 946 * below will increment it to the real minimum of 64 when 947 * not FCS stripping 948 */ 949 if (size < 60) { 950 size = 60; 951 } 952 953 /* Strip of FCS field ? (usually yes) */ 954 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) { 955 rxbuf_ptr = (void *)buf; 956 } else { 957 unsigned crc_val; 958 959 if (size > sizeof(rxbuf) - sizeof(crc_val)) { 960 size = sizeof(rxbuf) - sizeof(crc_val); 961 } 962 bytes_to_copy = size; 963 /* The application wants the FCS field, which QEMU does not provide. 964 * We must try and calculate one. 965 */ 966 967 memcpy(rxbuf, buf, size); 968 memset(rxbuf + size, 0, sizeof(rxbuf) - size); 969 rxbuf_ptr = rxbuf; 970 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60))); 971 memcpy(rxbuf + size, &crc_val, sizeof(crc_val)); 972 973 bytes_to_copy += 4; 974 size += 4; 975 } 976 977 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size); 978 979 /* Find which queue we are targeting */ 980 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize); 981 982 while (bytes_to_copy) { 983 hwaddr desc_addr; 984 985 /* Do nothing if receive is not enabled. */ 986 if (!gem_can_receive(nc)) { 987 return -1; 988 } 989 990 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize), 991 rx_desc_get_buffer(s->rx_desc[q])); 992 993 /* Copy packet data to emulated DMA buffer */ 994 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) + 995 rxbuf_offset, 996 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr, 997 MIN(bytes_to_copy, rxbufsize)); 998 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize); 999 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize); 1000 1001 /* Update the descriptor. */ 1002 if (first_desc) { 1003 rx_desc_set_sof(s->rx_desc[q]); 1004 first_desc = false; 1005 } 1006 if (bytes_to_copy == 0) { 1007 rx_desc_set_eof(s->rx_desc[q]); 1008 rx_desc_set_length(s->rx_desc[q], size); 1009 } 1010 rx_desc_set_ownership(s->rx_desc[q]); 1011 1012 switch (maf) { 1013 case GEM_RX_PROMISCUOUS_ACCEPT: 1014 break; 1015 case GEM_RX_BROADCAST_ACCEPT: 1016 rx_desc_set_broadcast(s->rx_desc[q]); 1017 break; 1018 case GEM_RX_UNICAST_HASH_ACCEPT: 1019 rx_desc_set_unicast_hash(s->rx_desc[q]); 1020 break; 1021 case GEM_RX_MULTICAST_HASH_ACCEPT: 1022 rx_desc_set_multicast_hash(s->rx_desc[q]); 1023 break; 1024 case GEM_RX_REJECT: 1025 abort(); 1026 default: /* SAR */ 1027 rx_desc_set_sar(s->rx_desc[q], maf); 1028 } 1029 1030 /* Descriptor write-back. */ 1031 desc_addr = gem_get_rx_desc_addr(s, q); 1032 address_space_write(&s->dma_as, desc_addr, 1033 MEMTXATTRS_UNSPECIFIED, 1034 (uint8_t *)s->rx_desc[q], 1035 sizeof(uint32_t) * gem_get_desc_len(s, true)); 1036 1037 /* Next descriptor */ 1038 if (rx_desc_get_wrap(s->rx_desc[q])) { 1039 DB_PRINT("wrapping RX descriptor list\n"); 1040 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE]; 1041 } else { 1042 DB_PRINT("incrementing RX descriptor list\n"); 1043 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true); 1044 } 1045 1046 gem_get_rx_desc(s, q); 1047 } 1048 1049 /* Count it */ 1050 gem_receive_updatestats(s, buf, size); 1051 1052 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD; 1053 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]); 1054 1055 /* Handle interrupt consequences */ 1056 gem_update_int_status(s); 1057 1058 return size; 1059 } 1060 1061 /* 1062 * gem_transmit_updatestats: 1063 * Increment transmit statistics. 1064 */ 1065 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet, 1066 unsigned bytes) 1067 { 1068 uint64_t octets; 1069 1070 /* Total octets (bytes) transmitted */ 1071 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) | 1072 s->regs[GEM_OCTTXHI]; 1073 octets += bytes; 1074 s->regs[GEM_OCTTXLO] = octets >> 32; 1075 s->regs[GEM_OCTTXHI] = octets; 1076 1077 /* Error-free Frames transmitted */ 1078 s->regs[GEM_TXCNT]++; 1079 1080 /* Error-free Broadcast Frames counter */ 1081 if (!memcmp(packet, broadcast_addr, 6)) { 1082 s->regs[GEM_TXBCNT]++; 1083 } 1084 1085 /* Error-free Multicast Frames counter */ 1086 if (packet[0] == 0x01) { 1087 s->regs[GEM_TXMCNT]++; 1088 } 1089 1090 if (bytes <= 64) { 1091 s->regs[GEM_TX64CNT]++; 1092 } else if (bytes <= 127) { 1093 s->regs[GEM_TX65CNT]++; 1094 } else if (bytes <= 255) { 1095 s->regs[GEM_TX128CNT]++; 1096 } else if (bytes <= 511) { 1097 s->regs[GEM_TX256CNT]++; 1098 } else if (bytes <= 1023) { 1099 s->regs[GEM_TX512CNT]++; 1100 } else if (bytes <= 1518) { 1101 s->regs[GEM_TX1024CNT]++; 1102 } else { 1103 s->regs[GEM_TX1519CNT]++; 1104 } 1105 } 1106 1107 /* 1108 * gem_transmit: 1109 * Fish packets out of the descriptor ring and feed them to QEMU 1110 */ 1111 static void gem_transmit(CadenceGEMState *s) 1112 { 1113 uint32_t desc[DESC_MAX_NUM_WORDS]; 1114 hwaddr packet_desc_addr; 1115 uint8_t tx_packet[2048]; 1116 uint8_t *p; 1117 unsigned total_bytes; 1118 int q = 0; 1119 1120 /* Do nothing if transmit is not enabled. */ 1121 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 1122 return; 1123 } 1124 1125 DB_PRINT("\n"); 1126 1127 /* The packet we will hand off to QEMU. 1128 * Packets scattered across multiple descriptors are gathered to this 1129 * one contiguous buffer first. 1130 */ 1131 p = tx_packet; 1132 total_bytes = 0; 1133 1134 for (q = s->num_priority_queues - 1; q >= 0; q--) { 1135 /* read current descriptor */ 1136 packet_desc_addr = gem_get_tx_desc_addr(s, q); 1137 1138 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 1139 address_space_read(&s->dma_as, packet_desc_addr, 1140 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc, 1141 sizeof(uint32_t) * gem_get_desc_len(s, false)); 1142 /* Handle all descriptors owned by hardware */ 1143 while (tx_desc_get_used(desc) == 0) { 1144 1145 /* Do nothing if transmit is not enabled. */ 1146 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 1147 return; 1148 } 1149 print_gem_tx_desc(desc, q); 1150 1151 /* The real hardware would eat this (and possibly crash). 1152 * For QEMU let's lend a helping hand. 1153 */ 1154 if ((tx_desc_get_buffer(s, desc) == 0) || 1155 (tx_desc_get_length(desc) == 0)) { 1156 DB_PRINT("Invalid TX descriptor @ 0x%x\n", 1157 (unsigned)packet_desc_addr); 1158 break; 1159 } 1160 1161 if (tx_desc_get_length(desc) > sizeof(tx_packet) - 1162 (p - tx_packet)) { 1163 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \ 1164 "0x%x\n", (unsigned)packet_desc_addr, 1165 (unsigned)tx_desc_get_length(desc), 1166 sizeof(tx_packet) - (p - tx_packet)); 1167 break; 1168 } 1169 1170 /* Gather this fragment of the packet from "dma memory" to our 1171 * contig buffer. 1172 */ 1173 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc), 1174 MEMTXATTRS_UNSPECIFIED, 1175 p, tx_desc_get_length(desc)); 1176 p += tx_desc_get_length(desc); 1177 total_bytes += tx_desc_get_length(desc); 1178 1179 /* Last descriptor for this packet; hand the whole thing off */ 1180 if (tx_desc_get_last(desc)) { 1181 uint32_t desc_first[DESC_MAX_NUM_WORDS]; 1182 hwaddr desc_addr = gem_get_tx_desc_addr(s, q); 1183 1184 /* Modify the 1st descriptor of this packet to be owned by 1185 * the processor. 1186 */ 1187 address_space_read(&s->dma_as, desc_addr, 1188 MEMTXATTRS_UNSPECIFIED, 1189 (uint8_t *)desc_first, 1190 sizeof(desc_first)); 1191 tx_desc_set_used(desc_first); 1192 address_space_write(&s->dma_as, desc_addr, 1193 MEMTXATTRS_UNSPECIFIED, 1194 (uint8_t *)desc_first, 1195 sizeof(desc_first)); 1196 /* Advance the hardware current descriptor past this packet */ 1197 if (tx_desc_get_wrap(desc)) { 1198 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE]; 1199 } else { 1200 s->tx_desc_addr[q] = packet_desc_addr + 1201 4 * gem_get_desc_len(s, false); 1202 } 1203 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]); 1204 1205 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL; 1206 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]); 1207 1208 /* Update queue interrupt status */ 1209 if (s->num_priority_queues > 1) { 1210 s->regs[GEM_INT_Q1_STATUS + q] |= 1211 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]); 1212 } 1213 1214 /* Handle interrupt consequences */ 1215 gem_update_int_status(s); 1216 1217 /* Is checksum offload enabled? */ 1218 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) { 1219 net_checksum_calculate(tx_packet, total_bytes); 1220 } 1221 1222 /* Update MAC statistics */ 1223 gem_transmit_updatestats(s, tx_packet, total_bytes); 1224 1225 /* Send the packet somewhere */ 1226 if (s->phy_loop || (s->regs[GEM_NWCTRL] & 1227 GEM_NWCTRL_LOCALLOOP)) { 1228 gem_receive(qemu_get_queue(s->nic), tx_packet, 1229 total_bytes); 1230 } else { 1231 qemu_send_packet(qemu_get_queue(s->nic), tx_packet, 1232 total_bytes); 1233 } 1234 1235 /* Prepare for next packet */ 1236 p = tx_packet; 1237 total_bytes = 0; 1238 } 1239 1240 /* read next descriptor */ 1241 if (tx_desc_get_wrap(desc)) { 1242 tx_desc_set_last(desc); 1243 packet_desc_addr = s->regs[GEM_TXQBASE]; 1244 } else { 1245 packet_desc_addr += 4 * gem_get_desc_len(s, false); 1246 } 1247 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 1248 address_space_read(&s->dma_as, packet_desc_addr, 1249 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc, 1250 sizeof(uint32_t) * gem_get_desc_len(s, false)); 1251 } 1252 1253 if (tx_desc_get_used(desc)) { 1254 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED; 1255 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]); 1256 gem_update_int_status(s); 1257 } 1258 } 1259 } 1260 1261 static void gem_phy_reset(CadenceGEMState *s) 1262 { 1263 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); 1264 s->phy_regs[PHY_REG_CONTROL] = 0x1140; 1265 s->phy_regs[PHY_REG_STATUS] = 0x7969; 1266 s->phy_regs[PHY_REG_PHYID1] = 0x0141; 1267 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2; 1268 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1; 1269 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1; 1270 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F; 1271 s->phy_regs[PHY_REG_NEXTP] = 0x2001; 1272 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6; 1273 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300; 1274 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00; 1275 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000; 1276 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078; 1277 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00; 1278 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60; 1279 s->phy_regs[PHY_REG_LED] = 0x4100; 1280 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A; 1281 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B; 1282 1283 phy_update_link(s); 1284 } 1285 1286 static void gem_reset(DeviceState *d) 1287 { 1288 int i; 1289 CadenceGEMState *s = CADENCE_GEM(d); 1290 const uint8_t *a; 1291 uint32_t queues_mask = 0; 1292 1293 DB_PRINT("\n"); 1294 1295 /* Set post reset register values */ 1296 memset(&s->regs[0], 0, sizeof(s->regs)); 1297 s->regs[GEM_NWCFG] = 0x00080000; 1298 s->regs[GEM_NWSTATUS] = 0x00000006; 1299 s->regs[GEM_DMACFG] = 0x00020784; 1300 s->regs[GEM_IMR] = 0x07ffffff; 1301 s->regs[GEM_TXPAUSE] = 0x0000ffff; 1302 s->regs[GEM_TXPARTIALSF] = 0x000003ff; 1303 s->regs[GEM_RXPARTIALSF] = 0x000003ff; 1304 s->regs[GEM_MODID] = s->revision; 1305 s->regs[GEM_DESCONF] = 0x02500111; 1306 s->regs[GEM_DESCONF2] = 0x2ab13fff; 1307 s->regs[GEM_DESCONF5] = 0x002f2045; 1308 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK; 1309 1310 if (s->num_priority_queues > 1) { 1311 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1); 1312 s->regs[GEM_DESCONF6] |= queues_mask; 1313 } 1314 1315 /* Set MAC address */ 1316 a = &s->conf.macaddr.a[0]; 1317 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24); 1318 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8); 1319 1320 for (i = 0; i < 4; i++) { 1321 s->sar_active[i] = false; 1322 } 1323 1324 gem_phy_reset(s); 1325 1326 gem_update_int_status(s); 1327 } 1328 1329 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num) 1330 { 1331 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]); 1332 return s->phy_regs[reg_num]; 1333 } 1334 1335 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val) 1336 { 1337 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val); 1338 1339 switch (reg_num) { 1340 case PHY_REG_CONTROL: 1341 if (val & PHY_REG_CONTROL_RST) { 1342 /* Phy reset */ 1343 gem_phy_reset(s); 1344 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP); 1345 s->phy_loop = 0; 1346 } 1347 if (val & PHY_REG_CONTROL_ANEG) { 1348 /* Complete autonegotiation immediately */ 1349 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART); 1350 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL; 1351 } 1352 if (val & PHY_REG_CONTROL_LOOP) { 1353 DB_PRINT("PHY placed in loopback\n"); 1354 s->phy_loop = 1; 1355 } else { 1356 s->phy_loop = 0; 1357 } 1358 break; 1359 } 1360 s->phy_regs[reg_num] = val; 1361 } 1362 1363 /* 1364 * gem_read32: 1365 * Read a GEM register. 1366 */ 1367 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size) 1368 { 1369 CadenceGEMState *s; 1370 uint32_t retval; 1371 s = (CadenceGEMState *)opaque; 1372 1373 offset >>= 2; 1374 retval = s->regs[offset]; 1375 1376 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval); 1377 1378 switch (offset) { 1379 case GEM_ISR: 1380 DB_PRINT("lowering irqs on ISR read\n"); 1381 /* The interrupts get updated at the end of the function. */ 1382 break; 1383 case GEM_PHYMNTNC: 1384 if (retval & GEM_PHYMNTNC_OP_R) { 1385 uint32_t phy_addr, reg_num; 1386 1387 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1388 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { 1389 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1390 retval &= 0xFFFF0000; 1391 retval |= gem_phy_read(s, reg_num); 1392 } else { 1393 retval |= 0xFFFF; /* No device at this address */ 1394 } 1395 } 1396 break; 1397 } 1398 1399 /* Squash read to clear bits */ 1400 s->regs[offset] &= ~(s->regs_rtc[offset]); 1401 1402 /* Do not provide write only bits */ 1403 retval &= ~(s->regs_wo[offset]); 1404 1405 DB_PRINT("0x%08x\n", retval); 1406 gem_update_int_status(s); 1407 return retval; 1408 } 1409 1410 /* 1411 * gem_write32: 1412 * Write a GEM register. 1413 */ 1414 static void gem_write(void *opaque, hwaddr offset, uint64_t val, 1415 unsigned size) 1416 { 1417 CadenceGEMState *s = (CadenceGEMState *)opaque; 1418 uint32_t readonly; 1419 int i; 1420 1421 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val); 1422 offset >>= 2; 1423 1424 /* Squash bits which are read only in write value */ 1425 val &= ~(s->regs_ro[offset]); 1426 /* Preserve (only) bits which are read only and wtc in register */ 1427 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]); 1428 1429 /* Copy register write to backing store */ 1430 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly; 1431 1432 /* do w1c */ 1433 s->regs[offset] &= ~(s->regs_w1c[offset] & val); 1434 1435 /* Handle register write side effects */ 1436 switch (offset) { 1437 case GEM_NWCTRL: 1438 if (val & GEM_NWCTRL_RXENA) { 1439 for (i = 0; i < s->num_priority_queues; ++i) { 1440 gem_get_rx_desc(s, i); 1441 } 1442 } 1443 if (val & GEM_NWCTRL_TXSTART) { 1444 gem_transmit(s); 1445 } 1446 if (!(val & GEM_NWCTRL_TXENA)) { 1447 /* Reset to start of Q when transmit disabled. */ 1448 for (i = 0; i < s->num_priority_queues; i++) { 1449 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE]; 1450 } 1451 } 1452 if (gem_can_receive(qemu_get_queue(s->nic))) { 1453 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1454 } 1455 break; 1456 1457 case GEM_TXSTATUS: 1458 gem_update_int_status(s); 1459 break; 1460 case GEM_RXQBASE: 1461 s->rx_desc_addr[0] = val; 1462 break; 1463 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR: 1464 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val; 1465 break; 1466 case GEM_TXQBASE: 1467 s->tx_desc_addr[0] = val; 1468 break; 1469 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR: 1470 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val; 1471 break; 1472 case GEM_RXSTATUS: 1473 gem_update_int_status(s); 1474 break; 1475 case GEM_IER: 1476 s->regs[GEM_IMR] &= ~val; 1477 gem_update_int_status(s); 1478 break; 1479 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE: 1480 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val; 1481 gem_update_int_status(s); 1482 break; 1483 case GEM_IDR: 1484 s->regs[GEM_IMR] |= val; 1485 gem_update_int_status(s); 1486 break; 1487 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE: 1488 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val; 1489 gem_update_int_status(s); 1490 break; 1491 case GEM_SPADDR1LO: 1492 case GEM_SPADDR2LO: 1493 case GEM_SPADDR3LO: 1494 case GEM_SPADDR4LO: 1495 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false; 1496 break; 1497 case GEM_SPADDR1HI: 1498 case GEM_SPADDR2HI: 1499 case GEM_SPADDR3HI: 1500 case GEM_SPADDR4HI: 1501 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true; 1502 break; 1503 case GEM_PHYMNTNC: 1504 if (val & GEM_PHYMNTNC_OP_W) { 1505 uint32_t phy_addr, reg_num; 1506 1507 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1508 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { 1509 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1510 gem_phy_write(s, reg_num, val); 1511 } 1512 } 1513 break; 1514 } 1515 1516 DB_PRINT("newval: 0x%08x\n", s->regs[offset]); 1517 } 1518 1519 static const MemoryRegionOps gem_ops = { 1520 .read = gem_read, 1521 .write = gem_write, 1522 .endianness = DEVICE_LITTLE_ENDIAN, 1523 }; 1524 1525 static void gem_set_link(NetClientState *nc) 1526 { 1527 CadenceGEMState *s = qemu_get_nic_opaque(nc); 1528 1529 DB_PRINT("\n"); 1530 phy_update_link(s); 1531 gem_update_int_status(s); 1532 } 1533 1534 static NetClientInfo net_gem_info = { 1535 .type = NET_CLIENT_DRIVER_NIC, 1536 .size = sizeof(NICState), 1537 .can_receive = gem_can_receive, 1538 .receive = gem_receive, 1539 .link_status_changed = gem_set_link, 1540 }; 1541 1542 static void gem_realize(DeviceState *dev, Error **errp) 1543 { 1544 CadenceGEMState *s = CADENCE_GEM(dev); 1545 int i; 1546 1547 address_space_init(&s->dma_as, 1548 s->dma_mr ? s->dma_mr : get_system_memory(), "dma"); 1549 1550 if (s->num_priority_queues == 0 || 1551 s->num_priority_queues > MAX_PRIORITY_QUEUES) { 1552 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8, 1553 s->num_priority_queues); 1554 return; 1555 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) { 1556 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8, 1557 s->num_type1_screeners); 1558 return; 1559 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) { 1560 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8, 1561 s->num_type2_screeners); 1562 return; 1563 } 1564 1565 for (i = 0; i < s->num_priority_queues; ++i) { 1566 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); 1567 } 1568 1569 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1570 1571 s->nic = qemu_new_nic(&net_gem_info, &s->conf, 1572 object_get_typename(OBJECT(dev)), dev->id, s); 1573 } 1574 1575 static void gem_init(Object *obj) 1576 { 1577 CadenceGEMState *s = CADENCE_GEM(obj); 1578 DeviceState *dev = DEVICE(obj); 1579 1580 DB_PRINT("\n"); 1581 1582 gem_init_register_masks(s); 1583 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s, 1584 "enet", sizeof(s->regs)); 1585 1586 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); 1587 1588 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION, 1589 (Object **)&s->dma_mr, 1590 qdev_prop_allow_set_link_before_realize, 1591 OBJ_PROP_LINK_STRONG, 1592 &error_abort); 1593 } 1594 1595 static const VMStateDescription vmstate_cadence_gem = { 1596 .name = "cadence_gem", 1597 .version_id = 4, 1598 .minimum_version_id = 4, 1599 .fields = (VMStateField[]) { 1600 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG), 1601 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32), 1602 VMSTATE_UINT8(phy_loop, CadenceGEMState), 1603 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState, 1604 MAX_PRIORITY_QUEUES), 1605 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState, 1606 MAX_PRIORITY_QUEUES), 1607 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4), 1608 VMSTATE_END_OF_LIST(), 1609 } 1610 }; 1611 1612 static Property gem_properties[] = { 1613 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf), 1614 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision, 1615 GEM_MODID_VALUE), 1616 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState, 1617 num_priority_queues, 1), 1618 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState, 1619 num_type1_screeners, 4), 1620 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState, 1621 num_type2_screeners, 4), 1622 DEFINE_PROP_END_OF_LIST(), 1623 }; 1624 1625 static void gem_class_init(ObjectClass *klass, void *data) 1626 { 1627 DeviceClass *dc = DEVICE_CLASS(klass); 1628 1629 dc->realize = gem_realize; 1630 device_class_set_props(dc, gem_properties); 1631 dc->vmsd = &vmstate_cadence_gem; 1632 dc->reset = gem_reset; 1633 } 1634 1635 static const TypeInfo gem_info = { 1636 .name = TYPE_CADENCE_GEM, 1637 .parent = TYPE_SYS_BUS_DEVICE, 1638 .instance_size = sizeof(CadenceGEMState), 1639 .instance_init = gem_init, 1640 .class_init = gem_class_init, 1641 }; 1642 1643 static void gem_register_types(void) 1644 { 1645 type_register_static(&gem_info); 1646 } 1647 1648 type_init(gem_register_types) 1649