1 /* 2 * QEMU Cadence GEM emulation 3 * 4 * Copyright (c) 2011 Xilinx, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> /* For crc32 */ 27 28 #include "hw/irq.h" 29 #include "hw/net/cadence_gem.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "qapi/error.h" 33 #include "qemu/log.h" 34 #include "qemu/module.h" 35 #include "sysemu/dma.h" 36 #include "net/checksum.h" 37 #include "net/eth.h" 38 39 #define CADENCE_GEM_ERR_DEBUG 0 40 #define DB_PRINT(...) do {\ 41 if (CADENCE_GEM_ERR_DEBUG) { \ 42 qemu_log(": %s: ", __func__); \ 43 qemu_log(__VA_ARGS__); \ 44 } \ 45 } while (0) 46 47 #define GEM_NWCTRL (0x00000000 / 4) /* Network Control reg */ 48 #define GEM_NWCFG (0x00000004 / 4) /* Network Config reg */ 49 #define GEM_NWSTATUS (0x00000008 / 4) /* Network Status reg */ 50 #define GEM_USERIO (0x0000000C / 4) /* User IO reg */ 51 #define GEM_DMACFG (0x00000010 / 4) /* DMA Control reg */ 52 #define GEM_TXSTATUS (0x00000014 / 4) /* TX Status reg */ 53 #define GEM_RXQBASE (0x00000018 / 4) /* RX Q Base address reg */ 54 #define GEM_TXQBASE (0x0000001C / 4) /* TX Q Base address reg */ 55 #define GEM_RXSTATUS (0x00000020 / 4) /* RX Status reg */ 56 #define GEM_ISR (0x00000024 / 4) /* Interrupt Status reg */ 57 #define GEM_IER (0x00000028 / 4) /* Interrupt Enable reg */ 58 #define GEM_IDR (0x0000002C / 4) /* Interrupt Disable reg */ 59 #define GEM_IMR (0x00000030 / 4) /* Interrupt Mask reg */ 60 #define GEM_PHYMNTNC (0x00000034 / 4) /* Phy Maintenance reg */ 61 #define GEM_RXPAUSE (0x00000038 / 4) /* RX Pause Time reg */ 62 #define GEM_TXPAUSE (0x0000003C / 4) /* TX Pause Time reg */ 63 #define GEM_TXPARTIALSF (0x00000040 / 4) /* TX Partial Store and Forward */ 64 #define GEM_RXPARTIALSF (0x00000044 / 4) /* RX Partial Store and Forward */ 65 #define GEM_JUMBO_MAX_LEN (0x00000048 / 4) /* Max Jumbo Frame Size */ 66 #define GEM_HASHLO (0x00000080 / 4) /* Hash Low address reg */ 67 #define GEM_HASHHI (0x00000084 / 4) /* Hash High address reg */ 68 #define GEM_SPADDR1LO (0x00000088 / 4) /* Specific addr 1 low reg */ 69 #define GEM_SPADDR1HI (0x0000008C / 4) /* Specific addr 1 high reg */ 70 #define GEM_SPADDR2LO (0x00000090 / 4) /* Specific addr 2 low reg */ 71 #define GEM_SPADDR2HI (0x00000094 / 4) /* Specific addr 2 high reg */ 72 #define GEM_SPADDR3LO (0x00000098 / 4) /* Specific addr 3 low reg */ 73 #define GEM_SPADDR3HI (0x0000009C / 4) /* Specific addr 3 high reg */ 74 #define GEM_SPADDR4LO (0x000000A0 / 4) /* Specific addr 4 low reg */ 75 #define GEM_SPADDR4HI (0x000000A4 / 4) /* Specific addr 4 high reg */ 76 #define GEM_TIDMATCH1 (0x000000A8 / 4) /* Type ID1 Match reg */ 77 #define GEM_TIDMATCH2 (0x000000AC / 4) /* Type ID2 Match reg */ 78 #define GEM_TIDMATCH3 (0x000000B0 / 4) /* Type ID3 Match reg */ 79 #define GEM_TIDMATCH4 (0x000000B4 / 4) /* Type ID4 Match reg */ 80 #define GEM_WOLAN (0x000000B8 / 4) /* Wake on LAN reg */ 81 #define GEM_IPGSTRETCH (0x000000BC / 4) /* IPG Stretch reg */ 82 #define GEM_SVLAN (0x000000C0 / 4) /* Stacked VLAN reg */ 83 #define GEM_MODID (0x000000FC / 4) /* Module ID reg */ 84 #define GEM_OCTTXLO (0x00000100 / 4) /* Octects transmitted Low reg */ 85 #define GEM_OCTTXHI (0x00000104 / 4) /* Octects transmitted High reg */ 86 #define GEM_TXCNT (0x00000108 / 4) /* Error-free Frames transmitted */ 87 #define GEM_TXBCNT (0x0000010C / 4) /* Error-free Broadcast Frames */ 88 #define GEM_TXMCNT (0x00000110 / 4) /* Error-free Multicast Frame */ 89 #define GEM_TXPAUSECNT (0x00000114 / 4) /* Pause Frames Transmitted */ 90 #define GEM_TX64CNT (0x00000118 / 4) /* Error-free 64 TX */ 91 #define GEM_TX65CNT (0x0000011C / 4) /* Error-free 65-127 TX */ 92 #define GEM_TX128CNT (0x00000120 / 4) /* Error-free 128-255 TX */ 93 #define GEM_TX256CNT (0x00000124 / 4) /* Error-free 256-511 */ 94 #define GEM_TX512CNT (0x00000128 / 4) /* Error-free 512-1023 TX */ 95 #define GEM_TX1024CNT (0x0000012C / 4) /* Error-free 1024-1518 TX */ 96 #define GEM_TX1519CNT (0x00000130 / 4) /* Error-free larger than 1519 TX */ 97 #define GEM_TXURUNCNT (0x00000134 / 4) /* TX under run error counter */ 98 #define GEM_SINGLECOLLCNT (0x00000138 / 4) /* Single Collision Frames */ 99 #define GEM_MULTCOLLCNT (0x0000013C / 4) /* Multiple Collision Frames */ 100 #define GEM_EXCESSCOLLCNT (0x00000140 / 4) /* Excessive Collision Frames */ 101 #define GEM_LATECOLLCNT (0x00000144 / 4) /* Late Collision Frames */ 102 #define GEM_DEFERTXCNT (0x00000148 / 4) /* Deferred Transmission Frames */ 103 #define GEM_CSENSECNT (0x0000014C / 4) /* Carrier Sense Error Counter */ 104 #define GEM_OCTRXLO (0x00000150 / 4) /* Octects Received register Low */ 105 #define GEM_OCTRXHI (0x00000154 / 4) /* Octects Received register High */ 106 #define GEM_RXCNT (0x00000158 / 4) /* Error-free Frames Received */ 107 #define GEM_RXBROADCNT (0x0000015C / 4) /* Error-free Broadcast Frames RX */ 108 #define GEM_RXMULTICNT (0x00000160 / 4) /* Error-free Multicast Frames RX */ 109 #define GEM_RXPAUSECNT (0x00000164 / 4) /* Pause Frames Received Counter */ 110 #define GEM_RX64CNT (0x00000168 / 4) /* Error-free 64 byte Frames RX */ 111 #define GEM_RX65CNT (0x0000016C / 4) /* Error-free 65-127B Frames RX */ 112 #define GEM_RX128CNT (0x00000170 / 4) /* Error-free 128-255B Frames RX */ 113 #define GEM_RX256CNT (0x00000174 / 4) /* Error-free 256-512B Frames RX */ 114 #define GEM_RX512CNT (0x00000178 / 4) /* Error-free 512-1023B Frames RX */ 115 #define GEM_RX1024CNT (0x0000017C / 4) /* Error-free 1024-1518B Frames RX */ 116 #define GEM_RX1519CNT (0x00000180 / 4) /* Error-free 1519-max Frames RX */ 117 #define GEM_RXUNDERCNT (0x00000184 / 4) /* Undersize Frames Received */ 118 #define GEM_RXOVERCNT (0x00000188 / 4) /* Oversize Frames Received */ 119 #define GEM_RXJABCNT (0x0000018C / 4) /* Jabbers Received Counter */ 120 #define GEM_RXFCSCNT (0x00000190 / 4) /* Frame Check seq. Error Counter */ 121 #define GEM_RXLENERRCNT (0x00000194 / 4) /* Length Field Error Counter */ 122 #define GEM_RXSYMERRCNT (0x00000198 / 4) /* Symbol Error Counter */ 123 #define GEM_RXALIGNERRCNT (0x0000019C / 4) /* Alignment Error Counter */ 124 #define GEM_RXRSCERRCNT (0x000001A0 / 4) /* Receive Resource Error Counter */ 125 #define GEM_RXORUNCNT (0x000001A4 / 4) /* Receive Overrun Counter */ 126 #define GEM_RXIPCSERRCNT (0x000001A8 / 4) /* IP header Checksum Err Counter */ 127 #define GEM_RXTCPCCNT (0x000001AC / 4) /* TCP Checksum Error Counter */ 128 #define GEM_RXUDPCCNT (0x000001B0 / 4) /* UDP Checksum Error Counter */ 129 130 #define GEM_1588S (0x000001D0 / 4) /* 1588 Timer Seconds */ 131 #define GEM_1588NS (0x000001D4 / 4) /* 1588 Timer Nanoseconds */ 132 #define GEM_1588ADJ (0x000001D8 / 4) /* 1588 Timer Adjust */ 133 #define GEM_1588INC (0x000001DC / 4) /* 1588 Timer Increment */ 134 #define GEM_PTPETXS (0x000001E0 / 4) /* PTP Event Frame Transmitted (s) */ 135 #define GEM_PTPETXNS (0x000001E4 / 4) /* 136 * PTP Event Frame Transmitted (ns) 137 */ 138 #define GEM_PTPERXS (0x000001E8 / 4) /* PTP Event Frame Received (s) */ 139 #define GEM_PTPERXNS (0x000001EC / 4) /* PTP Event Frame Received (ns) */ 140 #define GEM_PTPPTXS (0x000001E0 / 4) /* PTP Peer Frame Transmitted (s) */ 141 #define GEM_PTPPTXNS (0x000001E4 / 4) /* PTP Peer Frame Transmitted (ns) */ 142 #define GEM_PTPPRXS (0x000001E8 / 4) /* PTP Peer Frame Received (s) */ 143 #define GEM_PTPPRXNS (0x000001EC / 4) /* PTP Peer Frame Received (ns) */ 144 145 /* Design Configuration Registers */ 146 #define GEM_DESCONF (0x00000280 / 4) 147 #define GEM_DESCONF2 (0x00000284 / 4) 148 #define GEM_DESCONF3 (0x00000288 / 4) 149 #define GEM_DESCONF4 (0x0000028C / 4) 150 #define GEM_DESCONF5 (0x00000290 / 4) 151 #define GEM_DESCONF6 (0x00000294 / 4) 152 #define GEM_DESCONF6_64B_MASK (1U << 23) 153 #define GEM_DESCONF7 (0x00000298 / 4) 154 155 #define GEM_INT_Q1_STATUS (0x00000400 / 4) 156 #define GEM_INT_Q1_MASK (0x00000640 / 4) 157 158 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4) 159 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6) 160 161 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4) 162 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6) 163 164 #define GEM_TBQPH (0x000004C8 / 4) 165 #define GEM_RBQPH (0x000004D4 / 4) 166 167 #define GEM_INT_Q1_ENABLE (0x00000600 / 4) 168 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6) 169 170 #define GEM_INT_Q1_DISABLE (0x00000620 / 4) 171 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6) 172 173 #define GEM_INT_Q1_MASK (0x00000640 / 4) 174 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6) 175 176 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4) 177 178 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29) 179 #define GEM_ST1R_DSTC_ENABLE (1 << 28) 180 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12) 181 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1) 182 #define GEM_ST1R_DSTC_MATCH_SHIFT (4) 183 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1) 184 #define GEM_ST1R_QUEUE_SHIFT (0) 185 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1) 186 187 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4) 188 189 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18) 190 #define GEM_ST2R_COMPARE_A_SHIFT (13) 191 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1) 192 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12) 193 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9) 194 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \ 195 + 1) 196 #define GEM_ST2R_QUEUE_SHIFT (0) 197 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1) 198 199 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4) 200 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4) 201 202 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7) 203 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1) 204 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0) 205 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1) 206 207 /*****************************************/ 208 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */ 209 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */ 210 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */ 211 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */ 212 213 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */ 214 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */ 215 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */ 216 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */ 217 #define GEM_NWCFG_RCV_1538 0x00000100 /* Receive 1538 bytes frame */ 218 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */ 219 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */ 220 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */ 221 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */ 222 #define GEM_NWCFG_JUMBO_FRAME 0x00000008 /* Jumbo Frames enable */ 223 224 #define GEM_DMACFG_ADDR_64B (1U << 30) 225 #define GEM_DMACFG_TX_BD_EXT (1U << 29) 226 #define GEM_DMACFG_RX_BD_EXT (1U << 28) 227 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */ 228 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */ 229 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */ 230 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */ 231 232 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */ 233 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */ 234 235 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */ 236 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */ 237 238 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */ 239 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */ 240 #define GEM_INT_AMBA_ERR 0x00000040 241 #define GEM_INT_TXUSED 0x00000008 242 #define GEM_INT_RXUSED 0x00000004 243 #define GEM_INT_RXCMPL 0x00000002 244 245 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */ 246 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */ 247 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */ 248 #define GEM_PHYMNTNC_ADDR_SHFT 23 249 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */ 250 #define GEM_PHYMNTNC_REG_SHIFT 18 251 252 /* Marvell PHY definitions */ 253 #define BOARD_PHY_ADDRESS 0 /* PHY address we will emulate a device at */ 254 255 #define PHY_REG_CONTROL 0 256 #define PHY_REG_STATUS 1 257 #define PHY_REG_PHYID1 2 258 #define PHY_REG_PHYID2 3 259 #define PHY_REG_ANEGADV 4 260 #define PHY_REG_LINKPABIL 5 261 #define PHY_REG_ANEGEXP 6 262 #define PHY_REG_NEXTP 7 263 #define PHY_REG_LINKPNEXTP 8 264 #define PHY_REG_100BTCTRL 9 265 #define PHY_REG_1000BTSTAT 10 266 #define PHY_REG_EXTSTAT 15 267 #define PHY_REG_PHYSPCFC_CTL 16 268 #define PHY_REG_PHYSPCFC_ST 17 269 #define PHY_REG_INT_EN 18 270 #define PHY_REG_INT_ST 19 271 #define PHY_REG_EXT_PHYSPCFC_CTL 20 272 #define PHY_REG_RXERR 21 273 #define PHY_REG_EACD 22 274 #define PHY_REG_LED 24 275 #define PHY_REG_LED_OVRD 25 276 #define PHY_REG_EXT_PHYSPCFC_CTL2 26 277 #define PHY_REG_EXT_PHYSPCFC_ST 27 278 #define PHY_REG_CABLE_DIAG 28 279 280 #define PHY_REG_CONTROL_RST 0x8000 281 #define PHY_REG_CONTROL_LOOP 0x4000 282 #define PHY_REG_CONTROL_ANEG 0x1000 283 #define PHY_REG_CONTROL_ANRESTART 0x0200 284 285 #define PHY_REG_STATUS_LINK 0x0004 286 #define PHY_REG_STATUS_ANEGCMPL 0x0020 287 288 #define PHY_REG_INT_ST_ANEGCMPL 0x0800 289 #define PHY_REG_INT_ST_LINKC 0x0400 290 #define PHY_REG_INT_ST_ENERGY 0x0010 291 292 /***********************************************************************/ 293 #define GEM_RX_REJECT (-1) 294 #define GEM_RX_PROMISCUOUS_ACCEPT (-2) 295 #define GEM_RX_BROADCAST_ACCEPT (-3) 296 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4) 297 #define GEM_RX_UNICAST_HASH_ACCEPT (-5) 298 299 #define GEM_RX_SAR_ACCEPT 0 300 301 /***********************************************************************/ 302 303 #define DESC_1_USED 0x80000000 304 #define DESC_1_LENGTH 0x00001FFF 305 306 #define DESC_1_TX_WRAP 0x40000000 307 #define DESC_1_TX_LAST 0x00008000 308 309 #define DESC_0_RX_WRAP 0x00000002 310 #define DESC_0_RX_OWNERSHIP 0x00000001 311 312 #define R_DESC_1_RX_SAR_SHIFT 25 313 #define R_DESC_1_RX_SAR_LENGTH 2 314 #define R_DESC_1_RX_SAR_MATCH (1 << 27) 315 #define R_DESC_1_RX_UNICAST_HASH (1 << 29) 316 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30) 317 #define R_DESC_1_RX_BROADCAST (1 << 31) 318 319 #define DESC_1_RX_SOF 0x00004000 320 #define DESC_1_RX_EOF 0x00008000 321 322 #define GEM_MODID_VALUE 0x00020118 323 324 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) 325 { 326 uint64_t ret = desc[0]; 327 328 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 329 ret |= (uint64_t)desc[2] << 32; 330 } 331 return ret; 332 } 333 334 static inline unsigned tx_desc_get_used(uint32_t *desc) 335 { 336 return (desc[1] & DESC_1_USED) ? 1 : 0; 337 } 338 339 static inline void tx_desc_set_used(uint32_t *desc) 340 { 341 desc[1] |= DESC_1_USED; 342 } 343 344 static inline unsigned tx_desc_get_wrap(uint32_t *desc) 345 { 346 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0; 347 } 348 349 static inline unsigned tx_desc_get_last(uint32_t *desc) 350 { 351 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0; 352 } 353 354 static inline unsigned tx_desc_get_length(uint32_t *desc) 355 { 356 return desc[1] & DESC_1_LENGTH; 357 } 358 359 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue) 360 { 361 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue); 362 DB_PRINT("bufaddr: 0x%08x\n", *desc); 363 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc)); 364 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc)); 365 DB_PRINT("last: %d\n", tx_desc_get_last(desc)); 366 DB_PRINT("length: %d\n", tx_desc_get_length(desc)); 367 } 368 369 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) 370 { 371 uint64_t ret = desc[0] & ~0x3UL; 372 373 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 374 ret |= (uint64_t)desc[2] << 32; 375 } 376 return ret; 377 } 378 379 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx) 380 { 381 int ret = 2; 382 383 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 384 ret += 2; 385 } 386 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT 387 : GEM_DMACFG_TX_BD_EXT)) { 388 ret += 2; 389 } 390 391 assert(ret <= DESC_MAX_NUM_WORDS); 392 return ret; 393 } 394 395 static inline unsigned rx_desc_get_wrap(uint32_t *desc) 396 { 397 return desc[0] & DESC_0_RX_WRAP ? 1 : 0; 398 } 399 400 static inline unsigned rx_desc_get_ownership(uint32_t *desc) 401 { 402 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0; 403 } 404 405 static inline void rx_desc_set_ownership(uint32_t *desc) 406 { 407 desc[0] |= DESC_0_RX_OWNERSHIP; 408 } 409 410 static inline void rx_desc_set_sof(uint32_t *desc) 411 { 412 desc[1] |= DESC_1_RX_SOF; 413 } 414 415 static inline void rx_desc_clear_control(uint32_t *desc) 416 { 417 desc[1] = 0; 418 } 419 420 static inline void rx_desc_set_eof(uint32_t *desc) 421 { 422 desc[1] |= DESC_1_RX_EOF; 423 } 424 425 static inline void rx_desc_set_length(uint32_t *desc, unsigned len) 426 { 427 desc[1] &= ~DESC_1_LENGTH; 428 desc[1] |= len; 429 } 430 431 static inline void rx_desc_set_broadcast(uint32_t *desc) 432 { 433 desc[1] |= R_DESC_1_RX_BROADCAST; 434 } 435 436 static inline void rx_desc_set_unicast_hash(uint32_t *desc) 437 { 438 desc[1] |= R_DESC_1_RX_UNICAST_HASH; 439 } 440 441 static inline void rx_desc_set_multicast_hash(uint32_t *desc) 442 { 443 desc[1] |= R_DESC_1_RX_MULTICAST_HASH; 444 } 445 446 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx) 447 { 448 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH, 449 sar_idx); 450 desc[1] |= R_DESC_1_RX_SAR_MATCH; 451 } 452 453 /* The broadcast MAC address: 0xFFFFFFFFFFFF */ 454 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 455 456 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx) 457 { 458 uint32_t size; 459 if (s->regs[GEM_NWCFG] & GEM_NWCFG_JUMBO_FRAME) { 460 size = s->regs[GEM_JUMBO_MAX_LEN]; 461 if (size > s->jumbo_max_len) { 462 size = s->jumbo_max_len; 463 qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be" 464 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len); 465 } 466 } else if (tx) { 467 size = 1518; 468 } else { 469 size = s->regs[GEM_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518; 470 } 471 return size; 472 } 473 474 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag) 475 { 476 if (q == 0) { 477 s->regs[GEM_ISR] |= flag & ~(s->regs[GEM_IMR]); 478 } else { 479 s->regs[GEM_INT_Q1_STATUS + q - 1] |= flag & 480 ~(s->regs[GEM_INT_Q1_MASK + q - 1]); 481 } 482 } 483 484 /* 485 * gem_init_register_masks: 486 * One time initialization. 487 * Set masks to identify which register bits have magical clear properties 488 */ 489 static void gem_init_register_masks(CadenceGEMState *s) 490 { 491 unsigned int i; 492 /* Mask of register bits which are read only */ 493 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro)); 494 s->regs_ro[GEM_NWCTRL] = 0xFFF80000; 495 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF; 496 s->regs_ro[GEM_DMACFG] = 0x8E00F000; 497 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08; 498 s->regs_ro[GEM_RXQBASE] = 0x00000003; 499 s->regs_ro[GEM_TXQBASE] = 0x00000003; 500 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0; 501 s->regs_ro[GEM_ISR] = 0xFFFFFFFF; 502 s->regs_ro[GEM_IMR] = 0xFFFFFFFF; 503 s->regs_ro[GEM_MODID] = 0xFFFFFFFF; 504 for (i = 0; i < s->num_priority_queues; i++) { 505 s->regs_ro[GEM_INT_Q1_STATUS + i] = 0xFFFFFFFF; 506 s->regs_ro[GEM_INT_Q1_ENABLE + i] = 0xFFFFF319; 507 s->regs_ro[GEM_INT_Q1_DISABLE + i] = 0xFFFFF319; 508 s->regs_ro[GEM_INT_Q1_MASK + i] = 0xFFFFFFFF; 509 } 510 511 /* Mask of register bits which are clear on read */ 512 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc)); 513 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF; 514 for (i = 0; i < s->num_priority_queues; i++) { 515 s->regs_rtc[GEM_INT_Q1_STATUS + i] = 0x00000CE6; 516 } 517 518 /* Mask of register bits which are write 1 to clear */ 519 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c)); 520 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7; 521 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F; 522 523 /* Mask of register bits which are write only */ 524 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo)); 525 s->regs_wo[GEM_NWCTRL] = 0x00073E60; 526 s->regs_wo[GEM_IER] = 0x07FFFFFF; 527 s->regs_wo[GEM_IDR] = 0x07FFFFFF; 528 for (i = 0; i < s->num_priority_queues; i++) { 529 s->regs_wo[GEM_INT_Q1_ENABLE + i] = 0x00000CE6; 530 s->regs_wo[GEM_INT_Q1_DISABLE + i] = 0x00000CE6; 531 } 532 } 533 534 /* 535 * phy_update_link: 536 * Make the emulated PHY link state match the QEMU "interface" state. 537 */ 538 static void phy_update_link(CadenceGEMState *s) 539 { 540 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down); 541 542 /* Autonegotiation status mirrors link status. */ 543 if (qemu_get_queue(s->nic)->link_down) { 544 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL | 545 PHY_REG_STATUS_LINK); 546 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC; 547 } else { 548 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL | 549 PHY_REG_STATUS_LINK); 550 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC | 551 PHY_REG_INT_ST_ANEGCMPL | 552 PHY_REG_INT_ST_ENERGY); 553 } 554 } 555 556 static bool gem_can_receive(NetClientState *nc) 557 { 558 CadenceGEMState *s; 559 int i; 560 561 s = qemu_get_nic_opaque(nc); 562 563 /* Do nothing if receive is not enabled. */ 564 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) { 565 if (s->can_rx_state != 1) { 566 s->can_rx_state = 1; 567 DB_PRINT("can't receive - no enable\n"); 568 } 569 return false; 570 } 571 572 for (i = 0; i < s->num_priority_queues; i++) { 573 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) { 574 break; 575 } 576 }; 577 578 if (i == s->num_priority_queues) { 579 if (s->can_rx_state != 2) { 580 s->can_rx_state = 2; 581 DB_PRINT("can't receive - all the buffer descriptors are busy\n"); 582 } 583 return false; 584 } 585 586 if (s->can_rx_state != 0) { 587 s->can_rx_state = 0; 588 DB_PRINT("can receive\n"); 589 } 590 return true; 591 } 592 593 /* 594 * gem_update_int_status: 595 * Raise or lower interrupt based on current status. 596 */ 597 static void gem_update_int_status(CadenceGEMState *s) 598 { 599 int i; 600 601 qemu_set_irq(s->irq[0], !!s->regs[GEM_ISR]); 602 603 for (i = 1; i < s->num_priority_queues; ++i) { 604 qemu_set_irq(s->irq[i], !!s->regs[GEM_INT_Q1_STATUS + i - 1]); 605 } 606 } 607 608 /* 609 * gem_receive_updatestats: 610 * Increment receive statistics. 611 */ 612 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet, 613 unsigned bytes) 614 { 615 uint64_t octets; 616 617 /* Total octets (bytes) received */ 618 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) | 619 s->regs[GEM_OCTRXHI]; 620 octets += bytes; 621 s->regs[GEM_OCTRXLO] = octets >> 32; 622 s->regs[GEM_OCTRXHI] = octets; 623 624 /* Error-free Frames received */ 625 s->regs[GEM_RXCNT]++; 626 627 /* Error-free Broadcast Frames counter */ 628 if (!memcmp(packet, broadcast_addr, 6)) { 629 s->regs[GEM_RXBROADCNT]++; 630 } 631 632 /* Error-free Multicast Frames counter */ 633 if (packet[0] == 0x01) { 634 s->regs[GEM_RXMULTICNT]++; 635 } 636 637 if (bytes <= 64) { 638 s->regs[GEM_RX64CNT]++; 639 } else if (bytes <= 127) { 640 s->regs[GEM_RX65CNT]++; 641 } else if (bytes <= 255) { 642 s->regs[GEM_RX128CNT]++; 643 } else if (bytes <= 511) { 644 s->regs[GEM_RX256CNT]++; 645 } else if (bytes <= 1023) { 646 s->regs[GEM_RX512CNT]++; 647 } else if (bytes <= 1518) { 648 s->regs[GEM_RX1024CNT]++; 649 } else { 650 s->regs[GEM_RX1519CNT]++; 651 } 652 } 653 654 /* 655 * Get the MAC Address bit from the specified position 656 */ 657 static unsigned get_bit(const uint8_t *mac, unsigned bit) 658 { 659 unsigned byte; 660 661 byte = mac[bit / 8]; 662 byte >>= (bit & 0x7); 663 byte &= 1; 664 665 return byte; 666 } 667 668 /* 669 * Calculate a GEM MAC Address hash index 670 */ 671 static unsigned calc_mac_hash(const uint8_t *mac) 672 { 673 int index_bit, mac_bit; 674 unsigned hash_index; 675 676 hash_index = 0; 677 mac_bit = 5; 678 for (index_bit = 5; index_bit >= 0; index_bit--) { 679 hash_index |= (get_bit(mac, mac_bit) ^ 680 get_bit(mac, mac_bit + 6) ^ 681 get_bit(mac, mac_bit + 12) ^ 682 get_bit(mac, mac_bit + 18) ^ 683 get_bit(mac, mac_bit + 24) ^ 684 get_bit(mac, mac_bit + 30) ^ 685 get_bit(mac, mac_bit + 36) ^ 686 get_bit(mac, mac_bit + 42)) << index_bit; 687 mac_bit--; 688 } 689 690 return hash_index; 691 } 692 693 /* 694 * gem_mac_address_filter: 695 * Accept or reject this destination address? 696 * Returns: 697 * GEM_RX_REJECT: reject 698 * >= 0: Specific address accept (which matched SAR is returned) 699 * others for various other modes of accept: 700 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT, 701 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT 702 */ 703 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet) 704 { 705 uint8_t *gem_spaddr; 706 int i, is_mc; 707 708 /* Promiscuous mode? */ 709 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) { 710 return GEM_RX_PROMISCUOUS_ACCEPT; 711 } 712 713 if (!memcmp(packet, broadcast_addr, 6)) { 714 /* Reject broadcast packets? */ 715 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) { 716 return GEM_RX_REJECT; 717 } 718 return GEM_RX_BROADCAST_ACCEPT; 719 } 720 721 /* Accept packets -w- hash match? */ 722 is_mc = is_multicast_ether_addr(packet); 723 if ((is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) || 724 (!is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) { 725 uint64_t buckets; 726 unsigned hash_index; 727 728 hash_index = calc_mac_hash(packet); 729 buckets = ((uint64_t)s->regs[GEM_HASHHI] << 32) | s->regs[GEM_HASHLO]; 730 if ((buckets >> hash_index) & 1) { 731 return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT 732 : GEM_RX_UNICAST_HASH_ACCEPT; 733 } 734 } 735 736 /* Check all 4 specific addresses */ 737 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]); 738 for (i = 3; i >= 0; i--) { 739 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) { 740 return GEM_RX_SAR_ACCEPT + i; 741 } 742 } 743 744 /* No address match; reject the packet */ 745 return GEM_RX_REJECT; 746 } 747 748 /* Figure out which queue the received data should be sent to */ 749 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr, 750 unsigned rxbufsize) 751 { 752 uint32_t reg; 753 bool matched, mismatched; 754 int i, j; 755 756 for (i = 0; i < s->num_type1_screeners; i++) { 757 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i]; 758 matched = false; 759 mismatched = false; 760 761 /* Screening is based on UDP Port */ 762 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) { 763 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23]; 764 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT, 765 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) { 766 matched = true; 767 } else { 768 mismatched = true; 769 } 770 } 771 772 /* Screening is based on DS/TC */ 773 if (reg & GEM_ST1R_DSTC_ENABLE) { 774 uint8_t dscp = rxbuf_ptr[14 + 1]; 775 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT, 776 GEM_ST1R_DSTC_MATCH_WIDTH)) { 777 matched = true; 778 } else { 779 mismatched = true; 780 } 781 } 782 783 if (matched && !mismatched) { 784 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH); 785 } 786 } 787 788 for (i = 0; i < s->num_type2_screeners; i++) { 789 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i]; 790 matched = false; 791 mismatched = false; 792 793 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) { 794 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13]; 795 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT, 796 GEM_ST2R_ETHERTYPE_INDEX_WIDTH); 797 798 if (et_idx > s->num_type2_screeners) { 799 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype " 800 "register index: %d\n", et_idx); 801 } 802 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 + 803 et_idx]) { 804 matched = true; 805 } else { 806 mismatched = true; 807 } 808 } 809 810 /* Compare A, B, C */ 811 for (j = 0; j < 3; j++) { 812 uint32_t cr0, cr1, mask; 813 uint16_t rx_cmp; 814 int offset; 815 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6, 816 GEM_ST2R_COMPARE_WIDTH); 817 818 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) { 819 continue; 820 } 821 if (cr_idx > s->num_type2_screeners) { 822 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare " 823 "register index: %d\n", cr_idx); 824 } 825 826 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2]; 827 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1]; 828 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT, 829 GEM_T2CW1_OFFSET_VALUE_WIDTH); 830 831 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT, 832 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) { 833 case 3: /* Skip UDP header */ 834 qemu_log_mask(LOG_UNIMP, "TCP compare offsets" 835 "unimplemented - assuming UDP\n"); 836 offset += 8; 837 /* Fallthrough */ 838 case 2: /* skip the IP header */ 839 offset += 20; 840 /* Fallthrough */ 841 case 1: /* Count from after the ethertype */ 842 offset += 14; 843 break; 844 case 0: 845 /* Offset from start of frame */ 846 break; 847 } 848 849 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset]; 850 mask = extract32(cr0, 0, 16); 851 852 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) { 853 matched = true; 854 } else { 855 mismatched = true; 856 } 857 } 858 859 if (matched && !mismatched) { 860 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH); 861 } 862 } 863 864 /* We made it here, assume it's queue 0 */ 865 return 0; 866 } 867 868 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q) 869 { 870 uint32_t base_addr = 0; 871 872 switch (q) { 873 case 0: 874 base_addr = s->regs[tx ? GEM_TXQBASE : GEM_RXQBASE]; 875 break; 876 case 1 ... (MAX_PRIORITY_QUEUES - 1): 877 base_addr = s->regs[(tx ? GEM_TRANSMIT_Q1_PTR : 878 GEM_RECEIVE_Q1_PTR) + q - 1]; 879 break; 880 default: 881 g_assert_not_reached(); 882 }; 883 884 return base_addr; 885 } 886 887 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q) 888 { 889 return gem_get_queue_base_addr(s, true, q); 890 } 891 892 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q) 893 { 894 return gem_get_queue_base_addr(s, false, q); 895 } 896 897 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q) 898 { 899 hwaddr desc_addr = 0; 900 901 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 902 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH]; 903 } 904 desc_addr <<= 32; 905 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q]; 906 return desc_addr; 907 } 908 909 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q) 910 { 911 return gem_get_desc_addr(s, true, q); 912 } 913 914 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q) 915 { 916 return gem_get_desc_addr(s, false, q); 917 } 918 919 static void gem_get_rx_desc(CadenceGEMState *s, int q) 920 { 921 hwaddr desc_addr = gem_get_rx_desc_addr(s, q); 922 923 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr); 924 925 /* read current descriptor */ 926 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, 927 s->rx_desc[q], 928 sizeof(uint32_t) * gem_get_desc_len(s, true)); 929 930 /* Descriptor owned by software ? */ 931 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) { 932 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr); 933 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF; 934 gem_set_isr(s, q, GEM_INT_RXUSED); 935 /* Handle interrupt consequences */ 936 gem_update_int_status(s); 937 } 938 } 939 940 /* 941 * gem_receive: 942 * Fit a packet handed to us by QEMU into the receive descriptor ring. 943 */ 944 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size) 945 { 946 CadenceGEMState *s = qemu_get_nic_opaque(nc); 947 unsigned rxbufsize, bytes_to_copy; 948 unsigned rxbuf_offset; 949 uint8_t *rxbuf_ptr; 950 bool first_desc = true; 951 int maf; 952 int q = 0; 953 954 /* Is this destination MAC address "for us" ? */ 955 maf = gem_mac_address_filter(s, buf); 956 if (maf == GEM_RX_REJECT) { 957 return size; /* no, drop siliently b/c it's not an error */ 958 } 959 960 /* Discard packets with receive length error enabled ? */ 961 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) { 962 unsigned type_len; 963 964 /* Fish the ethertype / length field out of the RX packet */ 965 type_len = buf[12] << 8 | buf[13]; 966 /* It is a length field, not an ethertype */ 967 if (type_len < 0x600) { 968 if (size < type_len) { 969 /* discard */ 970 return -1; 971 } 972 } 973 } 974 975 /* 976 * Determine configured receive buffer offset (probably 0) 977 */ 978 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >> 979 GEM_NWCFG_BUFF_OFST_S; 980 981 /* The configure size of each receive buffer. Determines how many 982 * buffers needed to hold this packet. 983 */ 984 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >> 985 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL; 986 bytes_to_copy = size; 987 988 /* Hardware allows a zero value here but warns against it. To avoid QEMU 989 * indefinite loops we enforce a minimum value here 990 */ 991 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) { 992 rxbufsize = GEM_DMACFG_RBUFSZ_MUL; 993 } 994 995 /* Pad to minimum length. Assume FCS field is stripped, logic 996 * below will increment it to the real minimum of 64 when 997 * not FCS stripping 998 */ 999 if (size < 60) { 1000 size = 60; 1001 } 1002 1003 /* Strip of FCS field ? (usually yes) */ 1004 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) { 1005 rxbuf_ptr = (void *)buf; 1006 } else { 1007 unsigned crc_val; 1008 1009 if (size > MAX_FRAME_SIZE - sizeof(crc_val)) { 1010 size = MAX_FRAME_SIZE - sizeof(crc_val); 1011 } 1012 bytes_to_copy = size; 1013 /* The application wants the FCS field, which QEMU does not provide. 1014 * We must try and calculate one. 1015 */ 1016 1017 memcpy(s->rx_packet, buf, size); 1018 memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size); 1019 rxbuf_ptr = s->rx_packet; 1020 crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60))); 1021 memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val)); 1022 1023 bytes_to_copy += 4; 1024 size += 4; 1025 } 1026 1027 DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size); 1028 1029 /* Find which queue we are targeting */ 1030 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize); 1031 1032 if (size > gem_get_max_buf_len(s, false)) { 1033 qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n"); 1034 gem_set_isr(s, q, GEM_INT_AMBA_ERR); 1035 return -1; 1036 } 1037 1038 while (bytes_to_copy) { 1039 hwaddr desc_addr; 1040 1041 /* Do nothing if receive is not enabled. */ 1042 if (!gem_can_receive(nc)) { 1043 return -1; 1044 } 1045 1046 DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n", 1047 MIN(bytes_to_copy, rxbufsize), 1048 rx_desc_get_buffer(s, s->rx_desc[q])); 1049 1050 /* Copy packet data to emulated DMA buffer */ 1051 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) + 1052 rxbuf_offset, 1053 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr, 1054 MIN(bytes_to_copy, rxbufsize)); 1055 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize); 1056 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize); 1057 1058 rx_desc_clear_control(s->rx_desc[q]); 1059 1060 /* Update the descriptor. */ 1061 if (first_desc) { 1062 rx_desc_set_sof(s->rx_desc[q]); 1063 first_desc = false; 1064 } 1065 if (bytes_to_copy == 0) { 1066 rx_desc_set_eof(s->rx_desc[q]); 1067 rx_desc_set_length(s->rx_desc[q], size); 1068 } 1069 rx_desc_set_ownership(s->rx_desc[q]); 1070 1071 switch (maf) { 1072 case GEM_RX_PROMISCUOUS_ACCEPT: 1073 break; 1074 case GEM_RX_BROADCAST_ACCEPT: 1075 rx_desc_set_broadcast(s->rx_desc[q]); 1076 break; 1077 case GEM_RX_UNICAST_HASH_ACCEPT: 1078 rx_desc_set_unicast_hash(s->rx_desc[q]); 1079 break; 1080 case GEM_RX_MULTICAST_HASH_ACCEPT: 1081 rx_desc_set_multicast_hash(s->rx_desc[q]); 1082 break; 1083 case GEM_RX_REJECT: 1084 abort(); 1085 default: /* SAR */ 1086 rx_desc_set_sar(s->rx_desc[q], maf); 1087 } 1088 1089 /* Descriptor write-back. */ 1090 desc_addr = gem_get_rx_desc_addr(s, q); 1091 address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, 1092 s->rx_desc[q], 1093 sizeof(uint32_t) * gem_get_desc_len(s, true)); 1094 1095 /* Next descriptor */ 1096 if (rx_desc_get_wrap(s->rx_desc[q])) { 1097 DB_PRINT("wrapping RX descriptor list\n"); 1098 s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q); 1099 } else { 1100 DB_PRINT("incrementing RX descriptor list\n"); 1101 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true); 1102 } 1103 1104 gem_get_rx_desc(s, q); 1105 } 1106 1107 /* Count it */ 1108 gem_receive_updatestats(s, buf, size); 1109 1110 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD; 1111 gem_set_isr(s, q, GEM_INT_RXCMPL); 1112 1113 /* Handle interrupt consequences */ 1114 gem_update_int_status(s); 1115 1116 return size; 1117 } 1118 1119 /* 1120 * gem_transmit_updatestats: 1121 * Increment transmit statistics. 1122 */ 1123 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet, 1124 unsigned bytes) 1125 { 1126 uint64_t octets; 1127 1128 /* Total octets (bytes) transmitted */ 1129 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) | 1130 s->regs[GEM_OCTTXHI]; 1131 octets += bytes; 1132 s->regs[GEM_OCTTXLO] = octets >> 32; 1133 s->regs[GEM_OCTTXHI] = octets; 1134 1135 /* Error-free Frames transmitted */ 1136 s->regs[GEM_TXCNT]++; 1137 1138 /* Error-free Broadcast Frames counter */ 1139 if (!memcmp(packet, broadcast_addr, 6)) { 1140 s->regs[GEM_TXBCNT]++; 1141 } 1142 1143 /* Error-free Multicast Frames counter */ 1144 if (packet[0] == 0x01) { 1145 s->regs[GEM_TXMCNT]++; 1146 } 1147 1148 if (bytes <= 64) { 1149 s->regs[GEM_TX64CNT]++; 1150 } else if (bytes <= 127) { 1151 s->regs[GEM_TX65CNT]++; 1152 } else if (bytes <= 255) { 1153 s->regs[GEM_TX128CNT]++; 1154 } else if (bytes <= 511) { 1155 s->regs[GEM_TX256CNT]++; 1156 } else if (bytes <= 1023) { 1157 s->regs[GEM_TX512CNT]++; 1158 } else if (bytes <= 1518) { 1159 s->regs[GEM_TX1024CNT]++; 1160 } else { 1161 s->regs[GEM_TX1519CNT]++; 1162 } 1163 } 1164 1165 /* 1166 * gem_transmit: 1167 * Fish packets out of the descriptor ring and feed them to QEMU 1168 */ 1169 static void gem_transmit(CadenceGEMState *s) 1170 { 1171 uint32_t desc[DESC_MAX_NUM_WORDS]; 1172 hwaddr packet_desc_addr; 1173 uint8_t *p; 1174 unsigned total_bytes; 1175 int q = 0; 1176 1177 /* Do nothing if transmit is not enabled. */ 1178 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 1179 return; 1180 } 1181 1182 DB_PRINT("\n"); 1183 1184 /* The packet we will hand off to QEMU. 1185 * Packets scattered across multiple descriptors are gathered to this 1186 * one contiguous buffer first. 1187 */ 1188 p = s->tx_packet; 1189 total_bytes = 0; 1190 1191 for (q = s->num_priority_queues - 1; q >= 0; q--) { 1192 /* read current descriptor */ 1193 packet_desc_addr = gem_get_tx_desc_addr(s, q); 1194 1195 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 1196 address_space_read(&s->dma_as, packet_desc_addr, 1197 MEMTXATTRS_UNSPECIFIED, desc, 1198 sizeof(uint32_t) * gem_get_desc_len(s, false)); 1199 /* Handle all descriptors owned by hardware */ 1200 while (tx_desc_get_used(desc) == 0) { 1201 1202 /* Do nothing if transmit is not enabled. */ 1203 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 1204 return; 1205 } 1206 print_gem_tx_desc(desc, q); 1207 1208 /* The real hardware would eat this (and possibly crash). 1209 * For QEMU let's lend a helping hand. 1210 */ 1211 if ((tx_desc_get_buffer(s, desc) == 0) || 1212 (tx_desc_get_length(desc) == 0)) { 1213 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n", 1214 packet_desc_addr); 1215 break; 1216 } 1217 1218 if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) - 1219 (p - s->tx_packet)) { 1220 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \ 1221 HWADDR_PRIx " too large: size 0x%x space 0x%zx\n", 1222 packet_desc_addr, tx_desc_get_length(desc), 1223 gem_get_max_buf_len(s, true) - (p - s->tx_packet)); 1224 gem_set_isr(s, q, GEM_INT_AMBA_ERR); 1225 break; 1226 } 1227 1228 /* Gather this fragment of the packet from "dma memory" to our 1229 * contig buffer. 1230 */ 1231 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc), 1232 MEMTXATTRS_UNSPECIFIED, 1233 p, tx_desc_get_length(desc)); 1234 p += tx_desc_get_length(desc); 1235 total_bytes += tx_desc_get_length(desc); 1236 1237 /* Last descriptor for this packet; hand the whole thing off */ 1238 if (tx_desc_get_last(desc)) { 1239 uint32_t desc_first[DESC_MAX_NUM_WORDS]; 1240 hwaddr desc_addr = gem_get_tx_desc_addr(s, q); 1241 1242 /* Modify the 1st descriptor of this packet to be owned by 1243 * the processor. 1244 */ 1245 address_space_read(&s->dma_as, desc_addr, 1246 MEMTXATTRS_UNSPECIFIED, desc_first, 1247 sizeof(desc_first)); 1248 tx_desc_set_used(desc_first); 1249 address_space_write(&s->dma_as, desc_addr, 1250 MEMTXATTRS_UNSPECIFIED, desc_first, 1251 sizeof(desc_first)); 1252 /* Advance the hardware current descriptor past this packet */ 1253 if (tx_desc_get_wrap(desc)) { 1254 s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q); 1255 } else { 1256 s->tx_desc_addr[q] = packet_desc_addr + 1257 4 * gem_get_desc_len(s, false); 1258 } 1259 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]); 1260 1261 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL; 1262 gem_set_isr(s, q, GEM_INT_TXCMPL); 1263 1264 /* Handle interrupt consequences */ 1265 gem_update_int_status(s); 1266 1267 /* Is checksum offload enabled? */ 1268 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) { 1269 net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL); 1270 } 1271 1272 /* Update MAC statistics */ 1273 gem_transmit_updatestats(s, s->tx_packet, total_bytes); 1274 1275 /* Send the packet somewhere */ 1276 if (s->phy_loop || (s->regs[GEM_NWCTRL] & 1277 GEM_NWCTRL_LOCALLOOP)) { 1278 qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet, 1279 total_bytes); 1280 } else { 1281 qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet, 1282 total_bytes); 1283 } 1284 1285 /* Prepare for next packet */ 1286 p = s->tx_packet; 1287 total_bytes = 0; 1288 } 1289 1290 /* read next descriptor */ 1291 if (tx_desc_get_wrap(desc)) { 1292 1293 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { 1294 packet_desc_addr = s->regs[GEM_TBQPH]; 1295 packet_desc_addr <<= 32; 1296 } else { 1297 packet_desc_addr = 0; 1298 } 1299 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q); 1300 } else { 1301 packet_desc_addr += 4 * gem_get_desc_len(s, false); 1302 } 1303 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 1304 address_space_read(&s->dma_as, packet_desc_addr, 1305 MEMTXATTRS_UNSPECIFIED, desc, 1306 sizeof(uint32_t) * gem_get_desc_len(s, false)); 1307 } 1308 1309 if (tx_desc_get_used(desc)) { 1310 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED; 1311 /* IRQ TXUSED is defined only for queue 0 */ 1312 if (q == 0) { 1313 gem_set_isr(s, 0, GEM_INT_TXUSED); 1314 } 1315 gem_update_int_status(s); 1316 } 1317 } 1318 } 1319 1320 static void gem_phy_reset(CadenceGEMState *s) 1321 { 1322 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); 1323 s->phy_regs[PHY_REG_CONTROL] = 0x1140; 1324 s->phy_regs[PHY_REG_STATUS] = 0x7969; 1325 s->phy_regs[PHY_REG_PHYID1] = 0x0141; 1326 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2; 1327 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1; 1328 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1; 1329 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F; 1330 s->phy_regs[PHY_REG_NEXTP] = 0x2001; 1331 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6; 1332 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300; 1333 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00; 1334 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000; 1335 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078; 1336 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00; 1337 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60; 1338 s->phy_regs[PHY_REG_LED] = 0x4100; 1339 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A; 1340 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B; 1341 1342 phy_update_link(s); 1343 } 1344 1345 static void gem_reset(DeviceState *d) 1346 { 1347 int i; 1348 CadenceGEMState *s = CADENCE_GEM(d); 1349 const uint8_t *a; 1350 uint32_t queues_mask = 0; 1351 1352 DB_PRINT("\n"); 1353 1354 /* Set post reset register values */ 1355 memset(&s->regs[0], 0, sizeof(s->regs)); 1356 s->regs[GEM_NWCFG] = 0x00080000; 1357 s->regs[GEM_NWSTATUS] = 0x00000006; 1358 s->regs[GEM_DMACFG] = 0x00020784; 1359 s->regs[GEM_IMR] = 0x07ffffff; 1360 s->regs[GEM_TXPAUSE] = 0x0000ffff; 1361 s->regs[GEM_TXPARTIALSF] = 0x000003ff; 1362 s->regs[GEM_RXPARTIALSF] = 0x000003ff; 1363 s->regs[GEM_MODID] = s->revision; 1364 s->regs[GEM_DESCONF] = 0x02D00111; 1365 s->regs[GEM_DESCONF2] = 0x2ab10000 | s->jumbo_max_len; 1366 s->regs[GEM_DESCONF5] = 0x002f2045; 1367 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK; 1368 s->regs[GEM_INT_Q1_MASK] = 0x00000CE6; 1369 s->regs[GEM_JUMBO_MAX_LEN] = s->jumbo_max_len; 1370 1371 if (s->num_priority_queues > 1) { 1372 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1); 1373 s->regs[GEM_DESCONF6] |= queues_mask; 1374 } 1375 1376 /* Set MAC address */ 1377 a = &s->conf.macaddr.a[0]; 1378 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24); 1379 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8); 1380 1381 for (i = 0; i < 4; i++) { 1382 s->sar_active[i] = false; 1383 } 1384 1385 gem_phy_reset(s); 1386 1387 gem_update_int_status(s); 1388 } 1389 1390 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num) 1391 { 1392 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]); 1393 return s->phy_regs[reg_num]; 1394 } 1395 1396 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val) 1397 { 1398 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val); 1399 1400 switch (reg_num) { 1401 case PHY_REG_CONTROL: 1402 if (val & PHY_REG_CONTROL_RST) { 1403 /* Phy reset */ 1404 gem_phy_reset(s); 1405 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP); 1406 s->phy_loop = 0; 1407 } 1408 if (val & PHY_REG_CONTROL_ANEG) { 1409 /* Complete autonegotiation immediately */ 1410 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART); 1411 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL; 1412 } 1413 if (val & PHY_REG_CONTROL_LOOP) { 1414 DB_PRINT("PHY placed in loopback\n"); 1415 s->phy_loop = 1; 1416 } else { 1417 s->phy_loop = 0; 1418 } 1419 break; 1420 } 1421 s->phy_regs[reg_num] = val; 1422 } 1423 1424 /* 1425 * gem_read32: 1426 * Read a GEM register. 1427 */ 1428 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size) 1429 { 1430 CadenceGEMState *s; 1431 uint32_t retval; 1432 s = opaque; 1433 1434 offset >>= 2; 1435 retval = s->regs[offset]; 1436 1437 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval); 1438 1439 switch (offset) { 1440 case GEM_ISR: 1441 DB_PRINT("lowering irqs on ISR read\n"); 1442 /* The interrupts get updated at the end of the function. */ 1443 break; 1444 case GEM_PHYMNTNC: 1445 if (retval & GEM_PHYMNTNC_OP_R) { 1446 uint32_t phy_addr, reg_num; 1447 1448 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1449 if (phy_addr == s->phy_addr) { 1450 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1451 retval &= 0xFFFF0000; 1452 retval |= gem_phy_read(s, reg_num); 1453 } else { 1454 retval |= 0xFFFF; /* No device at this address */ 1455 } 1456 } 1457 break; 1458 } 1459 1460 /* Squash read to clear bits */ 1461 s->regs[offset] &= ~(s->regs_rtc[offset]); 1462 1463 /* Do not provide write only bits */ 1464 retval &= ~(s->regs_wo[offset]); 1465 1466 DB_PRINT("0x%08x\n", retval); 1467 gem_update_int_status(s); 1468 return retval; 1469 } 1470 1471 /* 1472 * gem_write32: 1473 * Write a GEM register. 1474 */ 1475 static void gem_write(void *opaque, hwaddr offset, uint64_t val, 1476 unsigned size) 1477 { 1478 CadenceGEMState *s = (CadenceGEMState *)opaque; 1479 uint32_t readonly; 1480 int i; 1481 1482 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val); 1483 offset >>= 2; 1484 1485 /* Squash bits which are read only in write value */ 1486 val &= ~(s->regs_ro[offset]); 1487 /* Preserve (only) bits which are read only and wtc in register */ 1488 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]); 1489 1490 /* Copy register write to backing store */ 1491 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly; 1492 1493 /* do w1c */ 1494 s->regs[offset] &= ~(s->regs_w1c[offset] & val); 1495 1496 /* Handle register write side effects */ 1497 switch (offset) { 1498 case GEM_NWCTRL: 1499 if (val & GEM_NWCTRL_RXENA) { 1500 for (i = 0; i < s->num_priority_queues; ++i) { 1501 gem_get_rx_desc(s, i); 1502 } 1503 } 1504 if (val & GEM_NWCTRL_TXSTART) { 1505 gem_transmit(s); 1506 } 1507 if (!(val & GEM_NWCTRL_TXENA)) { 1508 /* Reset to start of Q when transmit disabled. */ 1509 for (i = 0; i < s->num_priority_queues; i++) { 1510 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i); 1511 } 1512 } 1513 if (gem_can_receive(qemu_get_queue(s->nic))) { 1514 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1515 } 1516 break; 1517 1518 case GEM_TXSTATUS: 1519 gem_update_int_status(s); 1520 break; 1521 case GEM_RXQBASE: 1522 s->rx_desc_addr[0] = val; 1523 break; 1524 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR: 1525 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val; 1526 break; 1527 case GEM_TXQBASE: 1528 s->tx_desc_addr[0] = val; 1529 break; 1530 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR: 1531 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val; 1532 break; 1533 case GEM_RXSTATUS: 1534 gem_update_int_status(s); 1535 break; 1536 case GEM_IER: 1537 s->regs[GEM_IMR] &= ~val; 1538 gem_update_int_status(s); 1539 break; 1540 case GEM_JUMBO_MAX_LEN: 1541 s->regs[GEM_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK; 1542 break; 1543 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE: 1544 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val; 1545 gem_update_int_status(s); 1546 break; 1547 case GEM_IDR: 1548 s->regs[GEM_IMR] |= val; 1549 gem_update_int_status(s); 1550 break; 1551 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE: 1552 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val; 1553 gem_update_int_status(s); 1554 break; 1555 case GEM_SPADDR1LO: 1556 case GEM_SPADDR2LO: 1557 case GEM_SPADDR3LO: 1558 case GEM_SPADDR4LO: 1559 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false; 1560 break; 1561 case GEM_SPADDR1HI: 1562 case GEM_SPADDR2HI: 1563 case GEM_SPADDR3HI: 1564 case GEM_SPADDR4HI: 1565 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true; 1566 break; 1567 case GEM_PHYMNTNC: 1568 if (val & GEM_PHYMNTNC_OP_W) { 1569 uint32_t phy_addr, reg_num; 1570 1571 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1572 if (phy_addr == s->phy_addr) { 1573 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1574 gem_phy_write(s, reg_num, val); 1575 } 1576 } 1577 break; 1578 } 1579 1580 DB_PRINT("newval: 0x%08x\n", s->regs[offset]); 1581 } 1582 1583 static const MemoryRegionOps gem_ops = { 1584 .read = gem_read, 1585 .write = gem_write, 1586 .endianness = DEVICE_LITTLE_ENDIAN, 1587 }; 1588 1589 static void gem_set_link(NetClientState *nc) 1590 { 1591 CadenceGEMState *s = qemu_get_nic_opaque(nc); 1592 1593 DB_PRINT("\n"); 1594 phy_update_link(s); 1595 gem_update_int_status(s); 1596 } 1597 1598 static NetClientInfo net_gem_info = { 1599 .type = NET_CLIENT_DRIVER_NIC, 1600 .size = sizeof(NICState), 1601 .can_receive = gem_can_receive, 1602 .receive = gem_receive, 1603 .link_status_changed = gem_set_link, 1604 }; 1605 1606 static void gem_realize(DeviceState *dev, Error **errp) 1607 { 1608 CadenceGEMState *s = CADENCE_GEM(dev); 1609 int i; 1610 1611 address_space_init(&s->dma_as, 1612 s->dma_mr ? s->dma_mr : get_system_memory(), "dma"); 1613 1614 if (s->num_priority_queues == 0 || 1615 s->num_priority_queues > MAX_PRIORITY_QUEUES) { 1616 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8, 1617 s->num_priority_queues); 1618 return; 1619 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) { 1620 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8, 1621 s->num_type1_screeners); 1622 return; 1623 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) { 1624 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8, 1625 s->num_type2_screeners); 1626 return; 1627 } 1628 1629 for (i = 0; i < s->num_priority_queues; ++i) { 1630 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); 1631 } 1632 1633 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1634 1635 s->nic = qemu_new_nic(&net_gem_info, &s->conf, 1636 object_get_typename(OBJECT(dev)), dev->id, s); 1637 1638 if (s->jumbo_max_len > MAX_FRAME_SIZE) { 1639 error_setg(errp, "jumbo-max-len is greater than %d", 1640 MAX_FRAME_SIZE); 1641 return; 1642 } 1643 } 1644 1645 static void gem_init(Object *obj) 1646 { 1647 CadenceGEMState *s = CADENCE_GEM(obj); 1648 DeviceState *dev = DEVICE(obj); 1649 1650 DB_PRINT("\n"); 1651 1652 gem_init_register_masks(s); 1653 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s, 1654 "enet", sizeof(s->regs)); 1655 1656 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); 1657 1658 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION, 1659 (Object **)&s->dma_mr, 1660 qdev_prop_allow_set_link_before_realize, 1661 OBJ_PROP_LINK_STRONG); 1662 } 1663 1664 static const VMStateDescription vmstate_cadence_gem = { 1665 .name = "cadence_gem", 1666 .version_id = 4, 1667 .minimum_version_id = 4, 1668 .fields = (VMStateField[]) { 1669 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG), 1670 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32), 1671 VMSTATE_UINT8(phy_loop, CadenceGEMState), 1672 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState, 1673 MAX_PRIORITY_QUEUES), 1674 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState, 1675 MAX_PRIORITY_QUEUES), 1676 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4), 1677 VMSTATE_END_OF_LIST(), 1678 } 1679 }; 1680 1681 static Property gem_properties[] = { 1682 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf), 1683 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision, 1684 GEM_MODID_VALUE), 1685 DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS), 1686 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState, 1687 num_priority_queues, 1), 1688 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState, 1689 num_type1_screeners, 4), 1690 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState, 1691 num_type2_screeners, 4), 1692 DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState, 1693 jumbo_max_len, 10240), 1694 DEFINE_PROP_END_OF_LIST(), 1695 }; 1696 1697 static void gem_class_init(ObjectClass *klass, void *data) 1698 { 1699 DeviceClass *dc = DEVICE_CLASS(klass); 1700 1701 dc->realize = gem_realize; 1702 device_class_set_props(dc, gem_properties); 1703 dc->vmsd = &vmstate_cadence_gem; 1704 dc->reset = gem_reset; 1705 } 1706 1707 static const TypeInfo gem_info = { 1708 .name = TYPE_CADENCE_GEM, 1709 .parent = TYPE_SYS_BUS_DEVICE, 1710 .instance_size = sizeof(CadenceGEMState), 1711 .instance_init = gem_init, 1712 .class_init = gem_class_init, 1713 }; 1714 1715 static void gem_register_types(void) 1716 { 1717 type_register_static(&gem_info); 1718 } 1719 1720 type_init(gem_register_types) 1721