xref: /openbmc/qemu/hw/net/cadence_gem.c (revision 6cdda0ff)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "qapi/error.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 #include "sysemu/dma.h"
36 #include "net/checksum.h"
37 
38 #ifdef CADENCE_GEM_ERR_DEBUG
39 #define DB_PRINT(...) do { \
40     fprintf(stderr,  ": %s: ", __func__); \
41     fprintf(stderr, ## __VA_ARGS__); \
42     } while (0)
43 #else
44     #define DB_PRINT(...)
45 #endif
46 
47 #define GEM_NWCTRL        (0x00000000/4) /* Network Control reg */
48 #define GEM_NWCFG         (0x00000004/4) /* Network Config reg */
49 #define GEM_NWSTATUS      (0x00000008/4) /* Network Status reg */
50 #define GEM_USERIO        (0x0000000C/4) /* User IO reg */
51 #define GEM_DMACFG        (0x00000010/4) /* DMA Control reg */
52 #define GEM_TXSTATUS      (0x00000014/4) /* TX Status reg */
53 #define GEM_RXQBASE       (0x00000018/4) /* RX Q Base address reg */
54 #define GEM_TXQBASE       (0x0000001C/4) /* TX Q Base address reg */
55 #define GEM_RXSTATUS      (0x00000020/4) /* RX Status reg */
56 #define GEM_ISR           (0x00000024/4) /* Interrupt Status reg */
57 #define GEM_IER           (0x00000028/4) /* Interrupt Enable reg */
58 #define GEM_IDR           (0x0000002C/4) /* Interrupt Disable reg */
59 #define GEM_IMR           (0x00000030/4) /* Interrupt Mask reg */
60 #define GEM_PHYMNTNC      (0x00000034/4) /* Phy Maintenance reg */
61 #define GEM_RXPAUSE       (0x00000038/4) /* RX Pause Time reg */
62 #define GEM_TXPAUSE       (0x0000003C/4) /* TX Pause Time reg */
63 #define GEM_TXPARTIALSF   (0x00000040/4) /* TX Partial Store and Forward */
64 #define GEM_RXPARTIALSF   (0x00000044/4) /* RX Partial Store and Forward */
65 #define GEM_HASHLO        (0x00000080/4) /* Hash Low address reg */
66 #define GEM_HASHHI        (0x00000084/4) /* Hash High address reg */
67 #define GEM_SPADDR1LO     (0x00000088/4) /* Specific addr 1 low reg */
68 #define GEM_SPADDR1HI     (0x0000008C/4) /* Specific addr 1 high reg */
69 #define GEM_SPADDR2LO     (0x00000090/4) /* Specific addr 2 low reg */
70 #define GEM_SPADDR2HI     (0x00000094/4) /* Specific addr 2 high reg */
71 #define GEM_SPADDR3LO     (0x00000098/4) /* Specific addr 3 low reg */
72 #define GEM_SPADDR3HI     (0x0000009C/4) /* Specific addr 3 high reg */
73 #define GEM_SPADDR4LO     (0x000000A0/4) /* Specific addr 4 low reg */
74 #define GEM_SPADDR4HI     (0x000000A4/4) /* Specific addr 4 high reg */
75 #define GEM_TIDMATCH1     (0x000000A8/4) /* Type ID1 Match reg */
76 #define GEM_TIDMATCH2     (0x000000AC/4) /* Type ID2 Match reg */
77 #define GEM_TIDMATCH3     (0x000000B0/4) /* Type ID3 Match reg */
78 #define GEM_TIDMATCH4     (0x000000B4/4) /* Type ID4 Match reg */
79 #define GEM_WOLAN         (0x000000B8/4) /* Wake on LAN reg */
80 #define GEM_IPGSTRETCH    (0x000000BC/4) /* IPG Stretch reg */
81 #define GEM_SVLAN         (0x000000C0/4) /* Stacked VLAN reg */
82 #define GEM_MODID         (0x000000FC/4) /* Module ID reg */
83 #define GEM_OCTTXLO       (0x00000100/4) /* Octects transmitted Low reg */
84 #define GEM_OCTTXHI       (0x00000104/4) /* Octects transmitted High reg */
85 #define GEM_TXCNT         (0x00000108/4) /* Error-free Frames transmitted */
86 #define GEM_TXBCNT        (0x0000010C/4) /* Error-free Broadcast Frames */
87 #define GEM_TXMCNT        (0x00000110/4) /* Error-free Multicast Frame */
88 #define GEM_TXPAUSECNT    (0x00000114/4) /* Pause Frames Transmitted */
89 #define GEM_TX64CNT       (0x00000118/4) /* Error-free 64 TX */
90 #define GEM_TX65CNT       (0x0000011C/4) /* Error-free 65-127 TX */
91 #define GEM_TX128CNT      (0x00000120/4) /* Error-free 128-255 TX */
92 #define GEM_TX256CNT      (0x00000124/4) /* Error-free 256-511 */
93 #define GEM_TX512CNT      (0x00000128/4) /* Error-free 512-1023 TX */
94 #define GEM_TX1024CNT     (0x0000012C/4) /* Error-free 1024-1518 TX */
95 #define GEM_TX1519CNT     (0x00000130/4) /* Error-free larger than 1519 TX */
96 #define GEM_TXURUNCNT     (0x00000134/4) /* TX under run error counter */
97 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
98 #define GEM_MULTCOLLCNT   (0x0000013C/4) /* Multiple Collision Frames */
99 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
100 #define GEM_LATECOLLCNT   (0x00000144/4) /* Late Collision Frames */
101 #define GEM_DEFERTXCNT    (0x00000148/4) /* Deferred Transmission Frames */
102 #define GEM_CSENSECNT     (0x0000014C/4) /* Carrier Sense Error Counter */
103 #define GEM_OCTRXLO       (0x00000150/4) /* Octects Received register Low */
104 #define GEM_OCTRXHI       (0x00000154/4) /* Octects Received register High */
105 #define GEM_RXCNT         (0x00000158/4) /* Error-free Frames Received */
106 #define GEM_RXBROADCNT    (0x0000015C/4) /* Error-free Broadcast Frames RX */
107 #define GEM_RXMULTICNT    (0x00000160/4) /* Error-free Multicast Frames RX */
108 #define GEM_RXPAUSECNT    (0x00000164/4) /* Pause Frames Received Counter */
109 #define GEM_RX64CNT       (0x00000168/4) /* Error-free 64 byte Frames RX */
110 #define GEM_RX65CNT       (0x0000016C/4) /* Error-free 65-127B Frames RX */
111 #define GEM_RX128CNT      (0x00000170/4) /* Error-free 128-255B Frames RX */
112 #define GEM_RX256CNT      (0x00000174/4) /* Error-free 256-512B Frames RX */
113 #define GEM_RX512CNT      (0x00000178/4) /* Error-free 512-1023B Frames RX */
114 #define GEM_RX1024CNT     (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
115 #define GEM_RX1519CNT     (0x00000180/4) /* Error-free 1519-max Frames RX */
116 #define GEM_RXUNDERCNT    (0x00000184/4) /* Undersize Frames Received */
117 #define GEM_RXOVERCNT     (0x00000188/4) /* Oversize Frames Received */
118 #define GEM_RXJABCNT      (0x0000018C/4) /* Jabbers Received Counter */
119 #define GEM_RXFCSCNT      (0x00000190/4) /* Frame Check seq. Error Counter */
120 #define GEM_RXLENERRCNT   (0x00000194/4) /* Length Field Error Counter */
121 #define GEM_RXSYMERRCNT   (0x00000198/4) /* Symbol Error Counter */
122 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
123 #define GEM_RXRSCERRCNT   (0x000001A0/4) /* Receive Resource Error Counter */
124 #define GEM_RXORUNCNT     (0x000001A4/4) /* Receive Overrun Counter */
125 #define GEM_RXIPCSERRCNT  (0x000001A8/4) /* IP header Checksum Error Counter */
126 #define GEM_RXTCPCCNT     (0x000001AC/4) /* TCP Checksum Error Counter */
127 #define GEM_RXUDPCCNT     (0x000001B0/4) /* UDP Checksum Error Counter */
128 
129 #define GEM_1588S         (0x000001D0/4) /* 1588 Timer Seconds */
130 #define GEM_1588NS        (0x000001D4/4) /* 1588 Timer Nanoseconds */
131 #define GEM_1588ADJ       (0x000001D8/4) /* 1588 Timer Adjust */
132 #define GEM_1588INC       (0x000001DC/4) /* 1588 Timer Increment */
133 #define GEM_PTPETXS       (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
134 #define GEM_PTPETXNS      (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
135 #define GEM_PTPERXS       (0x000001E8/4) /* PTP Event Frame Received (s) */
136 #define GEM_PTPERXNS      (0x000001EC/4) /* PTP Event Frame Received (ns) */
137 #define GEM_PTPPTXS       (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
138 #define GEM_PTPPTXNS      (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
139 #define GEM_PTPPRXS       (0x000001E8/4) /* PTP Peer Frame Received (s) */
140 #define GEM_PTPPRXNS      (0x000001EC/4) /* PTP Peer Frame Received (ns) */
141 
142 /* Design Configuration Registers */
143 #define GEM_DESCONF       (0x00000280/4)
144 #define GEM_DESCONF2      (0x00000284/4)
145 #define GEM_DESCONF3      (0x00000288/4)
146 #define GEM_DESCONF4      (0x0000028C/4)
147 #define GEM_DESCONF5      (0x00000290/4)
148 #define GEM_DESCONF6      (0x00000294/4)
149 #define GEM_DESCONF6_64B_MASK (1U << 23)
150 #define GEM_DESCONF7      (0x00000298/4)
151 
152 #define GEM_INT_Q1_STATUS               (0x00000400 / 4)
153 #define GEM_INT_Q1_MASK                 (0x00000640 / 4)
154 
155 #define GEM_TRANSMIT_Q1_PTR             (0x00000440 / 4)
156 #define GEM_TRANSMIT_Q7_PTR             (GEM_TRANSMIT_Q1_PTR + 6)
157 
158 #define GEM_RECEIVE_Q1_PTR              (0x00000480 / 4)
159 #define GEM_RECEIVE_Q7_PTR              (GEM_RECEIVE_Q1_PTR + 6)
160 
161 #define GEM_TBQPH                       (0x000004C8 / 4)
162 #define GEM_RBQPH                       (0x000004D4 / 4)
163 
164 #define GEM_INT_Q1_ENABLE               (0x00000600 / 4)
165 #define GEM_INT_Q7_ENABLE               (GEM_INT_Q1_ENABLE + 6)
166 
167 #define GEM_INT_Q1_DISABLE              (0x00000620 / 4)
168 #define GEM_INT_Q7_DISABLE              (GEM_INT_Q1_DISABLE + 6)
169 
170 #define GEM_INT_Q1_MASK                 (0x00000640 / 4)
171 #define GEM_INT_Q7_MASK                 (GEM_INT_Q1_MASK + 6)
172 
173 #define GEM_SCREENING_TYPE1_REGISTER_0  (0x00000500 / 4)
174 
175 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE  (1 << 29)
176 #define GEM_ST1R_DSTC_ENABLE            (1 << 28)
177 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT   (12)
178 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH   (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
179 #define GEM_ST1R_DSTC_MATCH_SHIFT       (4)
180 #define GEM_ST1R_DSTC_MATCH_WIDTH       (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
181 #define GEM_ST1R_QUEUE_SHIFT            (0)
182 #define GEM_ST1R_QUEUE_WIDTH            (3 - GEM_ST1R_QUEUE_SHIFT + 1)
183 
184 #define GEM_SCREENING_TYPE2_REGISTER_0  (0x00000540 / 4)
185 
186 #define GEM_ST2R_COMPARE_A_ENABLE       (1 << 18)
187 #define GEM_ST2R_COMPARE_A_SHIFT        (13)
188 #define GEM_ST2R_COMPARE_WIDTH          (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
189 #define GEM_ST2R_ETHERTYPE_ENABLE       (1 << 12)
190 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT  (9)
191 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH  (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
192                                             + 1)
193 #define GEM_ST2R_QUEUE_SHIFT            (0)
194 #define GEM_ST2R_QUEUE_WIDTH            (3 - GEM_ST2R_QUEUE_SHIFT + 1)
195 
196 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0     (0x000006e0 / 4)
197 #define GEM_TYPE2_COMPARE_0_WORD_0              (0x00000700 / 4)
198 
199 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT  (7)
200 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH  (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
201 #define GEM_T2CW1_OFFSET_VALUE_SHIFT    (0)
202 #define GEM_T2CW1_OFFSET_VALUE_WIDTH    (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
203 
204 /*****************************************/
205 #define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
206 #define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
207 #define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
208 #define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */
209 
210 #define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
211 #define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
212 #define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
213 #define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
214 #define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
215 #define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
216 #define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
217 #define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
218 
219 #define GEM_DMACFG_ADDR_64B    (1U << 30)
220 #define GEM_DMACFG_TX_BD_EXT   (1U << 29)
221 #define GEM_DMACFG_RX_BD_EXT   (1U << 28)
222 #define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
223 #define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
224 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
225 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
226 
227 #define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
228 #define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
229 
230 #define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
231 #define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
232 
233 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
234 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
235 #define GEM_INT_TXUSED         0x00000008
236 #define GEM_INT_RXUSED         0x00000004
237 #define GEM_INT_RXCMPL        0x00000002
238 
239 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
240 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
241 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
242 #define GEM_PHYMNTNC_ADDR_SHFT 23
243 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
244 #define GEM_PHYMNTNC_REG_SHIFT 18
245 
246 /* Marvell PHY definitions */
247 #define BOARD_PHY_ADDRESS    23 /* PHY address we will emulate a device at */
248 
249 #define PHY_REG_CONTROL      0
250 #define PHY_REG_STATUS       1
251 #define PHY_REG_PHYID1       2
252 #define PHY_REG_PHYID2       3
253 #define PHY_REG_ANEGADV      4
254 #define PHY_REG_LINKPABIL    5
255 #define PHY_REG_ANEGEXP      6
256 #define PHY_REG_NEXTP        7
257 #define PHY_REG_LINKPNEXTP   8
258 #define PHY_REG_100BTCTRL    9
259 #define PHY_REG_1000BTSTAT   10
260 #define PHY_REG_EXTSTAT      15
261 #define PHY_REG_PHYSPCFC_CTL 16
262 #define PHY_REG_PHYSPCFC_ST  17
263 #define PHY_REG_INT_EN       18
264 #define PHY_REG_INT_ST       19
265 #define PHY_REG_EXT_PHYSPCFC_CTL  20
266 #define PHY_REG_RXERR        21
267 #define PHY_REG_EACD         22
268 #define PHY_REG_LED          24
269 #define PHY_REG_LED_OVRD     25
270 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
271 #define PHY_REG_EXT_PHYSPCFC_ST   27
272 #define PHY_REG_CABLE_DIAG   28
273 
274 #define PHY_REG_CONTROL_RST       0x8000
275 #define PHY_REG_CONTROL_LOOP      0x4000
276 #define PHY_REG_CONTROL_ANEG      0x1000
277 #define PHY_REG_CONTROL_ANRESTART 0x0200
278 
279 #define PHY_REG_STATUS_LINK     0x0004
280 #define PHY_REG_STATUS_ANEGCMPL 0x0020
281 
282 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
283 #define PHY_REG_INT_ST_LINKC    0x0400
284 #define PHY_REG_INT_ST_ENERGY   0x0010
285 
286 /***********************************************************************/
287 #define GEM_RX_REJECT                   (-1)
288 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
289 #define GEM_RX_BROADCAST_ACCEPT         (-3)
290 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
291 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
292 
293 #define GEM_RX_SAR_ACCEPT               0
294 
295 /***********************************************************************/
296 
297 #define DESC_1_USED 0x80000000
298 #define DESC_1_LENGTH 0x00001FFF
299 
300 #define DESC_1_TX_WRAP 0x40000000
301 #define DESC_1_TX_LAST 0x00008000
302 
303 #define DESC_0_RX_WRAP 0x00000002
304 #define DESC_0_RX_OWNERSHIP 0x00000001
305 
306 #define R_DESC_1_RX_SAR_SHIFT           25
307 #define R_DESC_1_RX_SAR_LENGTH          2
308 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
309 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
310 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
311 #define R_DESC_1_RX_BROADCAST           (1 << 31)
312 
313 #define DESC_1_RX_SOF 0x00004000
314 #define DESC_1_RX_EOF 0x00008000
315 
316 #define GEM_MODID_VALUE 0x00020118
317 
318 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
319 {
320     uint64_t ret = desc[0];
321 
322     if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
323         ret |= (uint64_t)desc[2] << 32;
324     }
325     return ret;
326 }
327 
328 static inline unsigned tx_desc_get_used(uint32_t *desc)
329 {
330     return (desc[1] & DESC_1_USED) ? 1 : 0;
331 }
332 
333 static inline void tx_desc_set_used(uint32_t *desc)
334 {
335     desc[1] |= DESC_1_USED;
336 }
337 
338 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
339 {
340     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
341 }
342 
343 static inline unsigned tx_desc_get_last(uint32_t *desc)
344 {
345     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
346 }
347 
348 static inline void tx_desc_set_last(uint32_t *desc)
349 {
350     desc[1] |= DESC_1_TX_LAST;
351 }
352 
353 static inline unsigned tx_desc_get_length(uint32_t *desc)
354 {
355     return desc[1] & DESC_1_LENGTH;
356 }
357 
358 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
359 {
360     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
361     DB_PRINT("bufaddr: 0x%08x\n", *desc);
362     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
363     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
364     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
365     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
366 }
367 
368 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
369 {
370     uint64_t ret = desc[0] & ~0x3UL;
371 
372     if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
373         ret |= (uint64_t)desc[2] << 32;
374     }
375     return ret;
376 }
377 
378 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
379 {
380     int ret = 2;
381 
382     if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
383         ret += 2;
384     }
385     if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
386                                        : GEM_DMACFG_TX_BD_EXT)) {
387         ret += 2;
388     }
389 
390     assert(ret <= DESC_MAX_NUM_WORDS);
391     return ret;
392 }
393 
394 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
395 {
396     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
397 }
398 
399 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
400 {
401     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
402 }
403 
404 static inline void rx_desc_set_ownership(uint32_t *desc)
405 {
406     desc[0] |= DESC_0_RX_OWNERSHIP;
407 }
408 
409 static inline void rx_desc_set_sof(uint32_t *desc)
410 {
411     desc[1] |= DESC_1_RX_SOF;
412 }
413 
414 static inline void rx_desc_set_eof(uint32_t *desc)
415 {
416     desc[1] |= DESC_1_RX_EOF;
417 }
418 
419 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
420 {
421     desc[1] &= ~DESC_1_LENGTH;
422     desc[1] |= len;
423 }
424 
425 static inline void rx_desc_set_broadcast(uint32_t *desc)
426 {
427     desc[1] |= R_DESC_1_RX_BROADCAST;
428 }
429 
430 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
431 {
432     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
433 }
434 
435 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
436 {
437     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
438 }
439 
440 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
441 {
442     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
443                         sar_idx);
444     desc[1] |= R_DESC_1_RX_SAR_MATCH;
445 }
446 
447 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
448 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
449 
450 /*
451  * gem_init_register_masks:
452  * One time initialization.
453  * Set masks to identify which register bits have magical clear properties
454  */
455 static void gem_init_register_masks(CadenceGEMState *s)
456 {
457     /* Mask of register bits which are read only */
458     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
459     s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
460     s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
461     s->regs_ro[GEM_DMACFG]   = 0x8E00F000;
462     s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
463     s->regs_ro[GEM_RXQBASE]  = 0x00000003;
464     s->regs_ro[GEM_TXQBASE]  = 0x00000003;
465     s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
466     s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
467     s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
468     s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;
469 
470     /* Mask of register bits which are clear on read */
471     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
472     s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;
473 
474     /* Mask of register bits which are write 1 to clear */
475     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
476     s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
477     s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
478 
479     /* Mask of register bits which are write only */
480     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
481     s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
482     s->regs_wo[GEM_IER]      = 0x07FFFFFF;
483     s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
484 }
485 
486 /*
487  * phy_update_link:
488  * Make the emulated PHY link state match the QEMU "interface" state.
489  */
490 static void phy_update_link(CadenceGEMState *s)
491 {
492     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
493 
494     /* Autonegotiation status mirrors link status.  */
495     if (qemu_get_queue(s->nic)->link_down) {
496         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
497                                          PHY_REG_STATUS_LINK);
498         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
499     } else {
500         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
501                                          PHY_REG_STATUS_LINK);
502         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
503                                         PHY_REG_INT_ST_ANEGCMPL |
504                                         PHY_REG_INT_ST_ENERGY);
505     }
506 }
507 
508 static int gem_can_receive(NetClientState *nc)
509 {
510     CadenceGEMState *s;
511     int i;
512 
513     s = qemu_get_nic_opaque(nc);
514 
515     /* Do nothing if receive is not enabled. */
516     if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
517         if (s->can_rx_state != 1) {
518             s->can_rx_state = 1;
519             DB_PRINT("can't receive - no enable\n");
520         }
521         return 0;
522     }
523 
524     for (i = 0; i < s->num_priority_queues; i++) {
525         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
526             break;
527         }
528     };
529 
530     if (i == s->num_priority_queues) {
531         if (s->can_rx_state != 2) {
532             s->can_rx_state = 2;
533             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
534         }
535         return 0;
536     }
537 
538     if (s->can_rx_state != 0) {
539         s->can_rx_state = 0;
540         DB_PRINT("can receive\n");
541     }
542     return 1;
543 }
544 
545 /*
546  * gem_update_int_status:
547  * Raise or lower interrupt based on current status.
548  */
549 static void gem_update_int_status(CadenceGEMState *s)
550 {
551     int i;
552 
553     if (!s->regs[GEM_ISR]) {
554         /* ISR isn't set, clear all the interrupts */
555         for (i = 0; i < s->num_priority_queues; ++i) {
556             qemu_set_irq(s->irq[i], 0);
557         }
558         return;
559     }
560 
561     /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
562      * check it again.
563      */
564     if (s->num_priority_queues == 1) {
565         /* No priority queues, just trigger the interrupt */
566         DB_PRINT("asserting int.\n");
567         qemu_set_irq(s->irq[0], 1);
568         return;
569     }
570 
571     for (i = 0; i < s->num_priority_queues; ++i) {
572         if (s->regs[GEM_INT_Q1_STATUS + i]) {
573             DB_PRINT("asserting int. (q=%d)\n", i);
574             qemu_set_irq(s->irq[i], 1);
575         }
576     }
577 }
578 
579 /*
580  * gem_receive_updatestats:
581  * Increment receive statistics.
582  */
583 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
584                                     unsigned bytes)
585 {
586     uint64_t octets;
587 
588     /* Total octets (bytes) received */
589     octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
590              s->regs[GEM_OCTRXHI];
591     octets += bytes;
592     s->regs[GEM_OCTRXLO] = octets >> 32;
593     s->regs[GEM_OCTRXHI] = octets;
594 
595     /* Error-free Frames received */
596     s->regs[GEM_RXCNT]++;
597 
598     /* Error-free Broadcast Frames counter */
599     if (!memcmp(packet, broadcast_addr, 6)) {
600         s->regs[GEM_RXBROADCNT]++;
601     }
602 
603     /* Error-free Multicast Frames counter */
604     if (packet[0] == 0x01) {
605         s->regs[GEM_RXMULTICNT]++;
606     }
607 
608     if (bytes <= 64) {
609         s->regs[GEM_RX64CNT]++;
610     } else if (bytes <= 127) {
611         s->regs[GEM_RX65CNT]++;
612     } else if (bytes <= 255) {
613         s->regs[GEM_RX128CNT]++;
614     } else if (bytes <= 511) {
615         s->regs[GEM_RX256CNT]++;
616     } else if (bytes <= 1023) {
617         s->regs[GEM_RX512CNT]++;
618     } else if (bytes <= 1518) {
619         s->regs[GEM_RX1024CNT]++;
620     } else {
621         s->regs[GEM_RX1519CNT]++;
622     }
623 }
624 
625 /*
626  * Get the MAC Address bit from the specified position
627  */
628 static unsigned get_bit(const uint8_t *mac, unsigned bit)
629 {
630     unsigned byte;
631 
632     byte = mac[bit / 8];
633     byte >>= (bit & 0x7);
634     byte &= 1;
635 
636     return byte;
637 }
638 
639 /*
640  * Calculate a GEM MAC Address hash index
641  */
642 static unsigned calc_mac_hash(const uint8_t *mac)
643 {
644     int index_bit, mac_bit;
645     unsigned hash_index;
646 
647     hash_index = 0;
648     mac_bit = 5;
649     for (index_bit = 5; index_bit >= 0; index_bit--) {
650         hash_index |= (get_bit(mac,  mac_bit) ^
651                                get_bit(mac, mac_bit + 6) ^
652                                get_bit(mac, mac_bit + 12) ^
653                                get_bit(mac, mac_bit + 18) ^
654                                get_bit(mac, mac_bit + 24) ^
655                                get_bit(mac, mac_bit + 30) ^
656                                get_bit(mac, mac_bit + 36) ^
657                                get_bit(mac, mac_bit + 42)) << index_bit;
658         mac_bit--;
659     }
660 
661     return hash_index;
662 }
663 
664 /*
665  * gem_mac_address_filter:
666  * Accept or reject this destination address?
667  * Returns:
668  * GEM_RX_REJECT: reject
669  * >= 0: Specific address accept (which matched SAR is returned)
670  * others for various other modes of accept:
671  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
672  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
673  */
674 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
675 {
676     uint8_t *gem_spaddr;
677     int i;
678 
679     /* Promiscuous mode? */
680     if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
681         return GEM_RX_PROMISCUOUS_ACCEPT;
682     }
683 
684     if (!memcmp(packet, broadcast_addr, 6)) {
685         /* Reject broadcast packets? */
686         if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
687             return GEM_RX_REJECT;
688         }
689         return GEM_RX_BROADCAST_ACCEPT;
690     }
691 
692     /* Accept packets -w- hash match? */
693     if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
694         (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
695         unsigned hash_index;
696 
697         hash_index = calc_mac_hash(packet);
698         if (hash_index < 32) {
699             if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
700                 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
701                                            GEM_RX_UNICAST_HASH_ACCEPT;
702             }
703         } else {
704             hash_index -= 32;
705             if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
706                 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
707                                            GEM_RX_UNICAST_HASH_ACCEPT;
708             }
709         }
710     }
711 
712     /* Check all 4 specific addresses */
713     gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
714     for (i = 3; i >= 0; i--) {
715         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
716             return GEM_RX_SAR_ACCEPT + i;
717         }
718     }
719 
720     /* No address match; reject the packet */
721     return GEM_RX_REJECT;
722 }
723 
724 /* Figure out which queue the received data should be sent to */
725 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
726                                  unsigned rxbufsize)
727 {
728     uint32_t reg;
729     bool matched, mismatched;
730     int i, j;
731 
732     for (i = 0; i < s->num_type1_screeners; i++) {
733         reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
734         matched = false;
735         mismatched = false;
736 
737         /* Screening is based on UDP Port */
738         if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
739             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
740             if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
741                                            GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
742                 matched = true;
743             } else {
744                 mismatched = true;
745             }
746         }
747 
748         /* Screening is based on DS/TC */
749         if (reg & GEM_ST1R_DSTC_ENABLE) {
750             uint8_t dscp = rxbuf_ptr[14 + 1];
751             if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
752                                        GEM_ST1R_DSTC_MATCH_WIDTH)) {
753                 matched = true;
754             } else {
755                 mismatched = true;
756             }
757         }
758 
759         if (matched && !mismatched) {
760             return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
761         }
762     }
763 
764     for (i = 0; i < s->num_type2_screeners; i++) {
765         reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
766         matched = false;
767         mismatched = false;
768 
769         if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
770             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
771             int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
772                                         GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
773 
774             if (et_idx > s->num_type2_screeners) {
775                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
776                               "register index: %d\n", et_idx);
777             }
778             if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
779                                 et_idx]) {
780                 matched = true;
781             } else {
782                 mismatched = true;
783             }
784         }
785 
786         /* Compare A, B, C */
787         for (j = 0; j < 3; j++) {
788             uint32_t cr0, cr1, mask;
789             uint16_t rx_cmp;
790             int offset;
791             int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
792                                         GEM_ST2R_COMPARE_WIDTH);
793 
794             if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
795                 continue;
796             }
797             if (cr_idx > s->num_type2_screeners) {
798                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
799                               "register index: %d\n", cr_idx);
800             }
801 
802             cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
803             cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
804             offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
805                                     GEM_T2CW1_OFFSET_VALUE_WIDTH);
806 
807             switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
808                                    GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
809             case 3: /* Skip UDP header */
810                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
811                               "unimplemented - assuming UDP\n");
812                 offset += 8;
813                 /* Fallthrough */
814             case 2: /* skip the IP header */
815                 offset += 20;
816                 /* Fallthrough */
817             case 1: /* Count from after the ethertype */
818                 offset += 14;
819                 break;
820             case 0:
821                 /* Offset from start of frame */
822                 break;
823             }
824 
825             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
826             mask = extract32(cr0, 0, 16);
827 
828             if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
829                 matched = true;
830             } else {
831                 mismatched = true;
832             }
833         }
834 
835         if (matched && !mismatched) {
836             return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
837         }
838     }
839 
840     /* We made it here, assume it's queue 0 */
841     return 0;
842 }
843 
844 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
845 {
846     hwaddr desc_addr = 0;
847 
848     if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
849         desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
850     }
851     desc_addr <<= 32;
852     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
853     return desc_addr;
854 }
855 
856 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
857 {
858     return gem_get_desc_addr(s, true, q);
859 }
860 
861 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
862 {
863     return gem_get_desc_addr(s, false, q);
864 }
865 
866 static void gem_get_rx_desc(CadenceGEMState *s, int q)
867 {
868     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
869 
870     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
871 
872     /* read current descriptor */
873     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
874                        (uint8_t *)s->rx_desc[q],
875                        sizeof(uint32_t) * gem_get_desc_len(s, true));
876 
877     /* Descriptor owned by software ? */
878     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
879         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
880         s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
881         s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
882         /* Handle interrupt consequences */
883         gem_update_int_status(s);
884     }
885 }
886 
887 /*
888  * gem_receive:
889  * Fit a packet handed to us by QEMU into the receive descriptor ring.
890  */
891 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
892 {
893     CadenceGEMState *s;
894     unsigned   rxbufsize, bytes_to_copy;
895     unsigned   rxbuf_offset;
896     uint8_t    rxbuf[2048];
897     uint8_t   *rxbuf_ptr;
898     bool first_desc = true;
899     int maf;
900     int q = 0;
901 
902     s = qemu_get_nic_opaque(nc);
903 
904     /* Is this destination MAC address "for us" ? */
905     maf = gem_mac_address_filter(s, buf);
906     if (maf == GEM_RX_REJECT) {
907         return -1;
908     }
909 
910     /* Discard packets with receive length error enabled ? */
911     if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
912         unsigned type_len;
913 
914         /* Fish the ethertype / length field out of the RX packet */
915         type_len = buf[12] << 8 | buf[13];
916         /* It is a length field, not an ethertype */
917         if (type_len < 0x600) {
918             if (size < type_len) {
919                 /* discard */
920                 return -1;
921             }
922         }
923     }
924 
925     /*
926      * Determine configured receive buffer offset (probably 0)
927      */
928     rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
929                    GEM_NWCFG_BUFF_OFST_S;
930 
931     /* The configure size of each receive buffer.  Determines how many
932      * buffers needed to hold this packet.
933      */
934     rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
935                  GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
936     bytes_to_copy = size;
937 
938     /* Hardware allows a zero value here but warns against it. To avoid QEMU
939      * indefinite loops we enforce a minimum value here
940      */
941     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
942         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
943     }
944 
945     /* Pad to minimum length. Assume FCS field is stripped, logic
946      * below will increment it to the real minimum of 64 when
947      * not FCS stripping
948      */
949     if (size < 60) {
950         size = 60;
951     }
952 
953     /* Strip of FCS field ? (usually yes) */
954     if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
955         rxbuf_ptr = (void *)buf;
956     } else {
957         unsigned crc_val;
958 
959         if (size > sizeof(rxbuf) - sizeof(crc_val)) {
960             size = sizeof(rxbuf) - sizeof(crc_val);
961         }
962         bytes_to_copy = size;
963         /* The application wants the FCS field, which QEMU does not provide.
964          * We must try and calculate one.
965          */
966 
967         memcpy(rxbuf, buf, size);
968         memset(rxbuf + size, 0, sizeof(rxbuf) - size);
969         rxbuf_ptr = rxbuf;
970         crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
971         memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
972 
973         bytes_to_copy += 4;
974         size += 4;
975     }
976 
977     DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
978 
979     /* Find which queue we are targeting */
980     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
981 
982     while (bytes_to_copy) {
983         hwaddr desc_addr;
984 
985         /* Do nothing if receive is not enabled. */
986         if (!gem_can_receive(nc)) {
987             return -1;
988         }
989 
990         DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
991                 rx_desc_get_buffer(s->rx_desc[q]));
992 
993         /* Copy packet data to emulated DMA buffer */
994         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
995                                                                   rxbuf_offset,
996                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
997                             MIN(bytes_to_copy, rxbufsize));
998         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
999         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1000 
1001         /* Update the descriptor.  */
1002         if (first_desc) {
1003             rx_desc_set_sof(s->rx_desc[q]);
1004             first_desc = false;
1005         }
1006         if (bytes_to_copy == 0) {
1007             rx_desc_set_eof(s->rx_desc[q]);
1008             rx_desc_set_length(s->rx_desc[q], size);
1009         }
1010         rx_desc_set_ownership(s->rx_desc[q]);
1011 
1012         switch (maf) {
1013         case GEM_RX_PROMISCUOUS_ACCEPT:
1014             break;
1015         case GEM_RX_BROADCAST_ACCEPT:
1016             rx_desc_set_broadcast(s->rx_desc[q]);
1017             break;
1018         case GEM_RX_UNICAST_HASH_ACCEPT:
1019             rx_desc_set_unicast_hash(s->rx_desc[q]);
1020             break;
1021         case GEM_RX_MULTICAST_HASH_ACCEPT:
1022             rx_desc_set_multicast_hash(s->rx_desc[q]);
1023             break;
1024         case GEM_RX_REJECT:
1025             abort();
1026         default: /* SAR */
1027             rx_desc_set_sar(s->rx_desc[q], maf);
1028         }
1029 
1030         /* Descriptor write-back.  */
1031         desc_addr = gem_get_rx_desc_addr(s, q);
1032         address_space_write(&s->dma_as, desc_addr,
1033                             MEMTXATTRS_UNSPECIFIED,
1034                             (uint8_t *)s->rx_desc[q],
1035                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1036 
1037         /* Next descriptor */
1038         if (rx_desc_get_wrap(s->rx_desc[q])) {
1039             DB_PRINT("wrapping RX descriptor list\n");
1040             s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1041         } else {
1042             DB_PRINT("incrementing RX descriptor list\n");
1043             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1044         }
1045 
1046         gem_get_rx_desc(s, q);
1047     }
1048 
1049     /* Count it */
1050     gem_receive_updatestats(s, buf, size);
1051 
1052     s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1053     s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1054 
1055     /* Handle interrupt consequences */
1056     gem_update_int_status(s);
1057 
1058     return size;
1059 }
1060 
1061 /*
1062  * gem_transmit_updatestats:
1063  * Increment transmit statistics.
1064  */
1065 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1066                                      unsigned bytes)
1067 {
1068     uint64_t octets;
1069 
1070     /* Total octets (bytes) transmitted */
1071     octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1072              s->regs[GEM_OCTTXHI];
1073     octets += bytes;
1074     s->regs[GEM_OCTTXLO] = octets >> 32;
1075     s->regs[GEM_OCTTXHI] = octets;
1076 
1077     /* Error-free Frames transmitted */
1078     s->regs[GEM_TXCNT]++;
1079 
1080     /* Error-free Broadcast Frames counter */
1081     if (!memcmp(packet, broadcast_addr, 6)) {
1082         s->regs[GEM_TXBCNT]++;
1083     }
1084 
1085     /* Error-free Multicast Frames counter */
1086     if (packet[0] == 0x01) {
1087         s->regs[GEM_TXMCNT]++;
1088     }
1089 
1090     if (bytes <= 64) {
1091         s->regs[GEM_TX64CNT]++;
1092     } else if (bytes <= 127) {
1093         s->regs[GEM_TX65CNT]++;
1094     } else if (bytes <= 255) {
1095         s->regs[GEM_TX128CNT]++;
1096     } else if (bytes <= 511) {
1097         s->regs[GEM_TX256CNT]++;
1098     } else if (bytes <= 1023) {
1099         s->regs[GEM_TX512CNT]++;
1100     } else if (bytes <= 1518) {
1101         s->regs[GEM_TX1024CNT]++;
1102     } else {
1103         s->regs[GEM_TX1519CNT]++;
1104     }
1105 }
1106 
1107 /*
1108  * gem_transmit:
1109  * Fish packets out of the descriptor ring and feed them to QEMU
1110  */
1111 static void gem_transmit(CadenceGEMState *s)
1112 {
1113     uint32_t desc[DESC_MAX_NUM_WORDS];
1114     hwaddr packet_desc_addr;
1115     uint8_t     tx_packet[2048];
1116     uint8_t     *p;
1117     unsigned    total_bytes;
1118     int q = 0;
1119 
1120     /* Do nothing if transmit is not enabled. */
1121     if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1122         return;
1123     }
1124 
1125     DB_PRINT("\n");
1126 
1127     /* The packet we will hand off to QEMU.
1128      * Packets scattered across multiple descriptors are gathered to this
1129      * one contiguous buffer first.
1130      */
1131     p = tx_packet;
1132     total_bytes = 0;
1133 
1134     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1135         /* read current descriptor */
1136         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1137 
1138         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1139         address_space_read(&s->dma_as, packet_desc_addr,
1140                            MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1141                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1142         /* Handle all descriptors owned by hardware */
1143         while (tx_desc_get_used(desc) == 0) {
1144 
1145             /* Do nothing if transmit is not enabled. */
1146             if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1147                 return;
1148             }
1149             print_gem_tx_desc(desc, q);
1150 
1151             /* The real hardware would eat this (and possibly crash).
1152              * For QEMU let's lend a helping hand.
1153              */
1154             if ((tx_desc_get_buffer(s, desc) == 0) ||
1155                 (tx_desc_get_length(desc) == 0)) {
1156                 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1157                          (unsigned)packet_desc_addr);
1158                 break;
1159             }
1160 
1161             if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1162                                                (p - tx_packet)) {
1163                 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1164                          "0x%x\n", (unsigned)packet_desc_addr,
1165                          (unsigned)tx_desc_get_length(desc),
1166                          sizeof(tx_packet) - (p - tx_packet));
1167                 break;
1168             }
1169 
1170             /* Gather this fragment of the packet from "dma memory" to our
1171              * contig buffer.
1172              */
1173             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1174                                MEMTXATTRS_UNSPECIFIED,
1175                                p, tx_desc_get_length(desc));
1176             p += tx_desc_get_length(desc);
1177             total_bytes += tx_desc_get_length(desc);
1178 
1179             /* Last descriptor for this packet; hand the whole thing off */
1180             if (tx_desc_get_last(desc)) {
1181                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1182                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1183 
1184                 /* Modify the 1st descriptor of this packet to be owned by
1185                  * the processor.
1186                  */
1187                 address_space_read(&s->dma_as, desc_addr,
1188                                    MEMTXATTRS_UNSPECIFIED,
1189                                    (uint8_t *)desc_first,
1190                                    sizeof(desc_first));
1191                 tx_desc_set_used(desc_first);
1192                 address_space_write(&s->dma_as, desc_addr,
1193                                   MEMTXATTRS_UNSPECIFIED,
1194                                   (uint8_t *)desc_first,
1195                                    sizeof(desc_first));
1196                 /* Advance the hardware current descriptor past this packet */
1197                 if (tx_desc_get_wrap(desc)) {
1198                     s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1199                 } else {
1200                     s->tx_desc_addr[q] = packet_desc_addr +
1201                                          4 * gem_get_desc_len(s, false);
1202                 }
1203                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1204 
1205                 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1206                 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1207 
1208                 /* Update queue interrupt status */
1209                 if (s->num_priority_queues > 1) {
1210                     s->regs[GEM_INT_Q1_STATUS + q] |=
1211                             GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1212                 }
1213 
1214                 /* Handle interrupt consequences */
1215                 gem_update_int_status(s);
1216 
1217                 /* Is checksum offload enabled? */
1218                 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1219                     net_checksum_calculate(tx_packet, total_bytes);
1220                 }
1221 
1222                 /* Update MAC statistics */
1223                 gem_transmit_updatestats(s, tx_packet, total_bytes);
1224 
1225                 /* Send the packet somewhere */
1226                 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1227                                     GEM_NWCTRL_LOCALLOOP)) {
1228                     gem_receive(qemu_get_queue(s->nic), tx_packet,
1229                                 total_bytes);
1230                 } else {
1231                     qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1232                                      total_bytes);
1233                 }
1234 
1235                 /* Prepare for next packet */
1236                 p = tx_packet;
1237                 total_bytes = 0;
1238             }
1239 
1240             /* read next descriptor */
1241             if (tx_desc_get_wrap(desc)) {
1242                 tx_desc_set_last(desc);
1243                 packet_desc_addr = s->regs[GEM_TXQBASE];
1244             } else {
1245                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1246             }
1247             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1248             address_space_read(&s->dma_as, packet_desc_addr,
1249                               MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1250                               sizeof(uint32_t) * gem_get_desc_len(s, false));
1251         }
1252 
1253         if (tx_desc_get_used(desc)) {
1254             s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1255             s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1256             gem_update_int_status(s);
1257         }
1258     }
1259 }
1260 
1261 static void gem_phy_reset(CadenceGEMState *s)
1262 {
1263     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1264     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1265     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1266     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1267     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1268     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1269     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1270     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1271     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1272     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1273     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1274     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1275     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1276     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1277     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1278     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1279     s->phy_regs[PHY_REG_LED] = 0x4100;
1280     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1281     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1282 
1283     phy_update_link(s);
1284 }
1285 
1286 static void gem_reset(DeviceState *d)
1287 {
1288     int i;
1289     CadenceGEMState *s = CADENCE_GEM(d);
1290     const uint8_t *a;
1291     uint32_t queues_mask = 0;
1292 
1293     DB_PRINT("\n");
1294 
1295     /* Set post reset register values */
1296     memset(&s->regs[0], 0, sizeof(s->regs));
1297     s->regs[GEM_NWCFG] = 0x00080000;
1298     s->regs[GEM_NWSTATUS] = 0x00000006;
1299     s->regs[GEM_DMACFG] = 0x00020784;
1300     s->regs[GEM_IMR] = 0x07ffffff;
1301     s->regs[GEM_TXPAUSE] = 0x0000ffff;
1302     s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1303     s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1304     s->regs[GEM_MODID] = s->revision;
1305     s->regs[GEM_DESCONF] = 0x02500111;
1306     s->regs[GEM_DESCONF2] = 0x2ab13fff;
1307     s->regs[GEM_DESCONF5] = 0x002f2045;
1308     s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1309 
1310     if (s->num_priority_queues > 1) {
1311         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1312         s->regs[GEM_DESCONF6] |= queues_mask;
1313     }
1314 
1315     /* Set MAC address */
1316     a = &s->conf.macaddr.a[0];
1317     s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1318     s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1319 
1320     for (i = 0; i < 4; i++) {
1321         s->sar_active[i] = false;
1322     }
1323 
1324     gem_phy_reset(s);
1325 
1326     gem_update_int_status(s);
1327 }
1328 
1329 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1330 {
1331     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1332     return s->phy_regs[reg_num];
1333 }
1334 
1335 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1336 {
1337     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1338 
1339     switch (reg_num) {
1340     case PHY_REG_CONTROL:
1341         if (val & PHY_REG_CONTROL_RST) {
1342             /* Phy reset */
1343             gem_phy_reset(s);
1344             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1345             s->phy_loop = 0;
1346         }
1347         if (val & PHY_REG_CONTROL_ANEG) {
1348             /* Complete autonegotiation immediately */
1349             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1350             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1351         }
1352         if (val & PHY_REG_CONTROL_LOOP) {
1353             DB_PRINT("PHY placed in loopback\n");
1354             s->phy_loop = 1;
1355         } else {
1356             s->phy_loop = 0;
1357         }
1358         break;
1359     }
1360     s->phy_regs[reg_num] = val;
1361 }
1362 
1363 /*
1364  * gem_read32:
1365  * Read a GEM register.
1366  */
1367 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1368 {
1369     CadenceGEMState *s;
1370     uint32_t retval;
1371     s = (CadenceGEMState *)opaque;
1372 
1373     offset >>= 2;
1374     retval = s->regs[offset];
1375 
1376     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1377 
1378     switch (offset) {
1379     case GEM_ISR:
1380         DB_PRINT("lowering irqs on ISR read\n");
1381         /* The interrupts get updated at the end of the function. */
1382         break;
1383     case GEM_PHYMNTNC:
1384         if (retval & GEM_PHYMNTNC_OP_R) {
1385             uint32_t phy_addr, reg_num;
1386 
1387             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1388             if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1389                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1390                 retval &= 0xFFFF0000;
1391                 retval |= gem_phy_read(s, reg_num);
1392             } else {
1393                 retval |= 0xFFFF; /* No device at this address */
1394             }
1395         }
1396         break;
1397     }
1398 
1399     /* Squash read to clear bits */
1400     s->regs[offset] &= ~(s->regs_rtc[offset]);
1401 
1402     /* Do not provide write only bits */
1403     retval &= ~(s->regs_wo[offset]);
1404 
1405     DB_PRINT("0x%08x\n", retval);
1406     gem_update_int_status(s);
1407     return retval;
1408 }
1409 
1410 /*
1411  * gem_write32:
1412  * Write a GEM register.
1413  */
1414 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1415         unsigned size)
1416 {
1417     CadenceGEMState *s = (CadenceGEMState *)opaque;
1418     uint32_t readonly;
1419     int i;
1420 
1421     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1422     offset >>= 2;
1423 
1424     /* Squash bits which are read only in write value */
1425     val &= ~(s->regs_ro[offset]);
1426     /* Preserve (only) bits which are read only and wtc in register */
1427     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1428 
1429     /* Copy register write to backing store */
1430     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1431 
1432     /* do w1c */
1433     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1434 
1435     /* Handle register write side effects */
1436     switch (offset) {
1437     case GEM_NWCTRL:
1438         if (val & GEM_NWCTRL_RXENA) {
1439             for (i = 0; i < s->num_priority_queues; ++i) {
1440                 gem_get_rx_desc(s, i);
1441             }
1442         }
1443         if (val & GEM_NWCTRL_TXSTART) {
1444             gem_transmit(s);
1445         }
1446         if (!(val & GEM_NWCTRL_TXENA)) {
1447             /* Reset to start of Q when transmit disabled. */
1448             for (i = 0; i < s->num_priority_queues; i++) {
1449                 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1450             }
1451         }
1452         if (gem_can_receive(qemu_get_queue(s->nic))) {
1453             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1454         }
1455         break;
1456 
1457     case GEM_TXSTATUS:
1458         gem_update_int_status(s);
1459         break;
1460     case GEM_RXQBASE:
1461         s->rx_desc_addr[0] = val;
1462         break;
1463     case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1464         s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1465         break;
1466     case GEM_TXQBASE:
1467         s->tx_desc_addr[0] = val;
1468         break;
1469     case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1470         s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1471         break;
1472     case GEM_RXSTATUS:
1473         gem_update_int_status(s);
1474         break;
1475     case GEM_IER:
1476         s->regs[GEM_IMR] &= ~val;
1477         gem_update_int_status(s);
1478         break;
1479     case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1480         s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1481         gem_update_int_status(s);
1482         break;
1483     case GEM_IDR:
1484         s->regs[GEM_IMR] |= val;
1485         gem_update_int_status(s);
1486         break;
1487     case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1488         s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1489         gem_update_int_status(s);
1490         break;
1491     case GEM_SPADDR1LO:
1492     case GEM_SPADDR2LO:
1493     case GEM_SPADDR3LO:
1494     case GEM_SPADDR4LO:
1495         s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1496         break;
1497     case GEM_SPADDR1HI:
1498     case GEM_SPADDR2HI:
1499     case GEM_SPADDR3HI:
1500     case GEM_SPADDR4HI:
1501         s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1502         break;
1503     case GEM_PHYMNTNC:
1504         if (val & GEM_PHYMNTNC_OP_W) {
1505             uint32_t phy_addr, reg_num;
1506 
1507             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1508             if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1509                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1510                 gem_phy_write(s, reg_num, val);
1511             }
1512         }
1513         break;
1514     }
1515 
1516     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1517 }
1518 
1519 static const MemoryRegionOps gem_ops = {
1520     .read = gem_read,
1521     .write = gem_write,
1522     .endianness = DEVICE_LITTLE_ENDIAN,
1523 };
1524 
1525 static void gem_set_link(NetClientState *nc)
1526 {
1527     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1528 
1529     DB_PRINT("\n");
1530     phy_update_link(s);
1531     gem_update_int_status(s);
1532 }
1533 
1534 static NetClientInfo net_gem_info = {
1535     .type = NET_CLIENT_DRIVER_NIC,
1536     .size = sizeof(NICState),
1537     .can_receive = gem_can_receive,
1538     .receive = gem_receive,
1539     .link_status_changed = gem_set_link,
1540 };
1541 
1542 static void gem_realize(DeviceState *dev, Error **errp)
1543 {
1544     CadenceGEMState *s = CADENCE_GEM(dev);
1545     int i;
1546 
1547     address_space_init(&s->dma_as,
1548                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1549 
1550     if (s->num_priority_queues == 0 ||
1551         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1552         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1553                    s->num_priority_queues);
1554         return;
1555     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1556         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1557                    s->num_type1_screeners);
1558         return;
1559     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1560         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1561                    s->num_type2_screeners);
1562         return;
1563     }
1564 
1565     for (i = 0; i < s->num_priority_queues; ++i) {
1566         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1567     }
1568 
1569     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1570 
1571     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1572                           object_get_typename(OBJECT(dev)), dev->id, s);
1573 }
1574 
1575 static void gem_init(Object *obj)
1576 {
1577     CadenceGEMState *s = CADENCE_GEM(obj);
1578     DeviceState *dev = DEVICE(obj);
1579 
1580     DB_PRINT("\n");
1581 
1582     gem_init_register_masks(s);
1583     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1584                           "enet", sizeof(s->regs));
1585 
1586     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1587 
1588     object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1589                              (Object **)&s->dma_mr,
1590                              qdev_prop_allow_set_link_before_realize,
1591                              OBJ_PROP_LINK_STRONG,
1592                              &error_abort);
1593 }
1594 
1595 static const VMStateDescription vmstate_cadence_gem = {
1596     .name = "cadence_gem",
1597     .version_id = 4,
1598     .minimum_version_id = 4,
1599     .fields = (VMStateField[]) {
1600         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1601         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1602         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1603         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1604                              MAX_PRIORITY_QUEUES),
1605         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1606                              MAX_PRIORITY_QUEUES),
1607         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1608         VMSTATE_END_OF_LIST(),
1609     }
1610 };
1611 
1612 static Property gem_properties[] = {
1613     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1614     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1615                        GEM_MODID_VALUE),
1616     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1617                       num_priority_queues, 1),
1618     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1619                       num_type1_screeners, 4),
1620     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1621                       num_type2_screeners, 4),
1622     DEFINE_PROP_END_OF_LIST(),
1623 };
1624 
1625 static void gem_class_init(ObjectClass *klass, void *data)
1626 {
1627     DeviceClass *dc = DEVICE_CLASS(klass);
1628 
1629     dc->realize = gem_realize;
1630     device_class_set_props(dc, gem_properties);
1631     dc->vmsd = &vmstate_cadence_gem;
1632     dc->reset = gem_reset;
1633 }
1634 
1635 static const TypeInfo gem_info = {
1636     .name  = TYPE_CADENCE_GEM,
1637     .parent = TYPE_SYS_BUS_DEVICE,
1638     .instance_size  = sizeof(CadenceGEMState),
1639     .instance_init = gem_init,
1640     .class_init = gem_class_init,
1641 };
1642 
1643 static void gem_register_types(void)
1644 {
1645     type_register_static(&gem_info);
1646 }
1647 
1648 type_init(gem_register_types)
1649