1 /* 2 * QEMU Cadence GEM emulation 3 * 4 * Copyright (c) 2011 Xilinx, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> /* For crc32 */ 26 27 #include "hw/net/cadence_gem.h" 28 #include "net/checksum.h" 29 30 #ifdef CADENCE_GEM_ERR_DEBUG 31 #define DB_PRINT(...) do { \ 32 fprintf(stderr, ": %s: ", __func__); \ 33 fprintf(stderr, ## __VA_ARGS__); \ 34 } while (0); 35 #else 36 #define DB_PRINT(...) 37 #endif 38 39 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */ 40 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */ 41 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */ 42 #define GEM_USERIO (0x0000000C/4) /* User IO reg */ 43 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */ 44 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */ 45 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */ 46 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */ 47 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */ 48 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */ 49 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */ 50 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */ 51 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */ 52 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */ 53 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */ 54 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */ 55 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */ 56 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */ 57 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */ 58 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */ 59 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */ 60 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */ 61 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */ 62 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */ 63 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */ 64 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */ 65 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */ 66 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */ 67 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */ 68 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */ 69 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */ 70 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */ 71 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */ 72 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */ 73 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */ 74 #define GEM_MODID (0x000000FC/4) /* Module ID reg */ 75 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */ 76 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */ 77 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */ 78 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */ 79 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */ 80 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */ 81 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */ 82 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */ 83 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */ 84 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */ 85 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */ 86 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */ 87 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */ 88 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */ 89 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */ 90 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */ 91 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */ 92 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */ 93 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */ 94 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */ 95 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */ 96 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */ 97 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */ 98 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */ 99 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */ 100 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */ 101 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */ 102 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */ 103 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */ 104 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */ 105 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */ 106 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */ 107 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */ 108 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */ 109 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */ 110 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */ 111 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */ 112 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */ 113 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */ 114 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */ 115 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */ 116 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */ 117 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */ 118 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */ 119 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */ 120 121 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */ 122 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */ 123 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */ 124 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */ 125 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */ 126 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */ 127 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */ 128 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */ 129 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */ 130 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */ 131 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */ 132 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */ 133 134 /* Design Configuration Registers */ 135 #define GEM_DESCONF (0x00000280/4) 136 #define GEM_DESCONF2 (0x00000284/4) 137 #define GEM_DESCONF3 (0x00000288/4) 138 #define GEM_DESCONF4 (0x0000028C/4) 139 #define GEM_DESCONF5 (0x00000290/4) 140 #define GEM_DESCONF6 (0x00000294/4) 141 #define GEM_DESCONF7 (0x00000298/4) 142 143 /*****************************************/ 144 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */ 145 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */ 146 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */ 147 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */ 148 149 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */ 150 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */ 151 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */ 152 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */ 153 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */ 154 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */ 155 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */ 156 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */ 157 158 #define GEM_DMACFG_RBUFSZ_M 0x007F0000 /* DMA RX Buffer Size mask */ 159 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */ 160 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */ 161 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */ 162 163 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */ 164 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */ 165 166 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */ 167 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */ 168 169 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */ 170 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */ 171 #define GEM_INT_TXUSED 0x00000008 172 #define GEM_INT_RXUSED 0x00000004 173 #define GEM_INT_RXCMPL 0x00000002 174 175 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */ 176 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */ 177 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */ 178 #define GEM_PHYMNTNC_ADDR_SHFT 23 179 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */ 180 #define GEM_PHYMNTNC_REG_SHIFT 18 181 182 /* Marvell PHY definitions */ 183 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */ 184 185 #define PHY_REG_CONTROL 0 186 #define PHY_REG_STATUS 1 187 #define PHY_REG_PHYID1 2 188 #define PHY_REG_PHYID2 3 189 #define PHY_REG_ANEGADV 4 190 #define PHY_REG_LINKPABIL 5 191 #define PHY_REG_ANEGEXP 6 192 #define PHY_REG_NEXTP 7 193 #define PHY_REG_LINKPNEXTP 8 194 #define PHY_REG_100BTCTRL 9 195 #define PHY_REG_1000BTSTAT 10 196 #define PHY_REG_EXTSTAT 15 197 #define PHY_REG_PHYSPCFC_CTL 16 198 #define PHY_REG_PHYSPCFC_ST 17 199 #define PHY_REG_INT_EN 18 200 #define PHY_REG_INT_ST 19 201 #define PHY_REG_EXT_PHYSPCFC_CTL 20 202 #define PHY_REG_RXERR 21 203 #define PHY_REG_EACD 22 204 #define PHY_REG_LED 24 205 #define PHY_REG_LED_OVRD 25 206 #define PHY_REG_EXT_PHYSPCFC_CTL2 26 207 #define PHY_REG_EXT_PHYSPCFC_ST 27 208 #define PHY_REG_CABLE_DIAG 28 209 210 #define PHY_REG_CONTROL_RST 0x8000 211 #define PHY_REG_CONTROL_LOOP 0x4000 212 #define PHY_REG_CONTROL_ANEG 0x1000 213 214 #define PHY_REG_STATUS_LINK 0x0004 215 #define PHY_REG_STATUS_ANEGCMPL 0x0020 216 217 #define PHY_REG_INT_ST_ANEGCMPL 0x0800 218 #define PHY_REG_INT_ST_LINKC 0x0400 219 #define PHY_REG_INT_ST_ENERGY 0x0010 220 221 /***********************************************************************/ 222 #define GEM_RX_REJECT (-1) 223 #define GEM_RX_PROMISCUOUS_ACCEPT (-2) 224 #define GEM_RX_BROADCAST_ACCEPT (-3) 225 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4) 226 #define GEM_RX_UNICAST_HASH_ACCEPT (-5) 227 228 #define GEM_RX_SAR_ACCEPT 0 229 230 /***********************************************************************/ 231 232 #define DESC_1_USED 0x80000000 233 #define DESC_1_LENGTH 0x00001FFF 234 235 #define DESC_1_TX_WRAP 0x40000000 236 #define DESC_1_TX_LAST 0x00008000 237 238 #define DESC_0_RX_WRAP 0x00000002 239 #define DESC_0_RX_OWNERSHIP 0x00000001 240 241 #define R_DESC_1_RX_SAR_SHIFT 25 242 #define R_DESC_1_RX_SAR_LENGTH 2 243 #define R_DESC_1_RX_SAR_MATCH (1 << 27) 244 #define R_DESC_1_RX_UNICAST_HASH (1 << 29) 245 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30) 246 #define R_DESC_1_RX_BROADCAST (1 << 31) 247 248 #define DESC_1_RX_SOF 0x00004000 249 #define DESC_1_RX_EOF 0x00008000 250 251 static inline unsigned tx_desc_get_buffer(unsigned *desc) 252 { 253 return desc[0]; 254 } 255 256 static inline unsigned tx_desc_get_used(unsigned *desc) 257 { 258 return (desc[1] & DESC_1_USED) ? 1 : 0; 259 } 260 261 static inline void tx_desc_set_used(unsigned *desc) 262 { 263 desc[1] |= DESC_1_USED; 264 } 265 266 static inline unsigned tx_desc_get_wrap(unsigned *desc) 267 { 268 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0; 269 } 270 271 static inline unsigned tx_desc_get_last(unsigned *desc) 272 { 273 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0; 274 } 275 276 static inline unsigned tx_desc_get_length(unsigned *desc) 277 { 278 return desc[1] & DESC_1_LENGTH; 279 } 280 281 static inline void print_gem_tx_desc(unsigned *desc) 282 { 283 DB_PRINT("TXDESC:\n"); 284 DB_PRINT("bufaddr: 0x%08x\n", *desc); 285 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc)); 286 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc)); 287 DB_PRINT("last: %d\n", tx_desc_get_last(desc)); 288 DB_PRINT("length: %d\n", tx_desc_get_length(desc)); 289 } 290 291 static inline unsigned rx_desc_get_buffer(unsigned *desc) 292 { 293 return desc[0] & ~0x3UL; 294 } 295 296 static inline unsigned rx_desc_get_wrap(unsigned *desc) 297 { 298 return desc[0] & DESC_0_RX_WRAP ? 1 : 0; 299 } 300 301 static inline unsigned rx_desc_get_ownership(unsigned *desc) 302 { 303 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0; 304 } 305 306 static inline void rx_desc_set_ownership(unsigned *desc) 307 { 308 desc[0] |= DESC_0_RX_OWNERSHIP; 309 } 310 311 static inline void rx_desc_set_sof(unsigned *desc) 312 { 313 desc[1] |= DESC_1_RX_SOF; 314 } 315 316 static inline void rx_desc_set_eof(unsigned *desc) 317 { 318 desc[1] |= DESC_1_RX_EOF; 319 } 320 321 static inline void rx_desc_set_length(unsigned *desc, unsigned len) 322 { 323 desc[1] &= ~DESC_1_LENGTH; 324 desc[1] |= len; 325 } 326 327 static inline void rx_desc_set_broadcast(unsigned *desc) 328 { 329 desc[1] |= R_DESC_1_RX_BROADCAST; 330 } 331 332 static inline void rx_desc_set_unicast_hash(unsigned *desc) 333 { 334 desc[1] |= R_DESC_1_RX_UNICAST_HASH; 335 } 336 337 static inline void rx_desc_set_multicast_hash(unsigned *desc) 338 { 339 desc[1] |= R_DESC_1_RX_MULTICAST_HASH; 340 } 341 342 static inline void rx_desc_set_sar(unsigned *desc, int sar_idx) 343 { 344 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH, 345 sar_idx); 346 desc[1] |= R_DESC_1_RX_SAR_MATCH; 347 } 348 349 /* The broadcast MAC address: 0xFFFFFFFFFFFF */ 350 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 351 352 /* 353 * gem_init_register_masks: 354 * One time initialization. 355 * Set masks to identify which register bits have magical clear properties 356 */ 357 static void gem_init_register_masks(CadenceGEMState *s) 358 { 359 /* Mask of register bits which are read only */ 360 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro)); 361 s->regs_ro[GEM_NWCTRL] = 0xFFF80000; 362 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF; 363 s->regs_ro[GEM_DMACFG] = 0xFE00F000; 364 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08; 365 s->regs_ro[GEM_RXQBASE] = 0x00000003; 366 s->regs_ro[GEM_TXQBASE] = 0x00000003; 367 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0; 368 s->regs_ro[GEM_ISR] = 0xFFFFFFFF; 369 s->regs_ro[GEM_IMR] = 0xFFFFFFFF; 370 s->regs_ro[GEM_MODID] = 0xFFFFFFFF; 371 372 /* Mask of register bits which are clear on read */ 373 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc)); 374 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF; 375 376 /* Mask of register bits which are write 1 to clear */ 377 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c)); 378 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7; 379 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F; 380 381 /* Mask of register bits which are write only */ 382 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo)); 383 s->regs_wo[GEM_NWCTRL] = 0x00073E60; 384 s->regs_wo[GEM_IER] = 0x07FFFFFF; 385 s->regs_wo[GEM_IDR] = 0x07FFFFFF; 386 } 387 388 /* 389 * phy_update_link: 390 * Make the emulated PHY link state match the QEMU "interface" state. 391 */ 392 static void phy_update_link(CadenceGEMState *s) 393 { 394 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down); 395 396 /* Autonegotiation status mirrors link status. */ 397 if (qemu_get_queue(s->nic)->link_down) { 398 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL | 399 PHY_REG_STATUS_LINK); 400 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC; 401 } else { 402 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL | 403 PHY_REG_STATUS_LINK); 404 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC | 405 PHY_REG_INT_ST_ANEGCMPL | 406 PHY_REG_INT_ST_ENERGY); 407 } 408 } 409 410 static int gem_can_receive(NetClientState *nc) 411 { 412 CadenceGEMState *s; 413 414 s = qemu_get_nic_opaque(nc); 415 416 /* Do nothing if receive is not enabled. */ 417 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) { 418 if (s->can_rx_state != 1) { 419 s->can_rx_state = 1; 420 DB_PRINT("can't receive - no enable\n"); 421 } 422 return 0; 423 } 424 425 if (rx_desc_get_ownership(s->rx_desc) == 1) { 426 if (s->can_rx_state != 2) { 427 s->can_rx_state = 2; 428 DB_PRINT("can't receive - busy buffer descriptor 0x%x\n", 429 s->rx_desc_addr); 430 } 431 return 0; 432 } 433 434 if (s->can_rx_state != 0) { 435 s->can_rx_state = 0; 436 DB_PRINT("can receive 0x%x\n", s->rx_desc_addr); 437 } 438 return 1; 439 } 440 441 /* 442 * gem_update_int_status: 443 * Raise or lower interrupt based on current status. 444 */ 445 static void gem_update_int_status(CadenceGEMState *s) 446 { 447 if (s->regs[GEM_ISR]) { 448 DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]); 449 qemu_set_irq(s->irq, 1); 450 } 451 } 452 453 /* 454 * gem_receive_updatestats: 455 * Increment receive statistics. 456 */ 457 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet, 458 unsigned bytes) 459 { 460 uint64_t octets; 461 462 /* Total octets (bytes) received */ 463 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) | 464 s->regs[GEM_OCTRXHI]; 465 octets += bytes; 466 s->regs[GEM_OCTRXLO] = octets >> 32; 467 s->regs[GEM_OCTRXHI] = octets; 468 469 /* Error-free Frames received */ 470 s->regs[GEM_RXCNT]++; 471 472 /* Error-free Broadcast Frames counter */ 473 if (!memcmp(packet, broadcast_addr, 6)) { 474 s->regs[GEM_RXBROADCNT]++; 475 } 476 477 /* Error-free Multicast Frames counter */ 478 if (packet[0] == 0x01) { 479 s->regs[GEM_RXMULTICNT]++; 480 } 481 482 if (bytes <= 64) { 483 s->regs[GEM_RX64CNT]++; 484 } else if (bytes <= 127) { 485 s->regs[GEM_RX65CNT]++; 486 } else if (bytes <= 255) { 487 s->regs[GEM_RX128CNT]++; 488 } else if (bytes <= 511) { 489 s->regs[GEM_RX256CNT]++; 490 } else if (bytes <= 1023) { 491 s->regs[GEM_RX512CNT]++; 492 } else if (bytes <= 1518) { 493 s->regs[GEM_RX1024CNT]++; 494 } else { 495 s->regs[GEM_RX1519CNT]++; 496 } 497 } 498 499 /* 500 * Get the MAC Address bit from the specified position 501 */ 502 static unsigned get_bit(const uint8_t *mac, unsigned bit) 503 { 504 unsigned byte; 505 506 byte = mac[bit / 8]; 507 byte >>= (bit & 0x7); 508 byte &= 1; 509 510 return byte; 511 } 512 513 /* 514 * Calculate a GEM MAC Address hash index 515 */ 516 static unsigned calc_mac_hash(const uint8_t *mac) 517 { 518 int index_bit, mac_bit; 519 unsigned hash_index; 520 521 hash_index = 0; 522 mac_bit = 5; 523 for (index_bit = 5; index_bit >= 0; index_bit--) { 524 hash_index |= (get_bit(mac, mac_bit) ^ 525 get_bit(mac, mac_bit + 6) ^ 526 get_bit(mac, mac_bit + 12) ^ 527 get_bit(mac, mac_bit + 18) ^ 528 get_bit(mac, mac_bit + 24) ^ 529 get_bit(mac, mac_bit + 30) ^ 530 get_bit(mac, mac_bit + 36) ^ 531 get_bit(mac, mac_bit + 42)) << index_bit; 532 mac_bit--; 533 } 534 535 return hash_index; 536 } 537 538 /* 539 * gem_mac_address_filter: 540 * Accept or reject this destination address? 541 * Returns: 542 * GEM_RX_REJECT: reject 543 * >= 0: Specific address accept (which matched SAR is returned) 544 * others for various other modes of accept: 545 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT, 546 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT 547 */ 548 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet) 549 { 550 uint8_t *gem_spaddr; 551 int i; 552 553 /* Promiscuous mode? */ 554 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) { 555 return GEM_RX_PROMISCUOUS_ACCEPT; 556 } 557 558 if (!memcmp(packet, broadcast_addr, 6)) { 559 /* Reject broadcast packets? */ 560 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) { 561 return GEM_RX_REJECT; 562 } 563 return GEM_RX_BROADCAST_ACCEPT; 564 } 565 566 /* Accept packets -w- hash match? */ 567 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) || 568 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) { 569 unsigned hash_index; 570 571 hash_index = calc_mac_hash(packet); 572 if (hash_index < 32) { 573 if (s->regs[GEM_HASHLO] & (1<<hash_index)) { 574 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT : 575 GEM_RX_UNICAST_HASH_ACCEPT; 576 } 577 } else { 578 hash_index -= 32; 579 if (s->regs[GEM_HASHHI] & (1<<hash_index)) { 580 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT : 581 GEM_RX_UNICAST_HASH_ACCEPT; 582 } 583 } 584 } 585 586 /* Check all 4 specific addresses */ 587 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]); 588 for (i = 3; i >= 0; i--) { 589 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) { 590 return GEM_RX_SAR_ACCEPT + i; 591 } 592 } 593 594 /* No address match; reject the packet */ 595 return GEM_RX_REJECT; 596 } 597 598 static void gem_get_rx_desc(CadenceGEMState *s) 599 { 600 DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr); 601 /* read current descriptor */ 602 cpu_physical_memory_read(s->rx_desc_addr, 603 (uint8_t *)s->rx_desc, sizeof(s->rx_desc)); 604 605 /* Descriptor owned by software ? */ 606 if (rx_desc_get_ownership(s->rx_desc) == 1) { 607 DB_PRINT("descriptor 0x%x owned by sw.\n", 608 (unsigned)s->rx_desc_addr); 609 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF; 610 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]); 611 /* Handle interrupt consequences */ 612 gem_update_int_status(s); 613 } 614 } 615 616 /* 617 * gem_receive: 618 * Fit a packet handed to us by QEMU into the receive descriptor ring. 619 */ 620 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size) 621 { 622 CadenceGEMState *s; 623 unsigned rxbufsize, bytes_to_copy; 624 unsigned rxbuf_offset; 625 uint8_t rxbuf[2048]; 626 uint8_t *rxbuf_ptr; 627 bool first_desc = true; 628 int maf; 629 630 s = qemu_get_nic_opaque(nc); 631 632 /* Is this destination MAC address "for us" ? */ 633 maf = gem_mac_address_filter(s, buf); 634 if (maf == GEM_RX_REJECT) { 635 return -1; 636 } 637 638 /* Discard packets with receive length error enabled ? */ 639 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) { 640 unsigned type_len; 641 642 /* Fish the ethertype / length field out of the RX packet */ 643 type_len = buf[12] << 8 | buf[13]; 644 /* It is a length field, not an ethertype */ 645 if (type_len < 0x600) { 646 if (size < type_len) { 647 /* discard */ 648 return -1; 649 } 650 } 651 } 652 653 /* 654 * Determine configured receive buffer offset (probably 0) 655 */ 656 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >> 657 GEM_NWCFG_BUFF_OFST_S; 658 659 /* The configure size of each receive buffer. Determines how many 660 * buffers needed to hold this packet. 661 */ 662 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >> 663 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL; 664 bytes_to_copy = size; 665 666 /* Pad to minimum length. Assume FCS field is stripped, logic 667 * below will increment it to the real minimum of 64 when 668 * not FCS stripping 669 */ 670 if (size < 60) { 671 size = 60; 672 } 673 674 /* Strip of FCS field ? (usually yes) */ 675 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) { 676 rxbuf_ptr = (void *)buf; 677 } else { 678 unsigned crc_val; 679 680 /* The application wants the FCS field, which QEMU does not provide. 681 * We must try and calculate one. 682 */ 683 684 memcpy(rxbuf, buf, size); 685 memset(rxbuf + size, 0, sizeof(rxbuf) - size); 686 rxbuf_ptr = rxbuf; 687 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60))); 688 memcpy(rxbuf + size, &crc_val, sizeof(crc_val)); 689 690 bytes_to_copy += 4; 691 size += 4; 692 } 693 694 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size); 695 696 while (bytes_to_copy) { 697 /* Do nothing if receive is not enabled. */ 698 if (!gem_can_receive(nc)) { 699 assert(!first_desc); 700 return -1; 701 } 702 703 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize), 704 rx_desc_get_buffer(s->rx_desc)); 705 706 /* Copy packet data to emulated DMA buffer */ 707 cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset, 708 rxbuf_ptr, MIN(bytes_to_copy, rxbufsize)); 709 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize); 710 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize); 711 712 /* Update the descriptor. */ 713 if (first_desc) { 714 rx_desc_set_sof(s->rx_desc); 715 first_desc = false; 716 } 717 if (bytes_to_copy == 0) { 718 rx_desc_set_eof(s->rx_desc); 719 rx_desc_set_length(s->rx_desc, size); 720 } 721 rx_desc_set_ownership(s->rx_desc); 722 723 switch (maf) { 724 case GEM_RX_PROMISCUOUS_ACCEPT: 725 break; 726 case GEM_RX_BROADCAST_ACCEPT: 727 rx_desc_set_broadcast(s->rx_desc); 728 break; 729 case GEM_RX_UNICAST_HASH_ACCEPT: 730 rx_desc_set_unicast_hash(s->rx_desc); 731 break; 732 case GEM_RX_MULTICAST_HASH_ACCEPT: 733 rx_desc_set_multicast_hash(s->rx_desc); 734 break; 735 case GEM_RX_REJECT: 736 abort(); 737 default: /* SAR */ 738 rx_desc_set_sar(s->rx_desc, maf); 739 } 740 741 /* Descriptor write-back. */ 742 cpu_physical_memory_write(s->rx_desc_addr, 743 (uint8_t *)s->rx_desc, sizeof(s->rx_desc)); 744 745 /* Next descriptor */ 746 if (rx_desc_get_wrap(s->rx_desc)) { 747 DB_PRINT("wrapping RX descriptor list\n"); 748 s->rx_desc_addr = s->regs[GEM_RXQBASE]; 749 } else { 750 DB_PRINT("incrementing RX descriptor list\n"); 751 s->rx_desc_addr += 8; 752 } 753 gem_get_rx_desc(s); 754 } 755 756 /* Count it */ 757 gem_receive_updatestats(s, buf, size); 758 759 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD; 760 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]); 761 762 /* Handle interrupt consequences */ 763 gem_update_int_status(s); 764 765 return size; 766 } 767 768 /* 769 * gem_transmit_updatestats: 770 * Increment transmit statistics. 771 */ 772 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet, 773 unsigned bytes) 774 { 775 uint64_t octets; 776 777 /* Total octets (bytes) transmitted */ 778 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) | 779 s->regs[GEM_OCTTXHI]; 780 octets += bytes; 781 s->regs[GEM_OCTTXLO] = octets >> 32; 782 s->regs[GEM_OCTTXHI] = octets; 783 784 /* Error-free Frames transmitted */ 785 s->regs[GEM_TXCNT]++; 786 787 /* Error-free Broadcast Frames counter */ 788 if (!memcmp(packet, broadcast_addr, 6)) { 789 s->regs[GEM_TXBCNT]++; 790 } 791 792 /* Error-free Multicast Frames counter */ 793 if (packet[0] == 0x01) { 794 s->regs[GEM_TXMCNT]++; 795 } 796 797 if (bytes <= 64) { 798 s->regs[GEM_TX64CNT]++; 799 } else if (bytes <= 127) { 800 s->regs[GEM_TX65CNT]++; 801 } else if (bytes <= 255) { 802 s->regs[GEM_TX128CNT]++; 803 } else if (bytes <= 511) { 804 s->regs[GEM_TX256CNT]++; 805 } else if (bytes <= 1023) { 806 s->regs[GEM_TX512CNT]++; 807 } else if (bytes <= 1518) { 808 s->regs[GEM_TX1024CNT]++; 809 } else { 810 s->regs[GEM_TX1519CNT]++; 811 } 812 } 813 814 /* 815 * gem_transmit: 816 * Fish packets out of the descriptor ring and feed them to QEMU 817 */ 818 static void gem_transmit(CadenceGEMState *s) 819 { 820 unsigned desc[2]; 821 hwaddr packet_desc_addr; 822 uint8_t tx_packet[2048]; 823 uint8_t *p; 824 unsigned total_bytes; 825 826 /* Do nothing if transmit is not enabled. */ 827 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 828 return; 829 } 830 831 DB_PRINT("\n"); 832 833 /* The packet we will hand off to QEMU. 834 * Packets scattered across multiple descriptors are gathered to this 835 * one contiguous buffer first. 836 */ 837 p = tx_packet; 838 total_bytes = 0; 839 840 /* read current descriptor */ 841 packet_desc_addr = s->tx_desc_addr; 842 843 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 844 cpu_physical_memory_read(packet_desc_addr, 845 (uint8_t *)desc, sizeof(desc)); 846 /* Handle all descriptors owned by hardware */ 847 while (tx_desc_get_used(desc) == 0) { 848 849 /* Do nothing if transmit is not enabled. */ 850 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { 851 return; 852 } 853 print_gem_tx_desc(desc); 854 855 /* The real hardware would eat this (and possibly crash). 856 * For QEMU let's lend a helping hand. 857 */ 858 if ((tx_desc_get_buffer(desc) == 0) || 859 (tx_desc_get_length(desc) == 0)) { 860 DB_PRINT("Invalid TX descriptor @ 0x%x\n", 861 (unsigned)packet_desc_addr); 862 break; 863 } 864 865 /* Gather this fragment of the packet from "dma memory" to our contig. 866 * buffer. 867 */ 868 cpu_physical_memory_read(tx_desc_get_buffer(desc), p, 869 tx_desc_get_length(desc)); 870 p += tx_desc_get_length(desc); 871 total_bytes += tx_desc_get_length(desc); 872 873 /* Last descriptor for this packet; hand the whole thing off */ 874 if (tx_desc_get_last(desc)) { 875 unsigned desc_first[2]; 876 877 /* Modify the 1st descriptor of this packet to be owned by 878 * the processor. 879 */ 880 cpu_physical_memory_read(s->tx_desc_addr, (uint8_t *)desc_first, 881 sizeof(desc_first)); 882 tx_desc_set_used(desc_first); 883 cpu_physical_memory_write(s->tx_desc_addr, (uint8_t *)desc_first, 884 sizeof(desc_first)); 885 /* Advance the hardware current descriptor past this packet */ 886 if (tx_desc_get_wrap(desc)) { 887 s->tx_desc_addr = s->regs[GEM_TXQBASE]; 888 } else { 889 s->tx_desc_addr = packet_desc_addr + 8; 890 } 891 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr); 892 893 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL; 894 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]); 895 896 /* Handle interrupt consequences */ 897 gem_update_int_status(s); 898 899 /* Is checksum offload enabled? */ 900 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) { 901 net_checksum_calculate(tx_packet, total_bytes); 902 } 903 904 /* Update MAC statistics */ 905 gem_transmit_updatestats(s, tx_packet, total_bytes); 906 907 /* Send the packet somewhere */ 908 if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) { 909 gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes); 910 } else { 911 qemu_send_packet(qemu_get_queue(s->nic), tx_packet, 912 total_bytes); 913 } 914 915 /* Prepare for next packet */ 916 p = tx_packet; 917 total_bytes = 0; 918 } 919 920 /* read next descriptor */ 921 if (tx_desc_get_wrap(desc)) { 922 packet_desc_addr = s->regs[GEM_TXQBASE]; 923 } else { 924 packet_desc_addr += 8; 925 } 926 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); 927 cpu_physical_memory_read(packet_desc_addr, 928 (uint8_t *)desc, sizeof(desc)); 929 } 930 931 if (tx_desc_get_used(desc)) { 932 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED; 933 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]); 934 gem_update_int_status(s); 935 } 936 } 937 938 static void gem_phy_reset(CadenceGEMState *s) 939 { 940 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); 941 s->phy_regs[PHY_REG_CONTROL] = 0x1140; 942 s->phy_regs[PHY_REG_STATUS] = 0x7969; 943 s->phy_regs[PHY_REG_PHYID1] = 0x0141; 944 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2; 945 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1; 946 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1; 947 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F; 948 s->phy_regs[PHY_REG_NEXTP] = 0x2001; 949 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6; 950 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300; 951 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00; 952 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000; 953 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078; 954 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0xBC00; 955 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60; 956 s->phy_regs[PHY_REG_LED] = 0x4100; 957 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A; 958 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B; 959 960 phy_update_link(s); 961 } 962 963 static void gem_reset(DeviceState *d) 964 { 965 int i; 966 CadenceGEMState *s = CADENCE_GEM(d); 967 968 DB_PRINT("\n"); 969 970 /* Set post reset register values */ 971 memset(&s->regs[0], 0, sizeof(s->regs)); 972 s->regs[GEM_NWCFG] = 0x00080000; 973 s->regs[GEM_NWSTATUS] = 0x00000006; 974 s->regs[GEM_DMACFG] = 0x00020784; 975 s->regs[GEM_IMR] = 0x07ffffff; 976 s->regs[GEM_TXPAUSE] = 0x0000ffff; 977 s->regs[GEM_TXPARTIALSF] = 0x000003ff; 978 s->regs[GEM_RXPARTIALSF] = 0x000003ff; 979 s->regs[GEM_MODID] = 0x00020118; 980 s->regs[GEM_DESCONF] = 0x02500111; 981 s->regs[GEM_DESCONF2] = 0x2ab13fff; 982 s->regs[GEM_DESCONF5] = 0x002f2145; 983 s->regs[GEM_DESCONF6] = 0x00000200; 984 985 for (i = 0; i < 4; i++) { 986 s->sar_active[i] = false; 987 } 988 989 gem_phy_reset(s); 990 991 gem_update_int_status(s); 992 } 993 994 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num) 995 { 996 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]); 997 return s->phy_regs[reg_num]; 998 } 999 1000 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val) 1001 { 1002 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val); 1003 1004 switch (reg_num) { 1005 case PHY_REG_CONTROL: 1006 if (val & PHY_REG_CONTROL_RST) { 1007 /* Phy reset */ 1008 gem_phy_reset(s); 1009 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP); 1010 s->phy_loop = 0; 1011 } 1012 if (val & PHY_REG_CONTROL_ANEG) { 1013 /* Complete autonegotiation immediately */ 1014 val &= ~PHY_REG_CONTROL_ANEG; 1015 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL; 1016 } 1017 if (val & PHY_REG_CONTROL_LOOP) { 1018 DB_PRINT("PHY placed in loopback\n"); 1019 s->phy_loop = 1; 1020 } else { 1021 s->phy_loop = 0; 1022 } 1023 break; 1024 } 1025 s->phy_regs[reg_num] = val; 1026 } 1027 1028 /* 1029 * gem_read32: 1030 * Read a GEM register. 1031 */ 1032 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size) 1033 { 1034 CadenceGEMState *s; 1035 uint32_t retval; 1036 1037 s = (CadenceGEMState *)opaque; 1038 1039 offset >>= 2; 1040 retval = s->regs[offset]; 1041 1042 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval); 1043 1044 switch (offset) { 1045 case GEM_ISR: 1046 DB_PRINT("lowering irq on ISR read\n"); 1047 qemu_set_irq(s->irq, 0); 1048 break; 1049 case GEM_PHYMNTNC: 1050 if (retval & GEM_PHYMNTNC_OP_R) { 1051 uint32_t phy_addr, reg_num; 1052 1053 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1054 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { 1055 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1056 retval &= 0xFFFF0000; 1057 retval |= gem_phy_read(s, reg_num); 1058 } else { 1059 retval |= 0xFFFF; /* No device at this address */ 1060 } 1061 } 1062 break; 1063 } 1064 1065 /* Squash read to clear bits */ 1066 s->regs[offset] &= ~(s->regs_rtc[offset]); 1067 1068 /* Do not provide write only bits */ 1069 retval &= ~(s->regs_wo[offset]); 1070 1071 DB_PRINT("0x%08x\n", retval); 1072 return retval; 1073 } 1074 1075 /* 1076 * gem_write32: 1077 * Write a GEM register. 1078 */ 1079 static void gem_write(void *opaque, hwaddr offset, uint64_t val, 1080 unsigned size) 1081 { 1082 CadenceGEMState *s = (CadenceGEMState *)opaque; 1083 uint32_t readonly; 1084 1085 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val); 1086 offset >>= 2; 1087 1088 /* Squash bits which are read only in write value */ 1089 val &= ~(s->regs_ro[offset]); 1090 /* Preserve (only) bits which are read only and wtc in register */ 1091 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]); 1092 1093 /* Copy register write to backing store */ 1094 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly; 1095 1096 /* do w1c */ 1097 s->regs[offset] &= ~(s->regs_w1c[offset] & val); 1098 1099 /* Handle register write side effects */ 1100 switch (offset) { 1101 case GEM_NWCTRL: 1102 if (val & GEM_NWCTRL_RXENA) { 1103 gem_get_rx_desc(s); 1104 } 1105 if (val & GEM_NWCTRL_TXSTART) { 1106 gem_transmit(s); 1107 } 1108 if (!(val & GEM_NWCTRL_TXENA)) { 1109 /* Reset to start of Q when transmit disabled. */ 1110 s->tx_desc_addr = s->regs[GEM_TXQBASE]; 1111 } 1112 if (gem_can_receive(qemu_get_queue(s->nic))) { 1113 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1114 } 1115 break; 1116 1117 case GEM_TXSTATUS: 1118 gem_update_int_status(s); 1119 break; 1120 case GEM_RXQBASE: 1121 s->rx_desc_addr = val; 1122 break; 1123 case GEM_TXQBASE: 1124 s->tx_desc_addr = val; 1125 break; 1126 case GEM_RXSTATUS: 1127 gem_update_int_status(s); 1128 break; 1129 case GEM_IER: 1130 s->regs[GEM_IMR] &= ~val; 1131 gem_update_int_status(s); 1132 break; 1133 case GEM_IDR: 1134 s->regs[GEM_IMR] |= val; 1135 gem_update_int_status(s); 1136 break; 1137 case GEM_SPADDR1LO: 1138 case GEM_SPADDR2LO: 1139 case GEM_SPADDR3LO: 1140 case GEM_SPADDR4LO: 1141 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false; 1142 break; 1143 case GEM_SPADDR1HI: 1144 case GEM_SPADDR2HI: 1145 case GEM_SPADDR3HI: 1146 case GEM_SPADDR4HI: 1147 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true; 1148 break; 1149 case GEM_PHYMNTNC: 1150 if (val & GEM_PHYMNTNC_OP_W) { 1151 uint32_t phy_addr, reg_num; 1152 1153 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; 1154 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { 1155 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; 1156 gem_phy_write(s, reg_num, val); 1157 } 1158 } 1159 break; 1160 } 1161 1162 DB_PRINT("newval: 0x%08x\n", s->regs[offset]); 1163 } 1164 1165 static const MemoryRegionOps gem_ops = { 1166 .read = gem_read, 1167 .write = gem_write, 1168 .endianness = DEVICE_LITTLE_ENDIAN, 1169 }; 1170 1171 static void gem_set_link(NetClientState *nc) 1172 { 1173 DB_PRINT("\n"); 1174 phy_update_link(qemu_get_nic_opaque(nc)); 1175 } 1176 1177 static NetClientInfo net_gem_info = { 1178 .type = NET_CLIENT_OPTIONS_KIND_NIC, 1179 .size = sizeof(NICState), 1180 .can_receive = gem_can_receive, 1181 .receive = gem_receive, 1182 .link_status_changed = gem_set_link, 1183 }; 1184 1185 static int gem_init(SysBusDevice *sbd) 1186 { 1187 DeviceState *dev = DEVICE(sbd); 1188 CadenceGEMState *s = CADENCE_GEM(dev); 1189 1190 DB_PRINT("\n"); 1191 1192 gem_init_register_masks(s); 1193 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s, 1194 "enet", sizeof(s->regs)); 1195 sysbus_init_mmio(sbd, &s->iomem); 1196 sysbus_init_irq(sbd, &s->irq); 1197 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1198 1199 s->nic = qemu_new_nic(&net_gem_info, &s->conf, 1200 object_get_typename(OBJECT(dev)), dev->id, s); 1201 1202 return 0; 1203 } 1204 1205 static const VMStateDescription vmstate_cadence_gem = { 1206 .name = "cadence_gem", 1207 .version_id = 2, 1208 .minimum_version_id = 2, 1209 .fields = (VMStateField[]) { 1210 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG), 1211 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32), 1212 VMSTATE_UINT8(phy_loop, CadenceGEMState), 1213 VMSTATE_UINT32(rx_desc_addr, CadenceGEMState), 1214 VMSTATE_UINT32(tx_desc_addr, CadenceGEMState), 1215 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4), 1216 VMSTATE_END_OF_LIST(), 1217 } 1218 }; 1219 1220 static Property gem_properties[] = { 1221 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf), 1222 DEFINE_PROP_END_OF_LIST(), 1223 }; 1224 1225 static void gem_class_init(ObjectClass *klass, void *data) 1226 { 1227 DeviceClass *dc = DEVICE_CLASS(klass); 1228 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 1229 1230 sdc->init = gem_init; 1231 dc->props = gem_properties; 1232 dc->vmsd = &vmstate_cadence_gem; 1233 dc->reset = gem_reset; 1234 } 1235 1236 static const TypeInfo gem_info = { 1237 .name = TYPE_CADENCE_GEM, 1238 .parent = TYPE_SYS_BUS_DEVICE, 1239 .instance_size = sizeof(CadenceGEMState), 1240 .class_init = gem_class_init, 1241 }; 1242 1243 static void gem_register_types(void) 1244 { 1245 type_register_static(&gem_info); 1246 } 1247 1248 type_init(gem_register_types) 1249