xref: /openbmc/qemu/hw/misc/zynq_slcr.c (revision d6bafaf4)
1 /*
2  * Status and system control registers for Xilinx Zynq Platform
3  *
4  * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5  * Copyright (c) 2012 PetaLogix Pty Ltd.
6  * Based on hw/arm_sysctl.c, written by Paul Brook
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * You should have received a copy of the GNU General Public License along
14  * with this program; if not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 #include "qom/object.h"
27 
28 #ifndef ZYNQ_SLCR_ERR_DEBUG
29 #define ZYNQ_SLCR_ERR_DEBUG 0
30 #endif
31 
32 #define DB_PRINT(...) do { \
33         if (ZYNQ_SLCR_ERR_DEBUG) { \
34             fprintf(stderr,  ": %s: ", __func__); \
35             fprintf(stderr, ## __VA_ARGS__); \
36         } \
37     } while (0)
38 
39 #define XILINX_LOCK_KEY 0x767b
40 #define XILINX_UNLOCK_KEY 0xdf0d
41 
42 REG32(SCL, 0x000)
43 REG32(LOCK, 0x004)
44 REG32(UNLOCK, 0x008)
45 REG32(LOCKSTA, 0x00c)
46 
47 REG32(ARM_PLL_CTRL, 0x100)
48 REG32(DDR_PLL_CTRL, 0x104)
49 REG32(IO_PLL_CTRL, 0x108)
50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
51     FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
52     FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
53     FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
54     FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
55     FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
56 REG32(PLL_STATUS, 0x10c)
57 REG32(ARM_PLL_CFG, 0x110)
58 REG32(DDR_PLL_CFG, 0x114)
59 REG32(IO_PLL_CFG, 0x118)
60 
61 REG32(ARM_CLK_CTRL, 0x120)
62 REG32(DDR_CLK_CTRL, 0x124)
63 REG32(DCI_CLK_CTRL, 0x128)
64 REG32(APER_CLK_CTRL, 0x12c)
65 REG32(USB0_CLK_CTRL, 0x130)
66 REG32(USB1_CLK_CTRL, 0x134)
67 REG32(GEM0_RCLK_CTRL, 0x138)
68 REG32(GEM1_RCLK_CTRL, 0x13c)
69 REG32(GEM0_CLK_CTRL, 0x140)
70 REG32(GEM1_CLK_CTRL, 0x144)
71 REG32(SMC_CLK_CTRL, 0x148)
72 REG32(LQSPI_CLK_CTRL, 0x14c)
73 REG32(SDIO_CLK_CTRL, 0x150)
74 REG32(UART_CLK_CTRL, 0x154)
75     FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
76     FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
77     FIELD(UART_CLK_CTRL, SRCSEL,  4, 2)
78     FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
79 REG32(SPI_CLK_CTRL, 0x158)
80 REG32(CAN_CLK_CTRL, 0x15c)
81 REG32(CAN_MIOCLK_CTRL, 0x160)
82 REG32(DBG_CLK_CTRL, 0x164)
83 REG32(PCAP_CLK_CTRL, 0x168)
84 REG32(TOPSW_CLK_CTRL, 0x16c)
85 
86 #define FPGA_CTRL_REGS(n, start) \
87     REG32(FPGA ## n ## _CLK_CTRL, (start)) \
88     REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
89     REG32(FPGA ## n ## _THR_CNT,  (start) + 0x8)\
90     REG32(FPGA ## n ## _THR_STA,  (start) + 0xc)
91 FPGA_CTRL_REGS(0, 0x170)
92 FPGA_CTRL_REGS(1, 0x180)
93 FPGA_CTRL_REGS(2, 0x190)
94 FPGA_CTRL_REGS(3, 0x1a0)
95 
96 REG32(BANDGAP_TRIP, 0x1b8)
97 REG32(PLL_PREDIVISOR, 0x1c0)
98 REG32(CLK_621_TRUE, 0x1c4)
99 
100 REG32(PSS_RST_CTRL, 0x200)
101     FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
102 REG32(DDR_RST_CTRL, 0x204)
103 REG32(TOPSW_RESET_CTRL, 0x208)
104 REG32(DMAC_RST_CTRL, 0x20c)
105 REG32(USB_RST_CTRL, 0x210)
106 REG32(GEM_RST_CTRL, 0x214)
107 REG32(SDIO_RST_CTRL, 0x218)
108 REG32(SPI_RST_CTRL, 0x21c)
109 REG32(CAN_RST_CTRL, 0x220)
110 REG32(I2C_RST_CTRL, 0x224)
111 REG32(UART_RST_CTRL, 0x228)
112 REG32(GPIO_RST_CTRL, 0x22c)
113 REG32(LQSPI_RST_CTRL, 0x230)
114 REG32(SMC_RST_CTRL, 0x234)
115 REG32(OCM_RST_CTRL, 0x238)
116 REG32(FPGA_RST_CTRL, 0x240)
117 REG32(A9_CPU_RST_CTRL, 0x244)
118 
119 REG32(RS_AWDT_CTRL, 0x24c)
120 REG32(RST_REASON, 0x250)
121 
122 REG32(REBOOT_STATUS, 0x258)
123 REG32(BOOT_MODE, 0x25c)
124 
125 REG32(APU_CTRL, 0x300)
126 REG32(WDT_CLK_SEL, 0x304)
127 
128 REG32(TZ_DMA_NS, 0x440)
129 REG32(TZ_DMA_IRQ_NS, 0x444)
130 REG32(TZ_DMA_PERIPH_NS, 0x448)
131 
132 REG32(PSS_IDCODE, 0x530)
133 
134 REG32(DDR_URGENT, 0x600)
135 REG32(DDR_CAL_START, 0x60c)
136 REG32(DDR_REF_START, 0x614)
137 REG32(DDR_CMD_STA, 0x618)
138 REG32(DDR_URGENT_SEL, 0x61c)
139 REG32(DDR_DFI_STATUS, 0x620)
140 
141 REG32(MIO, 0x700)
142 #define MIO_LENGTH 54
143 
144 REG32(MIO_LOOPBACK, 0x804)
145 REG32(MIO_MST_TRI0, 0x808)
146 REG32(MIO_MST_TRI1, 0x80c)
147 
148 REG32(SD0_WP_CD_SEL, 0x830)
149 REG32(SD1_WP_CD_SEL, 0x834)
150 
151 REG32(LVL_SHFTR_EN, 0x900)
152 REG32(OCM_CFG, 0x910)
153 
154 REG32(CPU_RAM, 0xa00)
155 
156 REG32(IOU, 0xa30)
157 
158 REG32(DMAC_RAM, 0xa50)
159 
160 REG32(AFI0, 0xa60)
161 REG32(AFI1, 0xa6c)
162 REG32(AFI2, 0xa78)
163 REG32(AFI3, 0xa84)
164 #define AFI_LENGTH 3
165 
166 REG32(OCM, 0xa90)
167 
168 REG32(DEVCI_RAM, 0xaa0)
169 
170 REG32(CSG_RAM, 0xab0)
171 
172 REG32(GPIOB_CTRL, 0xb00)
173 REG32(GPIOB_CFG_CMOS18, 0xb04)
174 REG32(GPIOB_CFG_CMOS25, 0xb08)
175 REG32(GPIOB_CFG_CMOS33, 0xb0c)
176 REG32(GPIOB_CFG_HSTL, 0xb14)
177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
178 
179 REG32(DDRIOB, 0xb40)
180 #define DDRIOB_LENGTH 14
181 
182 #define ZYNQ_SLCR_MMIO_SIZE     0x1000
183 #define ZYNQ_SLCR_NUM_REGS      (ZYNQ_SLCR_MMIO_SIZE / 4)
184 
185 #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
186 OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
187 
188 struct ZynqSLCRState {
189     SysBusDevice parent_obj;
190 
191     MemoryRegion iomem;
192 
193     uint32_t regs[ZYNQ_SLCR_NUM_REGS];
194 
195     Clock *ps_clk;
196     Clock *uart0_ref_clk;
197     Clock *uart1_ref_clk;
198 };
199 
200 /*
201  * return the output frequency of ARM/DDR/IO pll
202  * using input frequency and PLL_CTRL register
203  */
204 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
205 {
206     uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
207             R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
208 
209     /* first, check if pll is bypassed */
210     if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
211         return input;
212     }
213 
214     /* is pll disabled ? */
215     if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
216                     R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
217         return 0;
218     }
219 
220     /* Consider zero feedback as maximum divide ratio possible */
221     if (!mult) {
222         mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH;
223     }
224 
225     /* frequency multiplier -> period division */
226     return input / mult;
227 }
228 
229 /*
230  * return the output period of a clock given:
231  * + the periods in an array corresponding to input mux selector
232  * + the register xxx_CLK_CTRL value
233  * + enable bit index in ctrl register
234  *
235  * This function makes the assumption that the ctrl_reg value is organized as
236  * follows:
237  * + bits[13:8]  clock frequency divisor
238  * + bits[5:4]   clock mux selector (index in array)
239  * + bits[index] clock enable
240  */
241 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
242                                         uint32_t ctrl_reg,
243                                         unsigned index)
244 {
245     uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
246     uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
247 
248     /* first, check if clock is disabled */
249     if (((ctrl_reg >> index) & 1u) == 0) {
250         return 0;
251     }
252 
253     /*
254      * according to the Zynq technical ref. manual UG585 v1.12.2 in
255      * Clocks chapter, section 25.10.1 page 705:
256      * "The 6-bit divider provides a divide range of 1 to 63"
257      * We follow here what is implemented in linux kernel and consider
258      * the 0 value as a bypass (no division).
259      */
260     /* frequency divisor -> period multiplication */
261     return periods[srcsel] * (divisor ? divisor : 1u);
262 }
263 
264 /*
265  * macro helper around zynq_slcr_compute_clock to avoid repeating
266  * the register name.
267  */
268 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
269     zynq_slcr_compute_clock((plls), (state)->regs[reg], \
270                             reg ## _ ## enable_field ## _SHIFT)
271 
272 /**
273  * Compute and set the ouputs clocks periods.
274  * But do not propagate them further. Connected clocks
275  * will not receive any updates (See zynq_slcr_compute_clocks())
276  */
277 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
278 {
279     uint64_t ps_clk = clock_get(s->ps_clk);
280 
281     /* consider outputs clocks are disabled while in reset */
282     if (device_is_in_reset(DEVICE(s))) {
283         ps_clk = 0;
284     }
285 
286     uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
287     uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
288     uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
289 
290     uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
291 
292     /* compute uartX reference clocks */
293     clock_set(s->uart0_ref_clk,
294               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
295     clock_set(s->uart1_ref_clk,
296               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
297 }
298 
299 /**
300  * Propagate the outputs clocks.
301  * zynq_slcr_compute_clocks() should have been called before
302  * to configure them.
303  */
304 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
305 {
306     clock_propagate(s->uart0_ref_clk);
307     clock_propagate(s->uart1_ref_clk);
308 }
309 
310 static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event)
311 {
312     ZynqSLCRState *s = (ZynqSLCRState *) opaque;
313 
314     zynq_slcr_compute_clocks(s);
315     zynq_slcr_propagate_clocks(s);
316 }
317 
318 static void zynq_slcr_reset_init(Object *obj, ResetType type)
319 {
320     ZynqSLCRState *s = ZYNQ_SLCR(obj);
321     int i;
322 
323     DB_PRINT("RESET\n");
324 
325     s->regs[R_LOCKSTA] = 1;
326     /* 0x100 - 0x11C */
327     s->regs[R_ARM_PLL_CTRL]   = 0x0001A008;
328     s->regs[R_DDR_PLL_CTRL]   = 0x0001A008;
329     s->regs[R_IO_PLL_CTRL]    = 0x0001A008;
330     s->regs[R_PLL_STATUS]     = 0x0000003F;
331     s->regs[R_ARM_PLL_CFG]    = 0x00014000;
332     s->regs[R_DDR_PLL_CFG]    = 0x00014000;
333     s->regs[R_IO_PLL_CFG]     = 0x00014000;
334 
335     /* 0x120 - 0x16C */
336     s->regs[R_ARM_CLK_CTRL]   = 0x1F000400;
337     s->regs[R_DDR_CLK_CTRL]   = 0x18400003;
338     s->regs[R_DCI_CLK_CTRL]   = 0x01E03201;
339     s->regs[R_APER_CLK_CTRL]  = 0x01FFCCCD;
340     s->regs[R_USB0_CLK_CTRL]  = s->regs[R_USB1_CLK_CTRL]  = 0x00101941;
341     s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
342     s->regs[R_GEM0_CLK_CTRL]  = s->regs[R_GEM1_CLK_CTRL]  = 0x00003C01;
343     s->regs[R_SMC_CLK_CTRL]   = 0x00003C01;
344     s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
345     s->regs[R_SDIO_CLK_CTRL]  = 0x00001E03;
346     s->regs[R_UART_CLK_CTRL]  = 0x00003F03;
347     s->regs[R_SPI_CLK_CTRL]   = 0x00003F03;
348     s->regs[R_CAN_CLK_CTRL]   = 0x00501903;
349     s->regs[R_DBG_CLK_CTRL]   = 0x00000F03;
350     s->regs[R_PCAP_CLK_CTRL]  = 0x00000F01;
351 
352     /* 0x170 - 0x1AC */
353     s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
354                               = s->regs[R_FPGA2_CLK_CTRL]
355                               = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
356     s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
357                              = s->regs[R_FPGA2_THR_STA]
358                              = s->regs[R_FPGA3_THR_STA] = 0x00010000;
359 
360     /* 0x1B0 - 0x1D8 */
361     s->regs[R_BANDGAP_TRIP]   = 0x0000001F;
362     s->regs[R_PLL_PREDIVISOR] = 0x00000001;
363     s->regs[R_CLK_621_TRUE]   = 0x00000001;
364 
365     /* 0x200 - 0x25C */
366     s->regs[R_FPGA_RST_CTRL]  = 0x01F33F0F;
367     s->regs[R_RST_REASON]     = 0x00000040;
368 
369     s->regs[R_BOOT_MODE]      = 0x00000001;
370 
371     /* 0x700 - 0x7D4 */
372     for (i = 0; i < 54; i++) {
373         s->regs[R_MIO + i] = 0x00001601;
374     }
375     for (i = 2; i <= 8; i++) {
376         s->regs[R_MIO + i] = 0x00000601;
377     }
378 
379     s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
380 
381     s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
382                            = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
383                            = 0x00010101;
384     s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
385     s->regs[R_CPU_RAM + 6] = 0x00000001;
386 
387     s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
388                        = s->regs[R_IOU + 3] = 0x09090909;
389     s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
390     s->regs[R_IOU + 6] = 0x00000909;
391 
392     s->regs[R_DMAC_RAM] = 0x00000009;
393 
394     s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
395     s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
396     s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
397     s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
398     s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
399                         = s->regs[R_AFI3 + 2] = 0x00000909;
400 
401     s->regs[R_OCM + 0] = 0x01010101;
402     s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
403 
404     s->regs[R_DEVCI_RAM] = 0x00000909;
405     s->regs[R_CSG_RAM]   = 0x00000001;
406 
407     s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
408                           = s->regs[R_DDRIOB + 3] = 0x00000e00;
409     s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
410                           = 0x00000e00;
411     s->regs[R_DDRIOB + 12] = 0x00000021;
412 }
413 
414 static void zynq_slcr_reset_hold(Object *obj)
415 {
416     ZynqSLCRState *s = ZYNQ_SLCR(obj);
417 
418     /* will disable all output clocks */
419     zynq_slcr_compute_clocks(s);
420     zynq_slcr_propagate_clocks(s);
421 }
422 
423 static void zynq_slcr_reset_exit(Object *obj)
424 {
425     ZynqSLCRState *s = ZYNQ_SLCR(obj);
426 
427     /* will compute output clocks according to ps_clk and registers */
428     zynq_slcr_compute_clocks(s);
429     zynq_slcr_propagate_clocks(s);
430 }
431 
432 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
433 {
434     switch (offset) {
435     case R_LOCK:
436     case R_UNLOCK:
437     case R_DDR_CAL_START:
438     case R_DDR_REF_START:
439         return !rnw; /* Write only */
440     case R_LOCKSTA:
441     case R_FPGA0_THR_STA:
442     case R_FPGA1_THR_STA:
443     case R_FPGA2_THR_STA:
444     case R_FPGA3_THR_STA:
445     case R_BOOT_MODE:
446     case R_PSS_IDCODE:
447     case R_DDR_CMD_STA:
448     case R_DDR_DFI_STATUS:
449     case R_PLL_STATUS:
450         return rnw;/* read only */
451     case R_SCL:
452     case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
453     case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
454     case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
455     case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
456     case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
457     case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
458     case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
459     case R_BANDGAP_TRIP:
460     case R_PLL_PREDIVISOR:
461     case R_CLK_621_TRUE:
462     case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
463     case R_RS_AWDT_CTRL:
464     case R_RST_REASON:
465     case R_REBOOT_STATUS:
466     case R_APU_CTRL:
467     case R_WDT_CLK_SEL:
468     case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
469     case R_DDR_URGENT:
470     case R_DDR_URGENT_SEL:
471     case R_MIO ... R_MIO + MIO_LENGTH - 1:
472     case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
473     case R_SD0_WP_CD_SEL:
474     case R_SD1_WP_CD_SEL:
475     case R_LVL_SHFTR_EN:
476     case R_OCM_CFG:
477     case R_CPU_RAM:
478     case R_IOU:
479     case R_DMAC_RAM:
480     case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
481     case R_OCM:
482     case R_DEVCI_RAM:
483     case R_CSG_RAM:
484     case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
485     case R_GPIOB_CFG_HSTL:
486     case R_GPIOB_DRVR_BIAS_CTRL:
487     case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
488         return true;
489     default:
490         return false;
491     }
492 }
493 
494 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
495     unsigned size)
496 {
497     ZynqSLCRState *s = opaque;
498     offset /= 4;
499     uint32_t ret = s->regs[offset];
500 
501     if (!zynq_slcr_check_offset(offset, true)) {
502         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
503                       " addr %" HWADDR_PRIx "\n", offset * 4);
504     }
505 
506     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
507     return ret;
508 }
509 
510 static void zynq_slcr_write(void *opaque, hwaddr offset,
511                           uint64_t val, unsigned size)
512 {
513     ZynqSLCRState *s = (ZynqSLCRState *)opaque;
514     offset /= 4;
515 
516     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
517 
518     if (!zynq_slcr_check_offset(offset, false)) {
519         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
520                       "addr %" HWADDR_PRIx "\n", offset * 4);
521         return;
522     }
523 
524     switch (offset) {
525     case R_SCL:
526         s->regs[R_SCL] = val & 0x1;
527         return;
528     case R_LOCK:
529         if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
530             DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
531                 (unsigned)val & 0xFFFF);
532             s->regs[R_LOCKSTA] = 1;
533         } else {
534             DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
535                 (int)offset, (unsigned)val & 0xFFFF);
536         }
537         return;
538     case R_UNLOCK:
539         if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
540             DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
541                 (unsigned)val & 0xFFFF);
542             s->regs[R_LOCKSTA] = 0;
543         } else {
544             DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
545                 (int)offset, (unsigned)val & 0xFFFF);
546         }
547         return;
548     }
549 
550     if (s->regs[R_LOCKSTA]) {
551         qemu_log_mask(LOG_GUEST_ERROR,
552                       "SCLR registers are locked. Unlock them first\n");
553         return;
554     }
555     s->regs[offset] = val;
556 
557     switch (offset) {
558     case R_PSS_RST_CTRL:
559         if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
560             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
561         }
562         break;
563     case R_IO_PLL_CTRL:
564     case R_ARM_PLL_CTRL:
565     case R_DDR_PLL_CTRL:
566     case R_UART_CLK_CTRL:
567         zynq_slcr_compute_clocks(s);
568         zynq_slcr_propagate_clocks(s);
569         break;
570     }
571 }
572 
573 static const MemoryRegionOps slcr_ops = {
574     .read = zynq_slcr_read,
575     .write = zynq_slcr_write,
576     .endianness = DEVICE_NATIVE_ENDIAN,
577 };
578 
579 static const ClockPortInitArray zynq_slcr_clocks = {
580     QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate),
581     QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
582     QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
583     QDEV_CLOCK_END
584 };
585 
586 static void zynq_slcr_init(Object *obj)
587 {
588     ZynqSLCRState *s = ZYNQ_SLCR(obj);
589 
590     memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
591                           ZYNQ_SLCR_MMIO_SIZE);
592     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
593 
594     qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
595 }
596 
597 static const VMStateDescription vmstate_zynq_slcr = {
598     .name = "zynq_slcr",
599     .version_id = 3,
600     .minimum_version_id = 2,
601     .fields = (VMStateField[]) {
602         VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
603         VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
604         VMSTATE_END_OF_LIST()
605     }
606 };
607 
608 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
609 {
610     DeviceClass *dc = DEVICE_CLASS(klass);
611     ResettableClass *rc = RESETTABLE_CLASS(klass);
612 
613     dc->vmsd = &vmstate_zynq_slcr;
614     rc->phases.enter = zynq_slcr_reset_init;
615     rc->phases.hold  = zynq_slcr_reset_hold;
616     rc->phases.exit  = zynq_slcr_reset_exit;
617 }
618 
619 static const TypeInfo zynq_slcr_info = {
620     .class_init = zynq_slcr_class_init,
621     .name  = TYPE_ZYNQ_SLCR,
622     .parent = TYPE_SYS_BUS_DEVICE,
623     .instance_size  = sizeof(ZynqSLCRState),
624     .instance_init = zynq_slcr_init,
625 };
626 
627 static void zynq_slcr_register_types(void)
628 {
629     type_register_static(&zynq_slcr_info);
630 }
631 
632 type_init(zynq_slcr_register_types)
633