xref: /openbmc/qemu/hw/misc/zynq_slcr.c (revision 8fa3b702)
1 /*
2  * Status and system control registers for Xilinx Zynq Platform
3  *
4  * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5  * Copyright (c) 2012 PetaLogix Pty Ltd.
6  * Based on hw/arm_sysctl.c, written by Paul Brook
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * You should have received a copy of the GNU General Public License along
14  * with this program; if not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 #include "qom/object.h"
27 
28 #ifndef ZYNQ_SLCR_ERR_DEBUG
29 #define ZYNQ_SLCR_ERR_DEBUG 0
30 #endif
31 
32 #define DB_PRINT(...) do { \
33         if (ZYNQ_SLCR_ERR_DEBUG) { \
34             fprintf(stderr,  ": %s: ", __func__); \
35             fprintf(stderr, ## __VA_ARGS__); \
36         } \
37     } while (0)
38 
39 #define XILINX_LOCK_KEY 0x767b
40 #define XILINX_UNLOCK_KEY 0xdf0d
41 
42 REG32(SCL, 0x000)
43 REG32(LOCK, 0x004)
44 REG32(UNLOCK, 0x008)
45 REG32(LOCKSTA, 0x00c)
46 
47 REG32(ARM_PLL_CTRL, 0x100)
48 REG32(DDR_PLL_CTRL, 0x104)
49 REG32(IO_PLL_CTRL, 0x108)
50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
51     FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
52     FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
53     FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
54     FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
55     FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
56 REG32(PLL_STATUS, 0x10c)
57 REG32(ARM_PLL_CFG, 0x110)
58 REG32(DDR_PLL_CFG, 0x114)
59 REG32(IO_PLL_CFG, 0x118)
60 
61 REG32(ARM_CLK_CTRL, 0x120)
62 REG32(DDR_CLK_CTRL, 0x124)
63 REG32(DCI_CLK_CTRL, 0x128)
64 REG32(APER_CLK_CTRL, 0x12c)
65 REG32(USB0_CLK_CTRL, 0x130)
66 REG32(USB1_CLK_CTRL, 0x134)
67 REG32(GEM0_RCLK_CTRL, 0x138)
68 REG32(GEM1_RCLK_CTRL, 0x13c)
69 REG32(GEM0_CLK_CTRL, 0x140)
70 REG32(GEM1_CLK_CTRL, 0x144)
71 REG32(SMC_CLK_CTRL, 0x148)
72 REG32(LQSPI_CLK_CTRL, 0x14c)
73 REG32(SDIO_CLK_CTRL, 0x150)
74 REG32(UART_CLK_CTRL, 0x154)
75     FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
76     FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
77     FIELD(UART_CLK_CTRL, SRCSEL,  4, 2)
78     FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
79 REG32(SPI_CLK_CTRL, 0x158)
80 REG32(CAN_CLK_CTRL, 0x15c)
81 REG32(CAN_MIOCLK_CTRL, 0x160)
82 REG32(DBG_CLK_CTRL, 0x164)
83 REG32(PCAP_CLK_CTRL, 0x168)
84 REG32(TOPSW_CLK_CTRL, 0x16c)
85 
86 #define FPGA_CTRL_REGS(n, start) \
87     REG32(FPGA ## n ## _CLK_CTRL, (start)) \
88     REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
89     REG32(FPGA ## n ## _THR_CNT,  (start) + 0x8)\
90     REG32(FPGA ## n ## _THR_STA,  (start) + 0xc)
91 FPGA_CTRL_REGS(0, 0x170)
92 FPGA_CTRL_REGS(1, 0x180)
93 FPGA_CTRL_REGS(2, 0x190)
94 FPGA_CTRL_REGS(3, 0x1a0)
95 
96 REG32(BANDGAP_TRIP, 0x1b8)
97 REG32(PLL_PREDIVISOR, 0x1c0)
98 REG32(CLK_621_TRUE, 0x1c4)
99 
100 REG32(PSS_RST_CTRL, 0x200)
101     FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
102 REG32(DDR_RST_CTRL, 0x204)
103 REG32(TOPSW_RESET_CTRL, 0x208)
104 REG32(DMAC_RST_CTRL, 0x20c)
105 REG32(USB_RST_CTRL, 0x210)
106 REG32(GEM_RST_CTRL, 0x214)
107 REG32(SDIO_RST_CTRL, 0x218)
108 REG32(SPI_RST_CTRL, 0x21c)
109 REG32(CAN_RST_CTRL, 0x220)
110 REG32(I2C_RST_CTRL, 0x224)
111 REG32(UART_RST_CTRL, 0x228)
112 REG32(GPIO_RST_CTRL, 0x22c)
113 REG32(LQSPI_RST_CTRL, 0x230)
114 REG32(SMC_RST_CTRL, 0x234)
115 REG32(OCM_RST_CTRL, 0x238)
116 REG32(FPGA_RST_CTRL, 0x240)
117 REG32(A9_CPU_RST_CTRL, 0x244)
118 
119 REG32(RS_AWDT_CTRL, 0x24c)
120 REG32(RST_REASON, 0x250)
121 
122 REG32(REBOOT_STATUS, 0x258)
123 REG32(BOOT_MODE, 0x25c)
124 
125 REG32(APU_CTRL, 0x300)
126 REG32(WDT_CLK_SEL, 0x304)
127 
128 REG32(TZ_DMA_NS, 0x440)
129 REG32(TZ_DMA_IRQ_NS, 0x444)
130 REG32(TZ_DMA_PERIPH_NS, 0x448)
131 
132 REG32(PSS_IDCODE, 0x530)
133 
134 REG32(DDR_URGENT, 0x600)
135 REG32(DDR_CAL_START, 0x60c)
136 REG32(DDR_REF_START, 0x614)
137 REG32(DDR_CMD_STA, 0x618)
138 REG32(DDR_URGENT_SEL, 0x61c)
139 REG32(DDR_DFI_STATUS, 0x620)
140 
141 REG32(MIO, 0x700)
142 #define MIO_LENGTH 54
143 
144 REG32(MIO_LOOPBACK, 0x804)
145 REG32(MIO_MST_TRI0, 0x808)
146 REG32(MIO_MST_TRI1, 0x80c)
147 
148 REG32(SD0_WP_CD_SEL, 0x830)
149 REG32(SD1_WP_CD_SEL, 0x834)
150 
151 REG32(LVL_SHFTR_EN, 0x900)
152 REG32(OCM_CFG, 0x910)
153 
154 REG32(CPU_RAM, 0xa00)
155 
156 REG32(IOU, 0xa30)
157 
158 REG32(DMAC_RAM, 0xa50)
159 
160 REG32(AFI0, 0xa60)
161 REG32(AFI1, 0xa6c)
162 REG32(AFI2, 0xa78)
163 REG32(AFI3, 0xa84)
164 #define AFI_LENGTH 3
165 
166 REG32(OCM, 0xa90)
167 
168 REG32(DEVCI_RAM, 0xaa0)
169 
170 REG32(CSG_RAM, 0xab0)
171 
172 REG32(GPIOB_CTRL, 0xb00)
173 REG32(GPIOB_CFG_CMOS18, 0xb04)
174 REG32(GPIOB_CFG_CMOS25, 0xb08)
175 REG32(GPIOB_CFG_CMOS33, 0xb0c)
176 REG32(GPIOB_CFG_HSTL, 0xb14)
177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
178 
179 REG32(DDRIOB, 0xb40)
180 #define DDRIOB_LENGTH 14
181 
182 #define ZYNQ_SLCR_MMIO_SIZE     0x1000
183 #define ZYNQ_SLCR_NUM_REGS      (ZYNQ_SLCR_MMIO_SIZE / 4)
184 
185 #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
186 typedef struct ZynqSLCRState ZynqSLCRState;
187 DECLARE_INSTANCE_CHECKER(ZynqSLCRState, ZYNQ_SLCR,
188                          TYPE_ZYNQ_SLCR)
189 
190 struct ZynqSLCRState {
191     SysBusDevice parent_obj;
192 
193     MemoryRegion iomem;
194 
195     uint32_t regs[ZYNQ_SLCR_NUM_REGS];
196 
197     Clock *ps_clk;
198     Clock *uart0_ref_clk;
199     Clock *uart1_ref_clk;
200 };
201 
202 /*
203  * return the output frequency of ARM/DDR/IO pll
204  * using input frequency and PLL_CTRL register
205  */
206 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
207 {
208     uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
209             R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
210 
211     /* first, check if pll is bypassed */
212     if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
213         return input;
214     }
215 
216     /* is pll disabled ? */
217     if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
218                     R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
219         return 0;
220     }
221 
222     /* frequency multiplier -> period division */
223     return input / mult;
224 }
225 
226 /*
227  * return the output period of a clock given:
228  * + the periods in an array corresponding to input mux selector
229  * + the register xxx_CLK_CTRL value
230  * + enable bit index in ctrl register
231  *
232  * This function makes the assumption that the ctrl_reg value is organized as
233  * follows:
234  * + bits[13:8]  clock frequency divisor
235  * + bits[5:4]   clock mux selector (index in array)
236  * + bits[index] clock enable
237  */
238 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
239                                         uint32_t ctrl_reg,
240                                         unsigned index)
241 {
242     uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
243     uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
244 
245     /* first, check if clock is disabled */
246     if (((ctrl_reg >> index) & 1u) == 0) {
247         return 0;
248     }
249 
250     /*
251      * according to the Zynq technical ref. manual UG585 v1.12.2 in
252      * Clocks chapter, section 25.10.1 page 705:
253      * "The 6-bit divider provides a divide range of 1 to 63"
254      * We follow here what is implemented in linux kernel and consider
255      * the 0 value as a bypass (no division).
256      */
257     /* frequency divisor -> period multiplication */
258     return periods[srcsel] * (divisor ? divisor : 1u);
259 }
260 
261 /*
262  * macro helper around zynq_slcr_compute_clock to avoid repeating
263  * the register name.
264  */
265 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
266     zynq_slcr_compute_clock((plls), (state)->regs[reg], \
267                             reg ## _ ## enable_field ## _SHIFT)
268 
269 /**
270  * Compute and set the ouputs clocks periods.
271  * But do not propagate them further. Connected clocks
272  * will not receive any updates (See zynq_slcr_compute_clocks())
273  */
274 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
275 {
276     uint64_t ps_clk = clock_get(s->ps_clk);
277 
278     /* consider outputs clocks are disabled while in reset */
279     if (device_is_in_reset(DEVICE(s))) {
280         ps_clk = 0;
281     }
282 
283     uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
284     uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
285     uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
286 
287     uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
288 
289     /* compute uartX reference clocks */
290     clock_set(s->uart0_ref_clk,
291               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
292     clock_set(s->uart1_ref_clk,
293               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
294 }
295 
296 /**
297  * Propagate the outputs clocks.
298  * zynq_slcr_compute_clocks() should have been called before
299  * to configure them.
300  */
301 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
302 {
303     clock_propagate(s->uart0_ref_clk);
304     clock_propagate(s->uart1_ref_clk);
305 }
306 
307 static void zynq_slcr_ps_clk_callback(void *opaque)
308 {
309     ZynqSLCRState *s = (ZynqSLCRState *) opaque;
310     zynq_slcr_compute_clocks(s);
311     zynq_slcr_propagate_clocks(s);
312 }
313 
314 static void zynq_slcr_reset_init(Object *obj, ResetType type)
315 {
316     ZynqSLCRState *s = ZYNQ_SLCR(obj);
317     int i;
318 
319     DB_PRINT("RESET\n");
320 
321     s->regs[R_LOCKSTA] = 1;
322     /* 0x100 - 0x11C */
323     s->regs[R_ARM_PLL_CTRL]   = 0x0001A008;
324     s->regs[R_DDR_PLL_CTRL]   = 0x0001A008;
325     s->regs[R_IO_PLL_CTRL]    = 0x0001A008;
326     s->regs[R_PLL_STATUS]     = 0x0000003F;
327     s->regs[R_ARM_PLL_CFG]    = 0x00014000;
328     s->regs[R_DDR_PLL_CFG]    = 0x00014000;
329     s->regs[R_IO_PLL_CFG]     = 0x00014000;
330 
331     /* 0x120 - 0x16C */
332     s->regs[R_ARM_CLK_CTRL]   = 0x1F000400;
333     s->regs[R_DDR_CLK_CTRL]   = 0x18400003;
334     s->regs[R_DCI_CLK_CTRL]   = 0x01E03201;
335     s->regs[R_APER_CLK_CTRL]  = 0x01FFCCCD;
336     s->regs[R_USB0_CLK_CTRL]  = s->regs[R_USB1_CLK_CTRL]  = 0x00101941;
337     s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
338     s->regs[R_GEM0_CLK_CTRL]  = s->regs[R_GEM1_CLK_CTRL]  = 0x00003C01;
339     s->regs[R_SMC_CLK_CTRL]   = 0x00003C01;
340     s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
341     s->regs[R_SDIO_CLK_CTRL]  = 0x00001E03;
342     s->regs[R_UART_CLK_CTRL]  = 0x00003F03;
343     s->regs[R_SPI_CLK_CTRL]   = 0x00003F03;
344     s->regs[R_CAN_CLK_CTRL]   = 0x00501903;
345     s->regs[R_DBG_CLK_CTRL]   = 0x00000F03;
346     s->regs[R_PCAP_CLK_CTRL]  = 0x00000F01;
347 
348     /* 0x170 - 0x1AC */
349     s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
350                               = s->regs[R_FPGA2_CLK_CTRL]
351                               = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
352     s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
353                              = s->regs[R_FPGA2_THR_STA]
354                              = s->regs[R_FPGA3_THR_STA] = 0x00010000;
355 
356     /* 0x1B0 - 0x1D8 */
357     s->regs[R_BANDGAP_TRIP]   = 0x0000001F;
358     s->regs[R_PLL_PREDIVISOR] = 0x00000001;
359     s->regs[R_CLK_621_TRUE]   = 0x00000001;
360 
361     /* 0x200 - 0x25C */
362     s->regs[R_FPGA_RST_CTRL]  = 0x01F33F0F;
363     s->regs[R_RST_REASON]     = 0x00000040;
364 
365     s->regs[R_BOOT_MODE]      = 0x00000001;
366 
367     /* 0x700 - 0x7D4 */
368     for (i = 0; i < 54; i++) {
369         s->regs[R_MIO + i] = 0x00001601;
370     }
371     for (i = 2; i <= 8; i++) {
372         s->regs[R_MIO + i] = 0x00000601;
373     }
374 
375     s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
376 
377     s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
378                            = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
379                            = 0x00010101;
380     s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
381     s->regs[R_CPU_RAM + 6] = 0x00000001;
382 
383     s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
384                        = s->regs[R_IOU + 3] = 0x09090909;
385     s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
386     s->regs[R_IOU + 6] = 0x00000909;
387 
388     s->regs[R_DMAC_RAM] = 0x00000009;
389 
390     s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
391     s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
392     s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
393     s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
394     s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
395                         = s->regs[R_AFI3 + 2] = 0x00000909;
396 
397     s->regs[R_OCM + 0] = 0x01010101;
398     s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
399 
400     s->regs[R_DEVCI_RAM] = 0x00000909;
401     s->regs[R_CSG_RAM]   = 0x00000001;
402 
403     s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
404                           = s->regs[R_DDRIOB + 3] = 0x00000e00;
405     s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
406                           = 0x00000e00;
407     s->regs[R_DDRIOB + 12] = 0x00000021;
408 }
409 
410 static void zynq_slcr_reset_hold(Object *obj)
411 {
412     ZynqSLCRState *s = ZYNQ_SLCR(obj);
413 
414     /* will disable all output clocks */
415     zynq_slcr_compute_clocks(s);
416     zynq_slcr_propagate_clocks(s);
417 }
418 
419 static void zynq_slcr_reset_exit(Object *obj)
420 {
421     ZynqSLCRState *s = ZYNQ_SLCR(obj);
422 
423     /* will compute output clocks according to ps_clk and registers */
424     zynq_slcr_compute_clocks(s);
425     zynq_slcr_propagate_clocks(s);
426 }
427 
428 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
429 {
430     switch (offset) {
431     case R_LOCK:
432     case R_UNLOCK:
433     case R_DDR_CAL_START:
434     case R_DDR_REF_START:
435         return !rnw; /* Write only */
436     case R_LOCKSTA:
437     case R_FPGA0_THR_STA:
438     case R_FPGA1_THR_STA:
439     case R_FPGA2_THR_STA:
440     case R_FPGA3_THR_STA:
441     case R_BOOT_MODE:
442     case R_PSS_IDCODE:
443     case R_DDR_CMD_STA:
444     case R_DDR_DFI_STATUS:
445     case R_PLL_STATUS:
446         return rnw;/* read only */
447     case R_SCL:
448     case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
449     case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
450     case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
451     case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
452     case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
453     case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
454     case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
455     case R_BANDGAP_TRIP:
456     case R_PLL_PREDIVISOR:
457     case R_CLK_621_TRUE:
458     case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
459     case R_RS_AWDT_CTRL:
460     case R_RST_REASON:
461     case R_REBOOT_STATUS:
462     case R_APU_CTRL:
463     case R_WDT_CLK_SEL:
464     case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
465     case R_DDR_URGENT:
466     case R_DDR_URGENT_SEL:
467     case R_MIO ... R_MIO + MIO_LENGTH - 1:
468     case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
469     case R_SD0_WP_CD_SEL:
470     case R_SD1_WP_CD_SEL:
471     case R_LVL_SHFTR_EN:
472     case R_OCM_CFG:
473     case R_CPU_RAM:
474     case R_IOU:
475     case R_DMAC_RAM:
476     case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
477     case R_OCM:
478     case R_DEVCI_RAM:
479     case R_CSG_RAM:
480     case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
481     case R_GPIOB_CFG_HSTL:
482     case R_GPIOB_DRVR_BIAS_CTRL:
483     case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
484         return true;
485     default:
486         return false;
487     }
488 }
489 
490 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
491     unsigned size)
492 {
493     ZynqSLCRState *s = opaque;
494     offset /= 4;
495     uint32_t ret = s->regs[offset];
496 
497     if (!zynq_slcr_check_offset(offset, true)) {
498         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
499                       " addr %" HWADDR_PRIx "\n", offset * 4);
500     }
501 
502     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
503     return ret;
504 }
505 
506 static void zynq_slcr_write(void *opaque, hwaddr offset,
507                           uint64_t val, unsigned size)
508 {
509     ZynqSLCRState *s = (ZynqSLCRState *)opaque;
510     offset /= 4;
511 
512     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
513 
514     if (!zynq_slcr_check_offset(offset, false)) {
515         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
516                       "addr %" HWADDR_PRIx "\n", offset * 4);
517         return;
518     }
519 
520     switch (offset) {
521     case R_SCL:
522         s->regs[R_SCL] = val & 0x1;
523         return;
524     case R_LOCK:
525         if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
526             DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
527                 (unsigned)val & 0xFFFF);
528             s->regs[R_LOCKSTA] = 1;
529         } else {
530             DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
531                 (int)offset, (unsigned)val & 0xFFFF);
532         }
533         return;
534     case R_UNLOCK:
535         if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
536             DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
537                 (unsigned)val & 0xFFFF);
538             s->regs[R_LOCKSTA] = 0;
539         } else {
540             DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
541                 (int)offset, (unsigned)val & 0xFFFF);
542         }
543         return;
544     }
545 
546     if (s->regs[R_LOCKSTA]) {
547         qemu_log_mask(LOG_GUEST_ERROR,
548                       "SCLR registers are locked. Unlock them first\n");
549         return;
550     }
551     s->regs[offset] = val;
552 
553     switch (offset) {
554     case R_PSS_RST_CTRL:
555         if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
556             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
557         }
558         break;
559     case R_IO_PLL_CTRL:
560     case R_ARM_PLL_CTRL:
561     case R_DDR_PLL_CTRL:
562     case R_UART_CLK_CTRL:
563         zynq_slcr_compute_clocks(s);
564         zynq_slcr_propagate_clocks(s);
565         break;
566     }
567 }
568 
569 static const MemoryRegionOps slcr_ops = {
570     .read = zynq_slcr_read,
571     .write = zynq_slcr_write,
572     .endianness = DEVICE_NATIVE_ENDIAN,
573 };
574 
575 static const ClockPortInitArray zynq_slcr_clocks = {
576     QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
577     QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
578     QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
579     QDEV_CLOCK_END
580 };
581 
582 static void zynq_slcr_init(Object *obj)
583 {
584     ZynqSLCRState *s = ZYNQ_SLCR(obj);
585 
586     memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
587                           ZYNQ_SLCR_MMIO_SIZE);
588     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
589 
590     qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
591 }
592 
593 static const VMStateDescription vmstate_zynq_slcr = {
594     .name = "zynq_slcr",
595     .version_id = 3,
596     .minimum_version_id = 2,
597     .fields = (VMStateField[]) {
598         VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
599         VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
600         VMSTATE_END_OF_LIST()
601     }
602 };
603 
604 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
605 {
606     DeviceClass *dc = DEVICE_CLASS(klass);
607     ResettableClass *rc = RESETTABLE_CLASS(klass);
608 
609     dc->vmsd = &vmstate_zynq_slcr;
610     rc->phases.enter = zynq_slcr_reset_init;
611     rc->phases.hold  = zynq_slcr_reset_hold;
612     rc->phases.exit  = zynq_slcr_reset_exit;
613 }
614 
615 static const TypeInfo zynq_slcr_info = {
616     .class_init = zynq_slcr_class_init,
617     .name  = TYPE_ZYNQ_SLCR,
618     .parent = TYPE_SYS_BUS_DEVICE,
619     .instance_size  = sizeof(ZynqSLCRState),
620     .instance_init = zynq_slcr_init,
621 };
622 
623 static void zynq_slcr_register_types(void)
624 {
625     type_register_static(&zynq_slcr_info);
626 }
627 
628 type_init(zynq_slcr_register_types)
629