1 /* 2 * Status and system control registers for Xilinx Zynq Platform 3 * 4 * Copyright (c) 2011 Michal Simek <monstr@monstr.eu> 5 * Copyright (c) 2012 PetaLogix Pty Ltd. 6 * Based on hw/arm_sysctl.c, written by Paul Brook 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * You should have received a copy of the GNU General Public License along 14 * with this program; if not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 #include "qemu/osdep.h" 18 #include "qemu/timer.h" 19 #include "sysemu/runstate.h" 20 #include "hw/sysbus.h" 21 #include "migration/vmstate.h" 22 #include "qemu/log.h" 23 #include "qemu/module.h" 24 #include "hw/registerfields.h" 25 #include "hw/qdev-clock.h" 26 #include "qom/object.h" 27 28 #ifndef ZYNQ_SLCR_ERR_DEBUG 29 #define ZYNQ_SLCR_ERR_DEBUG 0 30 #endif 31 32 #define DB_PRINT(...) do { \ 33 if (ZYNQ_SLCR_ERR_DEBUG) { \ 34 fprintf(stderr, ": %s: ", __func__); \ 35 fprintf(stderr, ## __VA_ARGS__); \ 36 } \ 37 } while (0) 38 39 #define XILINX_LOCK_KEY 0x767b 40 #define XILINX_UNLOCK_KEY 0xdf0d 41 42 REG32(SCL, 0x000) 43 REG32(LOCK, 0x004) 44 REG32(UNLOCK, 0x008) 45 REG32(LOCKSTA, 0x00c) 46 47 REG32(ARM_PLL_CTRL, 0x100) 48 REG32(DDR_PLL_CTRL, 0x104) 49 REG32(IO_PLL_CTRL, 0x108) 50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */ 51 FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1) 52 FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1) 53 FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1) 54 FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1) 55 FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7) 56 REG32(PLL_STATUS, 0x10c) 57 REG32(ARM_PLL_CFG, 0x110) 58 REG32(DDR_PLL_CFG, 0x114) 59 REG32(IO_PLL_CFG, 0x118) 60 61 REG32(ARM_CLK_CTRL, 0x120) 62 REG32(DDR_CLK_CTRL, 0x124) 63 REG32(DCI_CLK_CTRL, 0x128) 64 REG32(APER_CLK_CTRL, 0x12c) 65 REG32(USB0_CLK_CTRL, 0x130) 66 REG32(USB1_CLK_CTRL, 0x134) 67 REG32(GEM0_RCLK_CTRL, 0x138) 68 REG32(GEM1_RCLK_CTRL, 0x13c) 69 REG32(GEM0_CLK_CTRL, 0x140) 70 REG32(GEM1_CLK_CTRL, 0x144) 71 REG32(SMC_CLK_CTRL, 0x148) 72 REG32(LQSPI_CLK_CTRL, 0x14c) 73 REG32(SDIO_CLK_CTRL, 0x150) 74 REG32(UART_CLK_CTRL, 0x154) 75 FIELD(UART_CLK_CTRL, CLKACT0, 0, 1) 76 FIELD(UART_CLK_CTRL, CLKACT1, 1, 1) 77 FIELD(UART_CLK_CTRL, SRCSEL, 4, 2) 78 FIELD(UART_CLK_CTRL, DIVISOR, 8, 6) 79 REG32(SPI_CLK_CTRL, 0x158) 80 REG32(CAN_CLK_CTRL, 0x15c) 81 REG32(CAN_MIOCLK_CTRL, 0x160) 82 REG32(DBG_CLK_CTRL, 0x164) 83 REG32(PCAP_CLK_CTRL, 0x168) 84 REG32(TOPSW_CLK_CTRL, 0x16c) 85 86 #define FPGA_CTRL_REGS(n, start) \ 87 REG32(FPGA ## n ## _CLK_CTRL, (start)) \ 88 REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\ 89 REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\ 90 REG32(FPGA ## n ## _THR_STA, (start) + 0xc) 91 FPGA_CTRL_REGS(0, 0x170) 92 FPGA_CTRL_REGS(1, 0x180) 93 FPGA_CTRL_REGS(2, 0x190) 94 FPGA_CTRL_REGS(3, 0x1a0) 95 96 REG32(BANDGAP_TRIP, 0x1b8) 97 REG32(PLL_PREDIVISOR, 0x1c0) 98 REG32(CLK_621_TRUE, 0x1c4) 99 100 REG32(PSS_RST_CTRL, 0x200) 101 FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1) 102 REG32(DDR_RST_CTRL, 0x204) 103 REG32(TOPSW_RESET_CTRL, 0x208) 104 REG32(DMAC_RST_CTRL, 0x20c) 105 REG32(USB_RST_CTRL, 0x210) 106 REG32(GEM_RST_CTRL, 0x214) 107 REG32(SDIO_RST_CTRL, 0x218) 108 REG32(SPI_RST_CTRL, 0x21c) 109 REG32(CAN_RST_CTRL, 0x220) 110 REG32(I2C_RST_CTRL, 0x224) 111 REG32(UART_RST_CTRL, 0x228) 112 REG32(GPIO_RST_CTRL, 0x22c) 113 REG32(LQSPI_RST_CTRL, 0x230) 114 REG32(SMC_RST_CTRL, 0x234) 115 REG32(OCM_RST_CTRL, 0x238) 116 REG32(FPGA_RST_CTRL, 0x240) 117 REG32(A9_CPU_RST_CTRL, 0x244) 118 119 REG32(RS_AWDT_CTRL, 0x24c) 120 REG32(RST_REASON, 0x250) 121 122 REG32(REBOOT_STATUS, 0x258) 123 REG32(BOOT_MODE, 0x25c) 124 125 REG32(APU_CTRL, 0x300) 126 REG32(WDT_CLK_SEL, 0x304) 127 128 REG32(TZ_DMA_NS, 0x440) 129 REG32(TZ_DMA_IRQ_NS, 0x444) 130 REG32(TZ_DMA_PERIPH_NS, 0x448) 131 132 REG32(PSS_IDCODE, 0x530) 133 134 REG32(DDR_URGENT, 0x600) 135 REG32(DDR_CAL_START, 0x60c) 136 REG32(DDR_REF_START, 0x614) 137 REG32(DDR_CMD_STA, 0x618) 138 REG32(DDR_URGENT_SEL, 0x61c) 139 REG32(DDR_DFI_STATUS, 0x620) 140 141 REG32(MIO, 0x700) 142 #define MIO_LENGTH 54 143 144 REG32(MIO_LOOPBACK, 0x804) 145 REG32(MIO_MST_TRI0, 0x808) 146 REG32(MIO_MST_TRI1, 0x80c) 147 148 REG32(SD0_WP_CD_SEL, 0x830) 149 REG32(SD1_WP_CD_SEL, 0x834) 150 151 REG32(LVL_SHFTR_EN, 0x900) 152 REG32(OCM_CFG, 0x910) 153 154 REG32(CPU_RAM, 0xa00) 155 156 REG32(IOU, 0xa30) 157 158 REG32(DMAC_RAM, 0xa50) 159 160 REG32(AFI0, 0xa60) 161 REG32(AFI1, 0xa6c) 162 REG32(AFI2, 0xa78) 163 REG32(AFI3, 0xa84) 164 #define AFI_LENGTH 3 165 166 REG32(OCM, 0xa90) 167 168 REG32(DEVCI_RAM, 0xaa0) 169 170 REG32(CSG_RAM, 0xab0) 171 172 REG32(GPIOB_CTRL, 0xb00) 173 REG32(GPIOB_CFG_CMOS18, 0xb04) 174 REG32(GPIOB_CFG_CMOS25, 0xb08) 175 REG32(GPIOB_CFG_CMOS33, 0xb0c) 176 REG32(GPIOB_CFG_HSTL, 0xb14) 177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18) 178 179 REG32(DDRIOB, 0xb40) 180 #define DDRIOB_LENGTH 14 181 182 #define ZYNQ_SLCR_MMIO_SIZE 0x1000 183 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4) 184 185 #define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr" 186 OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR) 187 188 struct ZynqSLCRState { 189 SysBusDevice parent_obj; 190 191 MemoryRegion iomem; 192 193 uint32_t regs[ZYNQ_SLCR_NUM_REGS]; 194 195 Clock *ps_clk; 196 Clock *uart0_ref_clk; 197 Clock *uart1_ref_clk; 198 }; 199 200 /* 201 * return the output frequency of ARM/DDR/IO pll 202 * using input frequency and PLL_CTRL register 203 */ 204 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg) 205 { 206 uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >> 207 R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT); 208 209 /* first, check if pll is bypassed */ 210 if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) { 211 return input; 212 } 213 214 /* is pll disabled ? */ 215 if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK | 216 R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) { 217 return 0; 218 } 219 220 /* Consider zero feedback as maximum divide ratio possible */ 221 if (!mult) { 222 mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH; 223 } 224 225 /* frequency multiplier -> period division */ 226 return input / mult; 227 } 228 229 /* 230 * return the output period of a clock given: 231 * + the periods in an array corresponding to input mux selector 232 * + the register xxx_CLK_CTRL value 233 * + enable bit index in ctrl register 234 * 235 * This function makes the assumption that the ctrl_reg value is organized as 236 * follows: 237 * + bits[13:8] clock frequency divisor 238 * + bits[5:4] clock mux selector (index in array) 239 * + bits[index] clock enable 240 */ 241 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[], 242 uint32_t ctrl_reg, 243 unsigned index) 244 { 245 uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */ 246 uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */ 247 248 /* first, check if clock is disabled */ 249 if (((ctrl_reg >> index) & 1u) == 0) { 250 return 0; 251 } 252 253 /* 254 * according to the Zynq technical ref. manual UG585 v1.12.2 in 255 * Clocks chapter, section 25.10.1 page 705: 256 * "The 6-bit divider provides a divide range of 1 to 63" 257 * We follow here what is implemented in linux kernel and consider 258 * the 0 value as a bypass (no division). 259 */ 260 /* frequency divisor -> period multiplication */ 261 return periods[srcsel] * (divisor ? divisor : 1u); 262 } 263 264 /* 265 * macro helper around zynq_slcr_compute_clock to avoid repeating 266 * the register name. 267 */ 268 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \ 269 zynq_slcr_compute_clock((plls), (state)->regs[reg], \ 270 reg ## _ ## enable_field ## _SHIFT) 271 272 static void zynq_slcr_compute_clocks_internal(ZynqSLCRState *s, uint64_t ps_clk) 273 { 274 uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]); 275 uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]); 276 uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]); 277 278 uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll}; 279 280 /* compute uartX reference clocks */ 281 clock_set(s->uart0_ref_clk, 282 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0)); 283 clock_set(s->uart1_ref_clk, 284 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1)); 285 } 286 287 /** 288 * Compute and set the outputs clocks periods. 289 * But do not propagate them further. Connected clocks 290 * will not receive any updates (See zynq_slcr_compute_clocks()) 291 */ 292 static void zynq_slcr_compute_clocks(ZynqSLCRState *s) 293 { 294 uint64_t ps_clk = clock_get(s->ps_clk); 295 296 /* consider outputs clocks are disabled while in reset */ 297 if (device_is_in_reset(DEVICE(s))) { 298 ps_clk = 0; 299 } 300 301 zynq_slcr_compute_clocks_internal(s, ps_clk); 302 } 303 304 /** 305 * Propagate the outputs clocks. 306 * zynq_slcr_compute_clocks() should have been called before 307 * to configure them. 308 */ 309 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s) 310 { 311 clock_propagate(s->uart0_ref_clk); 312 clock_propagate(s->uart1_ref_clk); 313 } 314 315 static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event) 316 { 317 ZynqSLCRState *s = (ZynqSLCRState *) opaque; 318 319 zynq_slcr_compute_clocks(s); 320 zynq_slcr_propagate_clocks(s); 321 } 322 323 static void zynq_slcr_reset_init(Object *obj, ResetType type) 324 { 325 ZynqSLCRState *s = ZYNQ_SLCR(obj); 326 int i; 327 328 DB_PRINT("RESET\n"); 329 330 s->regs[R_LOCKSTA] = 1; 331 /* 0x100 - 0x11C */ 332 s->regs[R_ARM_PLL_CTRL] = 0x0001A008; 333 s->regs[R_DDR_PLL_CTRL] = 0x0001A008; 334 s->regs[R_IO_PLL_CTRL] = 0x0001A008; 335 s->regs[R_PLL_STATUS] = 0x0000003F; 336 s->regs[R_ARM_PLL_CFG] = 0x00014000; 337 s->regs[R_DDR_PLL_CFG] = 0x00014000; 338 s->regs[R_IO_PLL_CFG] = 0x00014000; 339 340 /* 0x120 - 0x16C */ 341 s->regs[R_ARM_CLK_CTRL] = 0x1F000400; 342 s->regs[R_DDR_CLK_CTRL] = 0x18400003; 343 s->regs[R_DCI_CLK_CTRL] = 0x01E03201; 344 s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD; 345 s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941; 346 s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001; 347 s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01; 348 s->regs[R_SMC_CLK_CTRL] = 0x00003C01; 349 s->regs[R_LQSPI_CLK_CTRL] = 0x00002821; 350 s->regs[R_SDIO_CLK_CTRL] = 0x00001E03; 351 s->regs[R_UART_CLK_CTRL] = 0x00003F03; 352 s->regs[R_SPI_CLK_CTRL] = 0x00003F03; 353 s->regs[R_CAN_CLK_CTRL] = 0x00501903; 354 s->regs[R_DBG_CLK_CTRL] = 0x00000F03; 355 s->regs[R_PCAP_CLK_CTRL] = 0x00000F01; 356 357 /* 0x170 - 0x1AC */ 358 s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL] 359 = s->regs[R_FPGA2_CLK_CTRL] 360 = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800; 361 s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA] 362 = s->regs[R_FPGA2_THR_STA] 363 = s->regs[R_FPGA3_THR_STA] = 0x00010000; 364 365 /* 0x1B0 - 0x1D8 */ 366 s->regs[R_BANDGAP_TRIP] = 0x0000001F; 367 s->regs[R_PLL_PREDIVISOR] = 0x00000001; 368 s->regs[R_CLK_621_TRUE] = 0x00000001; 369 370 /* 0x200 - 0x25C */ 371 s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F; 372 s->regs[R_RST_REASON] = 0x00000040; 373 374 s->regs[R_BOOT_MODE] = 0x00000001; 375 376 /* 0x700 - 0x7D4 */ 377 for (i = 0; i < 54; i++) { 378 s->regs[R_MIO + i] = 0x00001601; 379 } 380 for (i = 2; i <= 8; i++) { 381 s->regs[R_MIO + i] = 0x00000601; 382 } 383 384 s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF; 385 386 s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3] 387 = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7] 388 = 0x00010101; 389 s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101; 390 s->regs[R_CPU_RAM + 6] = 0x00000001; 391 392 s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2] 393 = s->regs[R_IOU + 3] = 0x09090909; 394 s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909; 395 s->regs[R_IOU + 6] = 0x00000909; 396 397 s->regs[R_DMAC_RAM] = 0x00000009; 398 399 s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909; 400 s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909; 401 s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909; 402 s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909; 403 s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2] 404 = s->regs[R_AFI3 + 2] = 0x00000909; 405 406 s->regs[R_OCM + 0] = 0x01010101; 407 s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909; 408 409 s->regs[R_DEVCI_RAM] = 0x00000909; 410 s->regs[R_CSG_RAM] = 0x00000001; 411 412 s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2] 413 = s->regs[R_DDRIOB + 3] = 0x00000e00; 414 s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6] 415 = 0x00000e00; 416 s->regs[R_DDRIOB + 12] = 0x00000021; 417 } 418 419 static void zynq_slcr_reset_hold(Object *obj) 420 { 421 ZynqSLCRState *s = ZYNQ_SLCR(obj); 422 423 /* will disable all output clocks */ 424 zynq_slcr_compute_clocks_internal(s, 0); 425 zynq_slcr_propagate_clocks(s); 426 } 427 428 static void zynq_slcr_reset_exit(Object *obj) 429 { 430 ZynqSLCRState *s = ZYNQ_SLCR(obj); 431 432 /* will compute output clocks according to ps_clk and registers */ 433 zynq_slcr_compute_clocks_internal(s, clock_get(s->ps_clk)); 434 zynq_slcr_propagate_clocks(s); 435 } 436 437 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw) 438 { 439 switch (offset) { 440 case R_LOCK: 441 case R_UNLOCK: 442 case R_DDR_CAL_START: 443 case R_DDR_REF_START: 444 return !rnw; /* Write only */ 445 case R_LOCKSTA: 446 case R_FPGA0_THR_STA: 447 case R_FPGA1_THR_STA: 448 case R_FPGA2_THR_STA: 449 case R_FPGA3_THR_STA: 450 case R_BOOT_MODE: 451 case R_PSS_IDCODE: 452 case R_DDR_CMD_STA: 453 case R_DDR_DFI_STATUS: 454 case R_PLL_STATUS: 455 return rnw;/* read only */ 456 case R_SCL: 457 case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL: 458 case R_ARM_PLL_CFG ... R_IO_PLL_CFG: 459 case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL: 460 case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT: 461 case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT: 462 case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT: 463 case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT: 464 case R_BANDGAP_TRIP: 465 case R_PLL_PREDIVISOR: 466 case R_CLK_621_TRUE: 467 case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL: 468 case R_RS_AWDT_CTRL: 469 case R_RST_REASON: 470 case R_REBOOT_STATUS: 471 case R_APU_CTRL: 472 case R_WDT_CLK_SEL: 473 case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS: 474 case R_DDR_URGENT: 475 case R_DDR_URGENT_SEL: 476 case R_MIO ... R_MIO + MIO_LENGTH - 1: 477 case R_MIO_LOOPBACK ... R_MIO_MST_TRI1: 478 case R_SD0_WP_CD_SEL: 479 case R_SD1_WP_CD_SEL: 480 case R_LVL_SHFTR_EN: 481 case R_OCM_CFG: 482 case R_CPU_RAM: 483 case R_IOU: 484 case R_DMAC_RAM: 485 case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1: 486 case R_OCM: 487 case R_DEVCI_RAM: 488 case R_CSG_RAM: 489 case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33: 490 case R_GPIOB_CFG_HSTL: 491 case R_GPIOB_DRVR_BIAS_CTRL: 492 case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1: 493 return true; 494 default: 495 return false; 496 } 497 } 498 499 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset, 500 unsigned size) 501 { 502 ZynqSLCRState *s = opaque; 503 offset /= 4; 504 uint32_t ret = s->regs[offset]; 505 506 if (!zynq_slcr_check_offset(offset, true)) { 507 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to " 508 " addr %" HWADDR_PRIx "\n", offset * 4); 509 } 510 511 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret); 512 return ret; 513 } 514 515 static void zynq_slcr_write(void *opaque, hwaddr offset, 516 uint64_t val, unsigned size) 517 { 518 ZynqSLCRState *s = (ZynqSLCRState *)opaque; 519 offset /= 4; 520 521 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val); 522 523 if (!zynq_slcr_check_offset(offset, false)) { 524 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to " 525 "addr %" HWADDR_PRIx "\n", offset * 4); 526 return; 527 } 528 529 switch (offset) { 530 case R_SCL: 531 s->regs[R_SCL] = val & 0x1; 532 return; 533 case R_LOCK: 534 if ((val & 0xFFFF) == XILINX_LOCK_KEY) { 535 DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, 536 (unsigned)val & 0xFFFF); 537 s->regs[R_LOCKSTA] = 1; 538 } else { 539 DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", 540 (int)offset, (unsigned)val & 0xFFFF); 541 } 542 return; 543 case R_UNLOCK: 544 if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) { 545 DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, 546 (unsigned)val & 0xFFFF); 547 s->regs[R_LOCKSTA] = 0; 548 } else { 549 DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", 550 (int)offset, (unsigned)val & 0xFFFF); 551 } 552 return; 553 } 554 555 if (s->regs[R_LOCKSTA]) { 556 qemu_log_mask(LOG_GUEST_ERROR, 557 "SCLR registers are locked. Unlock them first\n"); 558 return; 559 } 560 s->regs[offset] = val; 561 562 switch (offset) { 563 case R_PSS_RST_CTRL: 564 if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) { 565 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 566 } 567 break; 568 case R_IO_PLL_CTRL: 569 case R_ARM_PLL_CTRL: 570 case R_DDR_PLL_CTRL: 571 case R_UART_CLK_CTRL: 572 zynq_slcr_compute_clocks(s); 573 zynq_slcr_propagate_clocks(s); 574 break; 575 } 576 } 577 578 static const MemoryRegionOps slcr_ops = { 579 .read = zynq_slcr_read, 580 .write = zynq_slcr_write, 581 .endianness = DEVICE_NATIVE_ENDIAN, 582 }; 583 584 static const ClockPortInitArray zynq_slcr_clocks = { 585 QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate), 586 QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk), 587 QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk), 588 QDEV_CLOCK_END 589 }; 590 591 static void zynq_slcr_init(Object *obj) 592 { 593 ZynqSLCRState *s = ZYNQ_SLCR(obj); 594 595 memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr", 596 ZYNQ_SLCR_MMIO_SIZE); 597 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 598 599 qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks); 600 } 601 602 static const VMStateDescription vmstate_zynq_slcr = { 603 .name = "zynq_slcr", 604 .version_id = 3, 605 .minimum_version_id = 2, 606 .fields = (VMStateField[]) { 607 VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS), 608 VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3), 609 VMSTATE_END_OF_LIST() 610 } 611 }; 612 613 static void zynq_slcr_class_init(ObjectClass *klass, void *data) 614 { 615 DeviceClass *dc = DEVICE_CLASS(klass); 616 ResettableClass *rc = RESETTABLE_CLASS(klass); 617 618 dc->vmsd = &vmstate_zynq_slcr; 619 rc->phases.enter = zynq_slcr_reset_init; 620 rc->phases.hold = zynq_slcr_reset_hold; 621 rc->phases.exit = zynq_slcr_reset_exit; 622 } 623 624 static const TypeInfo zynq_slcr_info = { 625 .class_init = zynq_slcr_class_init, 626 .name = TYPE_ZYNQ_SLCR, 627 .parent = TYPE_SYS_BUS_DEVICE, 628 .instance_size = sizeof(ZynqSLCRState), 629 .instance_init = zynq_slcr_init, 630 }; 631 632 static void zynq_slcr_register_types(void) 633 { 634 type_register_static(&zynq_slcr_info); 635 } 636 637 type_init(zynq_slcr_register_types) 638