xref: /openbmc/qemu/hw/misc/stm32l4x5_rcc.c (revision bef6a77f)
1 /*
2  * STM32L4X5 RCC (Reset and clock control)
3  *
4  * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
5  * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
6  *
7  * SPDX-License-Identifier: GPL-2.0-or-later
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  * The reference used is the STMicroElectronics RM0351 Reference manual
13  * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
14  *
15  * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qemu/timer.h"
22 #include "qapi/error.h"
23 #include "migration/vmstate.h"
24 #include "hw/misc/stm32l4x5_rcc.h"
25 #include "hw/misc/stm32l4x5_rcc_internals.h"
26 #include "hw/clock.h"
27 #include "hw/irq.h"
28 #include "hw/qdev-clock.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/registerfields.h"
32 #include "trace.h"
33 
34 #define HSE_DEFAULT_FRQ 48000000ULL
35 #define HSI_FRQ 16000000ULL
36 #define MSI_DEFAULT_FRQ 4000000ULL
37 #define LSE_FRQ 32768ULL
38 #define LSI_FRQ 32000ULL
39 
40 /*
41  * Function to simply acknowledge and propagate changes in a clock mux
42  * frequency.
43  * `bypass_source` allows to bypass the period of the current source and just
44  * consider it equal to 0. This is useful during the hold phase of reset.
45  */
46 static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
47 {
48     uint64_t src_freq;
49     Clock *current_source = mux->srcs[mux->src];
50     uint32_t freq_multiplier = 0;
51     bool clk_changed = false;
52 
53     /*
54      * To avoid rounding errors, we use the clock period instead of the
55      * frequency.
56      * This means that the multiplier of the mux becomes the divider of
57      * the clock and the divider of the mux becomes the multiplier of the
58      * clock.
59      */
60     if (!bypass_source && mux->enabled && mux->divider) {
61         freq_multiplier = mux->divider;
62     }
63 
64     clk_changed |= clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
65     clk_changed |= clock_set(mux->out, clock_get(current_source));
66     if (clk_changed) {
67         clock_propagate(mux->out);
68     }
69 
70     src_freq = clock_get_hz(current_source);
71     /* TODO: can we simply detect if the config changed so that we reduce log spam ? */
72     trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
73                                    mux->multiplier, mux->divider);
74 }
75 
76 static void clock_mux_src_update(void *opaque, ClockEvent event)
77 {
78     RccClockMuxState **backref = opaque;
79     RccClockMuxState *s = *backref;
80     /*
81      * The backref value is equal to:
82      * s->backref + (sizeof(RccClockMuxState *) * update_src).
83      * By subtracting we can get back the index of the updated clock.
84      */
85     const uint32_t update_src = backref - s->backref;
86     /* Only update if the clock that was updated is the current source */
87     if (update_src == s->src) {
88         clock_mux_update(s, false);
89     }
90 }
91 
92 static void clock_mux_init(Object *obj)
93 {
94     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
95     size_t i;
96 
97     for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
98         char *name = g_strdup_printf("srcs[%zu]", i);
99         s->backref[i] = s;
100         s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
101                                         clock_mux_src_update,
102                                         &s->backref[i],
103                                         ClockUpdate);
104         g_free(name);
105     }
106 
107     s->out = qdev_init_clock_out(DEVICE(s), "out");
108 }
109 
110 static void clock_mux_reset_enter(Object *obj, ResetType type)
111 {
112     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
113     set_clock_mux_init_info(s, s->id);
114 }
115 
116 static void clock_mux_reset_hold(Object *obj, ResetType type)
117 {
118     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
119     clock_mux_update(s, true);
120 }
121 
122 static void clock_mux_reset_exit(Object *obj, ResetType type)
123 {
124     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
125     clock_mux_update(s, false);
126 }
127 
128 static const VMStateDescription clock_mux_vmstate = {
129     .name = TYPE_RCC_CLOCK_MUX,
130     .version_id = 1,
131     .minimum_version_id = 1,
132     .fields = (VMStateField[]) {
133         VMSTATE_UINT32(id, RccClockMuxState),
134         VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
135                             RCC_NUM_CLOCK_MUX_SRC),
136         VMSTATE_BOOL(enabled, RccClockMuxState),
137         VMSTATE_UINT32(src, RccClockMuxState),
138         VMSTATE_UINT32(multiplier, RccClockMuxState),
139         VMSTATE_UINT32(divider, RccClockMuxState),
140         VMSTATE_END_OF_LIST()
141     }
142 };
143 
144 static void clock_mux_class_init(ObjectClass *klass, void *data)
145 {
146     DeviceClass *dc = DEVICE_CLASS(klass);
147     ResettableClass *rc = RESETTABLE_CLASS(klass);
148 
149     rc->phases.enter = clock_mux_reset_enter;
150     rc->phases.hold = clock_mux_reset_hold;
151     rc->phases.exit = clock_mux_reset_exit;
152     dc->vmsd = &clock_mux_vmstate;
153 }
154 
155 static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
156 {
157     if (mux->enabled == enabled) {
158         return;
159     }
160 
161     if (enabled) {
162         trace_stm32l4x5_rcc_mux_enable(mux->id);
163     } else {
164         trace_stm32l4x5_rcc_mux_disable(mux->id);
165     }
166 
167     mux->enabled = enabled;
168     clock_mux_update(mux, false);
169 }
170 
171 static void clock_mux_set_factor(RccClockMuxState *mux,
172                                  uint32_t multiplier, uint32_t divider)
173 {
174     if (mux->multiplier == multiplier && mux->divider == divider) {
175         return;
176     }
177     trace_stm32l4x5_rcc_mux_set_factor(mux->id,
178         mux->multiplier, multiplier, mux->divider, divider);
179 
180     mux->multiplier = multiplier;
181     mux->divider = divider;
182     clock_mux_update(mux, false);
183 }
184 
185 static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
186 {
187     if (mux->src == src) {
188         return;
189     }
190 
191     trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
192     mux->src = src;
193     clock_mux_update(mux, false);
194 }
195 
196 /*
197  * Acknowledge and propagate changes in a PLL frequency.
198  * `bypass_source` allows to bypass the period of the current source and just
199  * consider it equal to 0. This is useful during the hold phase of reset.
200  */
201 static void pll_update(RccPllState *pll, bool bypass_source)
202 {
203     uint64_t vco_freq, old_channel_freq, channel_freq;
204     int i;
205 
206     /* The common PLLM factor is handled by the PLL mux */
207     vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
208 
209     for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
210         if (!pll->channel_exists[i]) {
211             continue;
212         }
213 
214         old_channel_freq = clock_get_hz(pll->channels[i]);
215         if (bypass_source ||
216             !pll->enabled ||
217             !pll->channel_enabled[i] ||
218             !pll->channel_divider[i]) {
219             channel_freq = 0;
220         } else {
221             channel_freq = muldiv64(vco_freq,
222                                     1,
223                                     pll->channel_divider[i]);
224         }
225 
226         /* No change, early continue to avoid log spam and useless propagation */
227         if (old_channel_freq == channel_freq) {
228             continue;
229         }
230 
231         clock_update_hz(pll->channels[i], channel_freq);
232         trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
233             old_channel_freq, channel_freq);
234     }
235 }
236 
237 static void pll_src_update(void *opaque, ClockEvent event)
238 {
239     RccPllState *s = opaque;
240     pll_update(s, false);
241 }
242 
243 static void pll_init(Object *obj)
244 {
245     RccPllState *s = RCC_PLL(obj);
246     size_t i;
247 
248     s->in = qdev_init_clock_in(DEVICE(s), "in",
249                                pll_src_update, s, ClockUpdate);
250 
251     const char *names[] = {
252         "out-p", "out-q", "out-r",
253     };
254 
255     for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
256         s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
257     }
258 }
259 
260 static void pll_reset_enter(Object *obj, ResetType type)
261 {
262     RccPllState *s = RCC_PLL(obj);
263     set_pll_init_info(s, s->id);
264 }
265 
266 static void pll_reset_hold(Object *obj, ResetType type)
267 {
268     RccPllState *s = RCC_PLL(obj);
269     pll_update(s, true);
270 }
271 
272 static void pll_reset_exit(Object *obj, ResetType type)
273 {
274     RccPllState *s = RCC_PLL(obj);
275     pll_update(s, false);
276 }
277 
278 static const VMStateDescription pll_vmstate = {
279     .name = TYPE_RCC_PLL,
280     .version_id = 1,
281     .minimum_version_id = 1,
282     .fields = (VMStateField[]) {
283         VMSTATE_UINT32(id, RccPllState),
284         VMSTATE_CLOCK(in, RccPllState),
285         VMSTATE_ARRAY_CLOCK(channels, RccPllState,
286                             RCC_NUM_CHANNEL_PLL_OUT),
287         VMSTATE_BOOL(enabled, RccPllState),
288         VMSTATE_UINT32(vco_multiplier, RccPllState),
289         VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
290         VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
291         VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
292         VMSTATE_END_OF_LIST()
293     }
294 };
295 
296 static void pll_class_init(ObjectClass *klass, void *data)
297 {
298     DeviceClass *dc = DEVICE_CLASS(klass);
299     ResettableClass *rc = RESETTABLE_CLASS(klass);
300 
301     rc->phases.enter = pll_reset_enter;
302     rc->phases.hold = pll_reset_hold;
303     rc->phases.exit = pll_reset_exit;
304     dc->vmsd = &pll_vmstate;
305 }
306 
307 static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
308 {
309     if (pll->vco_multiplier == vco_multiplier) {
310         return;
311     }
312 
313     if (vco_multiplier < 8 || vco_multiplier > 86) {
314         qemu_log_mask(LOG_GUEST_ERROR,
315             "%s: VCO multiplier is out of bound (%u) for PLL %u\n",
316             __func__, vco_multiplier, pll->id);
317         return;
318     }
319 
320     trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
321         pll->vco_multiplier, vco_multiplier);
322 
323     pll->vco_multiplier = vco_multiplier;
324     pll_update(pll, false);
325 }
326 
327 static void pll_set_enable(RccPllState *pll, bool enabled)
328 {
329     if (pll->enabled == enabled) {
330         return;
331     }
332 
333     pll->enabled = enabled;
334     pll_update(pll, false);
335 }
336 
337 static void pll_set_channel_enable(RccPllState *pll,
338                                    PllCommonChannels channel,
339                                    bool enabled)
340 {
341     if (pll->channel_enabled[channel] == enabled) {
342         return;
343     }
344 
345     if (enabled) {
346         trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
347     } else {
348         trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
349     }
350 
351     pll->channel_enabled[channel] = enabled;
352     pll_update(pll, false);
353 }
354 
355 static void pll_set_channel_divider(RccPllState *pll,
356                                     PllCommonChannels channel,
357                                     uint32_t divider)
358 {
359     if (pll->channel_divider[channel] == divider) {
360         return;
361     }
362 
363     trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
364         channel, pll->channel_divider[channel], divider);
365 
366     pll->channel_divider[channel] = divider;
367     pll_update(pll, false);
368 }
369 
370 static void rcc_update_irq(Stm32l4x5RccState *s)
371 {
372     /*
373      * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
374      */
375     if (s->cifr & CIFR_IRQ_MASK) {
376         qemu_irq_raise(s->irq);
377     } else {
378         qemu_irq_lower(s->irq);
379     }
380 }
381 
382 static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
383 {
384     uint32_t val;
385 
386     static const uint32_t msirange[] = {
387         100000, 200000, 400000, 800000, 1000000, 2000000,
388         4000000, 8000000, 16000000, 24000000, 32000000, 48000000
389     };
390     /* MSIRANGE and MSIRGSEL */
391     val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
392     if (val) {
393         /* MSIRGSEL is set, use the MSIRANGE field */
394         val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
395     } else {
396         /* MSIRGSEL is not set, use the MSISRANGE field */
397         val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
398     }
399 
400     if (val < ARRAY_SIZE(msirange)) {
401         clock_update_hz(s->msi_rc, msirange[val]);
402     } else {
403         /*
404          * There is a hardware write protection if the value is out of bound.
405          * Restore the previous value.
406          */
407         s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
408                 (previous_value & R_CSR_MSISRANGE_MASK);
409     }
410 }
411 
412 /*
413  * TODO: Add write-protection for all registers:
414  * DONE: CR
415  */
416 
417 static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
418 {
419     int val;
420     const RccClockMuxSource current_pll_src =
421         CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
422             s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
423 
424     /* PLLSAI2ON and update PLLSAI2RDY */
425     val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
426     pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
427     s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
428             (val << R_CR_PLLSAI2RDY_SHIFT);
429     if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
430         s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
431     }
432 
433     /* PLLSAI1ON and update PLLSAI1RDY */
434     val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
435     pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
436     s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
437             (val << R_CR_PLLSAI1RDY_SHIFT);
438     if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
439         s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
440     }
441 
442     /*
443      * PLLON and update PLLRDY
444      * PLLON cannot be reset if the PLL clock is used as the system clock.
445      */
446     val = FIELD_EX32(s->cr, CR, PLLON);
447     if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
448         pll_set_enable(&s->plls[RCC_PLL_PLL], val);
449         s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
450                 (val << R_CR_PLLRDY_SHIFT);
451         if (s->cier & R_CIER_PLLRDYIE_MASK) {
452             s->cifr |= R_CIFR_PLLRDYF_MASK;
453         }
454     } else {
455         s->cr |= R_CR_PLLON_MASK;
456     }
457 
458     /* CSSON: TODO */
459     /* HSEBYP: TODO */
460 
461     /*
462      * HSEON and update HSERDY.
463      * HSEON cannot be reset if the HSE oscillator is used directly or
464      * indirectly as the system clock.
465      */
466     val = FIELD_EX32(s->cr, CR, HSEON);
467     if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
468         current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
469         s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
470                 (val << R_CR_HSERDY_SHIFT);
471         if (val) {
472             clock_update_hz(s->hse, s->hse_frequency);
473             if (s->cier & R_CIER_HSERDYIE_MASK) {
474                 s->cifr |= R_CIFR_HSERDYF_MASK;
475             }
476         } else {
477             clock_update(s->hse, 0);
478         }
479     } else {
480         s->cr |= R_CR_HSEON_MASK;
481     }
482 
483     /* HSIAFS: TODO*/
484     /* HSIKERON: TODO*/
485 
486     /*
487      * HSION and update HSIRDY
488      * HSION is set by hardware if the HSI16 is used directly
489      * or indirectly as system clock.
490      */
491     if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
492         current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
493         s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
494         clock_update_hz(s->hsi16_rc, HSI_FRQ);
495         if (s->cier & R_CIER_HSIRDYIE_MASK) {
496             s->cifr |= R_CIFR_HSIRDYF_MASK;
497         }
498     } else {
499         val = FIELD_EX32(s->cr, CR, HSION);
500         if (val) {
501             clock_update_hz(s->hsi16_rc, HSI_FRQ);
502             s->cr |= R_CR_HSIRDY_MASK;
503             if (s->cier & R_CIER_HSIRDYIE_MASK) {
504                 s->cifr |= R_CIFR_HSIRDYF_MASK;
505             }
506         } else {
507             clock_update(s->hsi16_rc, 0);
508             s->cr &= ~R_CR_HSIRDY_MASK;
509         }
510     }
511 
512     /* MSIPLLEN: TODO */
513 
514     /*
515      * MSION and update MSIRDY
516      * Set by hardware when used directly or indirectly as system clock.
517      */
518     if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
519         current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
520             s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
521             if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
522                 s->cifr |= R_CIFR_MSIRDYF_MASK;
523             }
524             rcc_update_msi(s, previous_value);
525     } else {
526         val = FIELD_EX32(s->cr, CR, MSION);
527         if (val) {
528             s->cr |= R_CR_MSIRDY_MASK;
529             rcc_update_msi(s, previous_value);
530             if (s->cier & R_CIER_MSIRDYIE_MASK) {
531                 s->cifr |= R_CIFR_MSIRDYF_MASK;
532             }
533         } else {
534             s->cr &= ~R_CR_MSIRDY_MASK;
535             clock_update(s->msi_rc, 0);
536         }
537     }
538     rcc_update_irq(s);
539 }
540 
541 static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
542 {
543     uint32_t val;
544     /* MCOPRE */
545     val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
546     assert(val <= 0b100);
547     clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
548                          1, 1 << val);
549 
550     /* MCOSEL */
551     val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
552     assert(val <= 0b111);
553     if (val == 0) {
554         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
555     } else {
556         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
557         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
558                              val - 1);
559     }
560 
561     /* STOPWUCK */
562     /* TODO */
563 
564     /* PPRE2 */
565     val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
566     if (val < 0b100) {
567         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
568                              1, 1);
569     } else {
570         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
571                              1, 1 << (val - 0b11));
572     }
573 
574     /* PPRE1 */
575     val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
576     if (val < 0b100) {
577         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
578                              1, 1);
579     } else {
580         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
581                              1, 1 << (val - 0b11));
582     }
583 
584     /* HPRE */
585     val = FIELD_EX32(s->cfgr, CFGR, HPRE);
586     if (val < 0b1000) {
587         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
588                              1, 1);
589     } else {
590         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
591                              1, 1 << (val - 0b111));
592     }
593 
594     /* Update SWS */
595     val = FIELD_EX32(s->cfgr, CFGR, SW);
596     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
597                          val);
598     s->cfgr &= ~R_CFGR_SWS_MASK;
599     s->cfgr |= val << R_CFGR_SWS_SHIFT;
600 }
601 
602 static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
603 {
604     #define AHB1ENR_SET_ENABLE(_peripheral_name) \
605         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
606             FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
607 
608     /* DMA2DEN: reserved for STM32L475xx */
609     AHB1ENR_SET_ENABLE(TSC);
610     AHB1ENR_SET_ENABLE(CRC);
611     AHB1ENR_SET_ENABLE(FLASH);
612     AHB1ENR_SET_ENABLE(DMA2);
613     AHB1ENR_SET_ENABLE(DMA1);
614 
615     #undef AHB1ENR_SET_ENABLE
616 }
617 
618 static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
619 {
620     #define AHB2ENR_SET_ENABLE(_peripheral_name) \
621         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
622             FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
623 
624     AHB2ENR_SET_ENABLE(RNG);
625     /* HASHEN: reserved for STM32L475xx */
626     AHB2ENR_SET_ENABLE(AES);
627     /* DCMIEN: reserved for STM32L475xx */
628     AHB2ENR_SET_ENABLE(ADC);
629     AHB2ENR_SET_ENABLE(OTGFS);
630     /* GPIOIEN: reserved for STM32L475xx */
631     AHB2ENR_SET_ENABLE(GPIOA);
632     AHB2ENR_SET_ENABLE(GPIOB);
633     AHB2ENR_SET_ENABLE(GPIOC);
634     AHB2ENR_SET_ENABLE(GPIOD);
635     AHB2ENR_SET_ENABLE(GPIOE);
636     AHB2ENR_SET_ENABLE(GPIOF);
637     AHB2ENR_SET_ENABLE(GPIOG);
638     AHB2ENR_SET_ENABLE(GPIOH);
639 
640     #undef AHB2ENR_SET_ENABLE
641 }
642 
643 static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
644 {
645     #define AHB3ENR_SET_ENABLE(_peripheral_name) \
646         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
647             FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
648 
649     AHB3ENR_SET_ENABLE(QSPI);
650     AHB3ENR_SET_ENABLE(FMC);
651 
652     #undef AHB3ENR_SET_ENABLE
653 }
654 
655 static void rcc_update_apb1enr(Stm32l4x5RccState *s)
656 {
657     #define APB1ENR1_SET_ENABLE(_peripheral_name) \
658         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
659             FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
660     #define APB1ENR2_SET_ENABLE(_peripheral_name) \
661         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
662             FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
663 
664     /* APB1ENR1 */
665     APB1ENR1_SET_ENABLE(LPTIM1);
666     APB1ENR1_SET_ENABLE(OPAMP);
667     APB1ENR1_SET_ENABLE(DAC1);
668     APB1ENR1_SET_ENABLE(PWR);
669     /* CAN2: reserved for STM32L4x5 */
670     APB1ENR1_SET_ENABLE(CAN1);
671     /* CRSEN: reserved for STM32L4x5 */
672     APB1ENR1_SET_ENABLE(I2C3);
673     APB1ENR1_SET_ENABLE(I2C2);
674     APB1ENR1_SET_ENABLE(I2C1);
675     APB1ENR1_SET_ENABLE(UART5);
676     APB1ENR1_SET_ENABLE(UART4);
677     APB1ENR1_SET_ENABLE(USART3);
678     APB1ENR1_SET_ENABLE(USART2);
679     APB1ENR1_SET_ENABLE(SPI3);
680     APB1ENR1_SET_ENABLE(SPI2);
681     APB1ENR1_SET_ENABLE(WWDG);
682     /* RTCAPB: reserved for STM32L4x5 */
683     APB1ENR1_SET_ENABLE(LCD);
684     APB1ENR1_SET_ENABLE(TIM7);
685     APB1ENR1_SET_ENABLE(TIM6);
686     APB1ENR1_SET_ENABLE(TIM5);
687     APB1ENR1_SET_ENABLE(TIM4);
688     APB1ENR1_SET_ENABLE(TIM3);
689     APB1ENR1_SET_ENABLE(TIM2);
690 
691     /* APB1ENR2 */
692     APB1ENR2_SET_ENABLE(LPTIM2);
693     APB1ENR2_SET_ENABLE(SWPMI1);
694     /* I2C4EN: reserved for STM32L4x5 */
695     APB1ENR2_SET_ENABLE(LPUART1);
696 
697     #undef APB1ENR1_SET_ENABLE
698     #undef APB1ENR2_SET_ENABLE
699 }
700 
701 static void rcc_update_apb2enr(Stm32l4x5RccState *s)
702 {
703     #define APB2ENR_SET_ENABLE(_peripheral_name) \
704         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
705             FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
706 
707     APB2ENR_SET_ENABLE(DFSDM1);
708     APB2ENR_SET_ENABLE(SAI2);
709     APB2ENR_SET_ENABLE(SAI1);
710     APB2ENR_SET_ENABLE(TIM17);
711     APB2ENR_SET_ENABLE(TIM16);
712     APB2ENR_SET_ENABLE(TIM15);
713     APB2ENR_SET_ENABLE(USART1);
714     APB2ENR_SET_ENABLE(TIM8);
715     APB2ENR_SET_ENABLE(SPI1);
716     APB2ENR_SET_ENABLE(TIM1);
717     APB2ENR_SET_ENABLE(SDMMC1);
718     APB2ENR_SET_ENABLE(FW);
719     APB2ENR_SET_ENABLE(SYSCFG);
720 
721     #undef APB2ENR_SET_ENABLE
722 }
723 
724 /*
725  * The 3 PLLs share the same register layout
726  * so we can use the same function for all of them
727  * Note: no frequency bounds checking is done here.
728  */
729 static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
730 {
731     uint32_t reg, val;
732     switch (pll_id) {
733     case RCC_PLL_PLL:
734         reg = s->pllcfgr;
735         break;
736     case RCC_PLL_PLLSAI1:
737         reg = s->pllsai1cfgr;
738         break;
739     case RCC_PLL_PLLSAI2:
740         reg = s->pllsai2cfgr;
741         break;
742     default:
743         qemu_log_mask(LOG_GUEST_ERROR,
744                       "%s: Invalid PLL ID: %u\n", __func__, pll_id);
745         return;
746     }
747 
748     /* PLLPDIV */
749     val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
750     /* 1 is a reserved value */
751     if (val == 0) {
752         /* Get PLLP value */
753         val = FIELD_EX32(reg, PLLCFGR, PLLP);
754         pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
755             (val ? 17 : 7));
756     } else if (val > 1) {
757         pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
758             val);
759     }
760 
761 
762     /* PLLR */
763     val = FIELD_EX32(reg, PLLCFGR, PLLR);
764     pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
765         2 * (val + 1));
766 
767     /* PLLREN */
768     val = FIELD_EX32(reg, PLLCFGR, PLLREN);
769     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
770 
771     /* PLLQ */
772     val = FIELD_EX32(reg, PLLCFGR, PLLQ);
773     pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
774         2 * (val + 1));
775 
776     /* PLLQEN */
777     val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
778     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
779 
780     /* PLLPEN */
781     val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
782     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
783 
784     /* PLLN */
785     val = FIELD_EX32(reg, PLLCFGR, PLLN);
786     pll_set_vco_multiplier(&s->plls[pll_id], val);
787 }
788 
789 static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
790 {
791     int val;
792 
793     /* Use common layout */
794     rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
795 
796     /* Fetch specific fields for pllcfgr */
797 
798     /* PLLM */
799     val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
800     clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
801 
802     /* PLLSRC */
803     val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
804     if (val == 0) {
805         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
806     } else {
807         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
808         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
809     }
810 }
811 
812 static void rcc_update_ccipr(Stm32l4x5RccState *s)
813 {
814     #define CCIPR_SET_SOURCE(_peripheral_name) \
815         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
816             FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
817 
818     CCIPR_SET_SOURCE(DFSDM1);
819     CCIPR_SET_SOURCE(SWPMI1);
820     CCIPR_SET_SOURCE(ADC);
821     CCIPR_SET_SOURCE(CLK48);
822     CCIPR_SET_SOURCE(SAI2);
823     CCIPR_SET_SOURCE(SAI1);
824     CCIPR_SET_SOURCE(LPTIM2);
825     CCIPR_SET_SOURCE(LPTIM1);
826     CCIPR_SET_SOURCE(I2C3);
827     CCIPR_SET_SOURCE(I2C2);
828     CCIPR_SET_SOURCE(I2C1);
829     CCIPR_SET_SOURCE(LPUART1);
830     CCIPR_SET_SOURCE(UART5);
831     CCIPR_SET_SOURCE(UART4);
832     CCIPR_SET_SOURCE(USART3);
833     CCIPR_SET_SOURCE(USART2);
834     CCIPR_SET_SOURCE(USART1);
835 
836     #undef CCIPR_SET_SOURCE
837 }
838 
839 static void rcc_update_bdcr(Stm32l4x5RccState *s)
840 {
841     int val;
842 
843     /* LSCOSEL */
844     val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
845     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
846 
847     val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
848     clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
849 
850     /* BDRST */
851     /*
852      * The documentation is not clear if the RTCEN flag disables the RTC and
853      * the LCD common mux or if it only affects the RTC.
854      * As the LCDEN flag exists, we assume here that it only affects the RTC.
855      */
856     val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
857     clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
858     /* LCD and RTC share the same clock */
859     val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
860     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
861 
862     /* LSECSSON */
863     /* LSEDRV[1:0] */
864     /* LSEBYP */
865 
866     /* LSEON: Update LSERDY at the same time */
867     val = FIELD_EX32(s->bdcr, BDCR, LSEON);
868     if (val) {
869         clock_update_hz(s->lse_crystal, LSE_FRQ);
870         s->bdcr |= R_BDCR_LSERDY_MASK;
871         if (s->cier & R_CIER_LSERDYIE_MASK) {
872             s->cifr |= R_CIFR_LSERDYF_MASK;
873         }
874     } else {
875         clock_update(s->lse_crystal, 0);
876         s->bdcr &= ~R_BDCR_LSERDY_MASK;
877     }
878 
879     rcc_update_irq(s);
880 }
881 
882 static void rcc_update_csr(Stm32l4x5RccState *s)
883 {
884     int val;
885 
886     /* Reset flags: Not implemented */
887     /* MSISRANGE: Not implemented after reset */
888 
889     /* LSION: Update LSIRDY at the same time */
890     val = FIELD_EX32(s->csr, CSR, LSION);
891     if (val) {
892         clock_update_hz(s->lsi_rc, LSI_FRQ);
893         s->csr |= R_CSR_LSIRDY_MASK;
894         if (s->cier & R_CIER_LSIRDYIE_MASK) {
895             s->cifr |= R_CIFR_LSIRDYF_MASK;
896         }
897     } else {
898         /*
899          * TODO: Handle when the LSI is set independently of LSION.
900          * E.g. when the LSI is set by the RTC.
901          * See the reference manual for more details.
902          */
903         clock_update(s->lsi_rc, 0);
904         s->csr &= ~R_CSR_LSIRDY_MASK;
905     }
906 
907     rcc_update_irq(s);
908 }
909 
910 static void stm32l4x5_rcc_reset_hold(Object *obj, ResetType type)
911 {
912     Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
913     s->cr = 0x00000063;
914     /*
915      * Factory-programmed calibration data
916      * From the reference manual: 0x10XX 00XX
917      * Value taken from a real card.
918      */
919     s->icscr = 0x106E0082;
920     s->cfgr = 0x0;
921     s->pllcfgr = 0x00001000;
922     s->pllsai1cfgr = 0x00001000;
923     s->pllsai2cfgr = 0x00001000;
924     s->cier = 0x0;
925     s->cifr = 0x0;
926     s->ahb1rstr = 0x0;
927     s->ahb2rstr = 0x0;
928     s->ahb3rstr = 0x0;
929     s->apb1rstr1 = 0x0;
930     s->apb1rstr2 = 0x0;
931     s->apb2rstr = 0x0;
932     s->ahb1enr = 0x00000100;
933     s->ahb2enr = 0x0;
934     s->ahb3enr = 0x0;
935     s->apb1enr1 = 0x0;
936     s->apb1enr2 = 0x0;
937     s->apb2enr = 0x0;
938     s->ahb1smenr = 0x00011303;
939     s->ahb2smenr = 0x000532FF;
940     s->ahb3smenr =  0x00000101;
941     s->apb1smenr1 = 0xF2FECA3F;
942     s->apb1smenr2 = 0x00000025;
943     s->apb2smenr = 0x01677C01;
944     s->ccipr = 0x0;
945     s->bdcr = 0x0;
946     s->csr = 0x0C000600;
947 }
948 
949 static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
950                                      unsigned int size)
951 {
952     Stm32l4x5RccState *s = opaque;
953     uint64_t retvalue = 0;
954 
955     switch (addr) {
956     case A_CR:
957         retvalue = s->cr;
958         break;
959     case A_ICSCR:
960         retvalue = s->icscr;
961         break;
962     case A_CFGR:
963         retvalue = s->cfgr;
964         break;
965     case A_PLLCFGR:
966         retvalue = s->pllcfgr;
967         break;
968     case A_PLLSAI1CFGR:
969         retvalue = s->pllsai1cfgr;
970         break;
971     case A_PLLSAI2CFGR:
972         retvalue = s->pllsai2cfgr;
973         break;
974     case A_CIER:
975         retvalue = s->cier;
976         break;
977     case A_CIFR:
978         retvalue = s->cifr;
979         break;
980     case A_CICR:
981         /* CICR is write only, return the reset value = 0 */
982         break;
983     case A_AHB1RSTR:
984         retvalue = s->ahb1rstr;
985         break;
986     case A_AHB2RSTR:
987         retvalue = s->ahb2rstr;
988         break;
989     case A_AHB3RSTR:
990         retvalue = s->ahb3rstr;
991         break;
992     case A_APB1RSTR1:
993         retvalue = s->apb1rstr1;
994         break;
995     case A_APB1RSTR2:
996         retvalue = s->apb1rstr2;
997         break;
998     case A_APB2RSTR:
999         retvalue = s->apb2rstr;
1000         break;
1001     case A_AHB1ENR:
1002         retvalue = s->ahb1enr;
1003         break;
1004     case A_AHB2ENR:
1005         retvalue = s->ahb2enr;
1006         break;
1007     case A_AHB3ENR:
1008         retvalue = s->ahb3enr;
1009         break;
1010     case A_APB1ENR1:
1011         retvalue = s->apb1enr1;
1012         break;
1013     case A_APB1ENR2:
1014         retvalue = s->apb1enr2;
1015         break;
1016     case A_APB2ENR:
1017         retvalue = s->apb2enr;
1018         break;
1019     case A_AHB1SMENR:
1020         retvalue = s->ahb1smenr;
1021         break;
1022     case A_AHB2SMENR:
1023         retvalue = s->ahb2smenr;
1024         break;
1025     case A_AHB3SMENR:
1026         retvalue = s->ahb3smenr;
1027         break;
1028     case A_APB1SMENR1:
1029         retvalue = s->apb1smenr1;
1030         break;
1031     case A_APB1SMENR2:
1032         retvalue = s->apb1smenr2;
1033         break;
1034     case A_APB2SMENR:
1035         retvalue = s->apb2smenr;
1036         break;
1037     case A_CCIPR:
1038         retvalue = s->ccipr;
1039         break;
1040     case A_BDCR:
1041         retvalue = s->bdcr;
1042         break;
1043     case A_CSR:
1044         retvalue = s->csr;
1045         break;
1046     default:
1047         qemu_log_mask(LOG_GUEST_ERROR,
1048                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1049         break;
1050     }
1051 
1052     trace_stm32l4x5_rcc_read(addr, retvalue);
1053 
1054     return retvalue;
1055 }
1056 
1057 static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
1058                                   uint64_t val64, unsigned int size)
1059 {
1060     Stm32l4x5RccState *s = opaque;
1061     uint32_t previous_value = 0;
1062     const uint32_t value = val64;
1063 
1064     trace_stm32l4x5_rcc_write(addr, value);
1065 
1066     switch (addr) {
1067     case A_CR:
1068         previous_value = s->cr;
1069         s->cr = (s->cr & CR_READ_SET_MASK) |
1070                 (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
1071         rcc_update_cr_register(s, previous_value);
1072         break;
1073     case A_ICSCR:
1074         s->icscr = value & ~ICSCR_READ_ONLY_MASK;
1075         qemu_log_mask(LOG_UNIMP,
1076                 "%s: Side-effects not implemented for ICSCR\n", __func__);
1077         break;
1078     case A_CFGR:
1079         s->cfgr = value & ~CFGR_READ_ONLY_MASK;
1080         rcc_update_cfgr_register(s);
1081         break;
1082     case A_PLLCFGR:
1083         s->pllcfgr = value;
1084         rcc_update_pllcfgr(s);
1085         break;
1086     case A_PLLSAI1CFGR:
1087         s->pllsai1cfgr = value;
1088         rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
1089         break;
1090     case A_PLLSAI2CFGR:
1091         s->pllsai2cfgr = value;
1092         rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
1093         break;
1094     case A_CIER:
1095         s->cier = value;
1096         qemu_log_mask(LOG_UNIMP,
1097                 "%s: Side-effects not implemented for CIER\n", __func__);
1098         break;
1099     case A_CIFR:
1100         qemu_log_mask(LOG_GUEST_ERROR,
1101             "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
1102             __func__, value);
1103         break;
1104     case A_CICR:
1105         /* Clear interrupt flags by writing a 1 to the CICR register */
1106         s->cifr &= ~value;
1107         rcc_update_irq(s);
1108         break;
1109     /* Reset behaviors are not implemented */
1110     case A_AHB1RSTR:
1111         s->ahb1rstr = value;
1112         qemu_log_mask(LOG_UNIMP,
1113                 "%s: Side-effects not implemented for AHB1RSTR\n", __func__);
1114         break;
1115     case A_AHB2RSTR:
1116         s->ahb2rstr = value;
1117         qemu_log_mask(LOG_UNIMP,
1118                 "%s: Side-effects not implemented for AHB2RSTR\n", __func__);
1119         break;
1120     case A_AHB3RSTR:
1121         s->ahb3rstr = value;
1122         qemu_log_mask(LOG_UNIMP,
1123                 "%s: Side-effects not implemented for AHB3RSTR\n", __func__);
1124         break;
1125     case A_APB1RSTR1:
1126         s->apb1rstr1 = value;
1127         qemu_log_mask(LOG_UNIMP,
1128                 "%s: Side-effects not implemented for APB1RSTR1\n", __func__);
1129         break;
1130     case A_APB1RSTR2:
1131         s->apb1rstr2 = value;
1132         qemu_log_mask(LOG_UNIMP,
1133                 "%s: Side-effects not implemented for APB1RSTR2\n", __func__);
1134         break;
1135     case A_APB2RSTR:
1136         s->apb2rstr = value;
1137         qemu_log_mask(LOG_UNIMP,
1138                 "%s: Side-effects not implemented for APB2RSTR\n", __func__);
1139         break;
1140     case A_AHB1ENR:
1141         s->ahb1enr = value;
1142         rcc_update_ahb1enr(s);
1143         break;
1144     case A_AHB2ENR:
1145         s->ahb2enr = value;
1146         rcc_update_ahb2enr(s);
1147         break;
1148     case A_AHB3ENR:
1149         s->ahb3enr = value;
1150         rcc_update_ahb3enr(s);
1151         break;
1152     case A_APB1ENR1:
1153         s->apb1enr1 = value;
1154         rcc_update_apb1enr(s);
1155         break;
1156     case A_APB1ENR2:
1157         s->apb1enr2 = value;
1158         rcc_update_apb1enr(s);
1159         break;
1160     case A_APB2ENR:
1161         s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
1162         rcc_update_apb2enr(s);
1163         break;
1164     /* Behaviors for Sleep and Stop modes are not implemented */
1165     case A_AHB1SMENR:
1166         s->ahb1smenr = value;
1167         qemu_log_mask(LOG_UNIMP,
1168                 "%s: Side-effects not implemented for AHB1SMENR\n", __func__);
1169         break;
1170     case A_AHB2SMENR:
1171         s->ahb2smenr = value;
1172         qemu_log_mask(LOG_UNIMP,
1173                 "%s: Side-effects not implemented for AHB2SMENR\n", __func__);
1174         break;
1175     case A_AHB3SMENR:
1176         s->ahb3smenr = value;
1177         qemu_log_mask(LOG_UNIMP,
1178                 "%s: Side-effects not implemented for AHB3SMENR\n", __func__);
1179         break;
1180     case A_APB1SMENR1:
1181         s->apb1smenr1 = value;
1182         qemu_log_mask(LOG_UNIMP,
1183                 "%s: Side-effects not implemented for APB1SMENR1\n", __func__);
1184         break;
1185     case A_APB1SMENR2:
1186         s->apb1smenr2 = value;
1187         qemu_log_mask(LOG_UNIMP,
1188                 "%s: Side-effects not implemented for APB1SMENR2\n", __func__);
1189         break;
1190     case A_APB2SMENR:
1191         s->apb2smenr = value;
1192         qemu_log_mask(LOG_UNIMP,
1193                 "%s: Side-effects not implemented for APB2SMENR\n", __func__);
1194         break;
1195     case A_CCIPR:
1196         s->ccipr = value;
1197         rcc_update_ccipr(s);
1198         break;
1199     case A_BDCR:
1200         s->bdcr = value & ~BDCR_READ_ONLY_MASK;
1201         rcc_update_bdcr(s);
1202         break;
1203     case A_CSR:
1204         s->csr = value & ~CSR_READ_ONLY_MASK;
1205         rcc_update_csr(s);
1206         break;
1207     default:
1208         qemu_log_mask(LOG_GUEST_ERROR,
1209                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1210     }
1211 }
1212 
1213 static const MemoryRegionOps stm32l4x5_rcc_ops = {
1214     .read = stm32l4x5_rcc_read,
1215     .write = stm32l4x5_rcc_write,
1216     .endianness = DEVICE_NATIVE_ENDIAN,
1217     .valid = {
1218         .max_access_size = 4,
1219         .min_access_size = 4,
1220         .unaligned = false
1221     },
1222     .impl = {
1223         .max_access_size = 4,
1224         .min_access_size = 4,
1225         .unaligned = false
1226     },
1227 };
1228 
1229 static const ClockPortInitArray stm32l4x5_rcc_clocks = {
1230     QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
1231     QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
1232     QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
1233     QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
1234     QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
1235     QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
1236     QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
1237     QDEV_CLOCK_END
1238 };
1239 
1240 
1241 static void stm32l4x5_rcc_init(Object *obj)
1242 {
1243     Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
1244     size_t i;
1245 
1246     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
1247 
1248     memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
1249                           TYPE_STM32L4X5_RCC, 0x400);
1250     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
1251 
1252     qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
1253 
1254     for (i = 0; i < RCC_NUM_PLL; i++) {
1255         object_initialize_child(obj, PLL_INIT_INFO[i].name,
1256                                 &s->plls[i], TYPE_RCC_PLL);
1257         set_pll_init_info(&s->plls[i], i);
1258     }
1259 
1260     for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1261         char *alias;
1262 
1263         object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
1264                                 &s->clock_muxes[i],
1265                                 TYPE_RCC_CLOCK_MUX);
1266         set_clock_mux_init_info(&s->clock_muxes[i], i);
1267 
1268         if (!CLOCK_MUX_INIT_INFO[i].hidden) {
1269             /* Expose muxes output as RCC outputs */
1270             alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
1271             qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
1272             g_free(alias);
1273         }
1274     }
1275 
1276     s->gnd = clock_new(obj, "gnd");
1277 }
1278 
1279 static void connect_mux_sources(Stm32l4x5RccState *s,
1280                                 RccClockMuxState *mux,
1281                                 const RccClockMuxSource *clk_mapping)
1282 {
1283     size_t i;
1284 
1285     Clock * const CLK_SRC_MAPPING[] = {
1286         [RCC_CLOCK_MUX_SRC_GND] = s->gnd,
1287         [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
1288         [RCC_CLOCK_MUX_SRC_HSE] = s->hse,
1289         [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
1290         [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
1291         [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
1292         [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
1293         [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
1294         [RCC_CLOCK_MUX_SRC_PLL] =
1295             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
1296         [RCC_CLOCK_MUX_SRC_PLLSAI1] =
1297             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
1298         [RCC_CLOCK_MUX_SRC_PLLSAI2] =
1299             s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
1300         [RCC_CLOCK_MUX_SRC_PLLSAI3] =
1301             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
1302         [RCC_CLOCK_MUX_SRC_PLL48M1] =
1303             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
1304         [RCC_CLOCK_MUX_SRC_PLL48M2] =
1305             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
1306         [RCC_CLOCK_MUX_SRC_PLLADC1] =
1307             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
1308         [RCC_CLOCK_MUX_SRC_PLLADC2] =
1309             s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
1310         [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
1311         [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
1312         [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
1313         [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
1314         [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
1315         [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
1316             s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
1317     };
1318 
1319     assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
1320 
1321     for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
1322         RccClockMuxSource mapping = clk_mapping[i];
1323         clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
1324     }
1325 }
1326 
1327 
1328 static const VMStateDescription vmstate_stm32l4x5_rcc = {
1329     .name = TYPE_STM32L4X5_RCC,
1330     .version_id = 1,
1331     .minimum_version_id = 1,
1332     .fields = (VMStateField[]) {
1333         VMSTATE_UINT32(cr, Stm32l4x5RccState),
1334         VMSTATE_UINT32(icscr, Stm32l4x5RccState),
1335         VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
1336         VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
1337         VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
1338         VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
1339         VMSTATE_UINT32(cier, Stm32l4x5RccState),
1340         VMSTATE_UINT32(cifr, Stm32l4x5RccState),
1341         VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
1342         VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
1343         VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
1344         VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
1345         VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
1346         VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
1347         VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
1348         VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
1349         VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
1350         VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
1351         VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
1352         VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
1353         VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
1354         VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
1355         VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
1356         VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
1357         VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
1358         VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
1359         VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
1360         VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
1361         VMSTATE_UINT32(csr, Stm32l4x5RccState),
1362         VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
1363         VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
1364         VMSTATE_CLOCK(hse, Stm32l4x5RccState),
1365         VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
1366         VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
1367         VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
1368         VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
1369         VMSTATE_END_OF_LIST()
1370     }
1371 };
1372 
1373 
1374 static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
1375 {
1376     Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
1377     size_t i;
1378 
1379     if (s->hse_frequency <  4000000ULL ||
1380         s->hse_frequency > 48000000ULL) {
1381             error_setg(errp,
1382                 "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
1383                 s->hse_frequency);
1384             return;
1385         }
1386 
1387     for (i = 0; i < RCC_NUM_PLL; i++) {
1388         RccPllState *pll = &s->plls[i];
1389 
1390         clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
1391 
1392         if (!qdev_realize(DEVICE(pll), NULL, errp)) {
1393             return;
1394         }
1395     }
1396 
1397     for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1398         RccClockMuxState *clock_mux = &s->clock_muxes[i];
1399 
1400         connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
1401 
1402         if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
1403             return;
1404         }
1405     }
1406 
1407     /*
1408      * Start clocks after everything is connected
1409      * to propagate the frequencies along the tree.
1410      */
1411     clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
1412     clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
1413     clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
1414     clock_update(s->gnd, 0);
1415 }
1416 
1417 static Property stm32l4x5_rcc_properties[] = {
1418     DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
1419         hse_frequency, HSE_DEFAULT_FRQ),
1420     DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
1421         sai1_extclk_frequency, 0),
1422     DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
1423         sai2_extclk_frequency, 0),
1424     DEFINE_PROP_END_OF_LIST(),
1425 };
1426 
1427 static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
1428 {
1429     DeviceClass *dc = DEVICE_CLASS(klass);
1430     ResettableClass *rc = RESETTABLE_CLASS(klass);
1431 
1432     assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
1433 
1434     rc->phases.hold = stm32l4x5_rcc_reset_hold;
1435     device_class_set_props(dc, stm32l4x5_rcc_properties);
1436     dc->realize = stm32l4x5_rcc_realize;
1437     dc->vmsd = &vmstate_stm32l4x5_rcc;
1438 }
1439 
1440 static const TypeInfo stm32l4x5_rcc_types[] = {
1441     {
1442         .name           = TYPE_STM32L4X5_RCC,
1443         .parent         = TYPE_SYS_BUS_DEVICE,
1444         .instance_size  = sizeof(Stm32l4x5RccState),
1445         .instance_init  = stm32l4x5_rcc_init,
1446         .class_init     = stm32l4x5_rcc_class_init,
1447     }, {
1448         .name = TYPE_RCC_CLOCK_MUX,
1449         .parent = TYPE_DEVICE,
1450         .instance_size = sizeof(RccClockMuxState),
1451         .instance_init = clock_mux_init,
1452         .class_init = clock_mux_class_init,
1453     }, {
1454         .name = TYPE_RCC_PLL,
1455         .parent = TYPE_DEVICE,
1456         .instance_size = sizeof(RccPllState),
1457         .instance_init = pll_init,
1458         .class_init = pll_class_init,
1459     }
1460 };
1461 
1462 DEFINE_TYPES(stm32l4x5_rcc_types)
1463