xref: /openbmc/qemu/hw/misc/omap_gpmc.c (revision a23797ef)
1 /*
2  * TI OMAP general purpose memory controller emulation.
3  *
4  * Copyright (C) 2007-2009 Nokia Corporation
5  * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6  * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 or
11  * (at your option) any later version of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "hw/hw.h"
22 #include "hw/block/flash.h"
23 #include "hw/arm/omap.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 
27 /* General-Purpose Memory Controller */
28 struct omap_gpmc_s {
29     qemu_irq irq;
30     qemu_irq drq;
31     MemoryRegion iomem;
32     int accept_256;
33 
34     uint8_t revision;
35     uint8_t sysconfig;
36     uint16_t irqst;
37     uint16_t irqen;
38     uint16_t lastirq;
39     uint16_t timeout;
40     uint16_t config;
41     struct omap_gpmc_cs_file_s {
42         uint32_t config[7];
43         MemoryRegion *iomem;
44         MemoryRegion container;
45         MemoryRegion nandiomem;
46         DeviceState *dev;
47     } cs_file[8];
48     int ecc_cs;
49     int ecc_ptr;
50     uint32_t ecc_cfg;
51     ECCState ecc[9];
52     struct prefetch {
53         uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
54         uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
55         int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
56         int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
57         int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
58         MemoryRegion iomem;
59         uint8_t fifo[64];
60     } prefetch;
61 };
62 
63 #define OMAP_GPMC_8BIT 0
64 #define OMAP_GPMC_16BIT 1
65 #define OMAP_GPMC_NOR 0
66 #define OMAP_GPMC_NAND 2
67 
68 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
69 {
70     return (f->config[0] >> 10) & 3;
71 }
72 
73 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
74 {
75     /* devsize field is really 2 bits but we ignore the high
76      * bit to ensure consistent behaviour if the guest sets
77      * it (values 2 and 3 are reserved in the TRM)
78      */
79     return (f->config[0] >> 12) & 1;
80 }
81 
82 /* Extract the chip-select value from the prefetch config1 register */
83 static int prefetch_cs(uint32_t config1)
84 {
85     return (config1 >> 24) & 7;
86 }
87 
88 static int prefetch_threshold(uint32_t config1)
89 {
90     return (config1 >> 8) & 0x7f;
91 }
92 
93 static void omap_gpmc_int_update(struct omap_gpmc_s *s)
94 {
95     /* The TRM is a bit unclear, but it seems to say that
96      * the TERMINALCOUNTSTATUS bit is set only on the
97      * transition when the prefetch engine goes from
98      * active to inactive, whereas the FIFOEVENTSTATUS
99      * bit is held high as long as the fifo has at
100      * least THRESHOLD bytes available.
101      * So we do the latter here, but TERMINALCOUNTSTATUS
102      * is set elsewhere.
103      */
104     if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
105         s->irqst |= 1;
106     }
107     if ((s->irqen & s->irqst) != s->lastirq) {
108         s->lastirq = s->irqen & s->irqst;
109         qemu_set_irq(s->irq, s->lastirq);
110     }
111 }
112 
113 static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
114 {
115     if (s->prefetch.config1 & 4) {
116         qemu_set_irq(s->drq, value);
117     }
118 }
119 
120 /* Access functions for when a NAND-like device is mapped into memory:
121  * all addresses in the region behave like accesses to the relevant
122  * GPMC_NAND_DATA_i register (which is actually implemented to call these)
123  */
124 static uint64_t omap_nand_read(void *opaque, hwaddr addr,
125                                unsigned size)
126 {
127     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
128     uint64_t v;
129     nand_setpins(f->dev, 0, 0, 0, 1, 0);
130     switch (omap_gpmc_devsize(f)) {
131     case OMAP_GPMC_8BIT:
132         v = nand_getio(f->dev);
133         if (size == 1) {
134             return v;
135         }
136         v |= (nand_getio(f->dev) << 8);
137         if (size == 2) {
138             return v;
139         }
140         v |= (nand_getio(f->dev) << 16);
141         v |= (nand_getio(f->dev) << 24);
142         return v;
143     case OMAP_GPMC_16BIT:
144         v = nand_getio(f->dev);
145         if (size == 1) {
146             /* 8 bit read from 16 bit device : probably a guest bug */
147             return v & 0xff;
148         }
149         if (size == 2) {
150             return v;
151         }
152         v |= (nand_getio(f->dev) << 16);
153         return v;
154     default:
155         abort();
156     }
157 }
158 
159 static void omap_nand_setio(DeviceState *dev, uint64_t value,
160                             int nandsize, int size)
161 {
162     /* Write the specified value to the NAND device, respecting
163      * both size of the NAND device and size of the write access.
164      */
165     switch (nandsize) {
166     case OMAP_GPMC_8BIT:
167         switch (size) {
168         case 1:
169             nand_setio(dev, value & 0xff);
170             break;
171         case 2:
172             nand_setio(dev, value & 0xff);
173             nand_setio(dev, (value >> 8) & 0xff);
174             break;
175         case 4:
176         default:
177             nand_setio(dev, value & 0xff);
178             nand_setio(dev, (value >> 8) & 0xff);
179             nand_setio(dev, (value >> 16) & 0xff);
180             nand_setio(dev, (value >> 24) & 0xff);
181             break;
182         }
183         break;
184     case OMAP_GPMC_16BIT:
185         switch (size) {
186         case 1:
187             /* writing to a 16bit device with 8bit access is probably a guest
188              * bug; pass the value through anyway.
189              */
190         case 2:
191             nand_setio(dev, value & 0xffff);
192             break;
193         case 4:
194         default:
195             nand_setio(dev, value & 0xffff);
196             nand_setio(dev, (value >> 16) & 0xffff);
197             break;
198         }
199         break;
200     }
201 }
202 
203 static void omap_nand_write(void *opaque, hwaddr addr,
204                             uint64_t value, unsigned size)
205 {
206     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
207     nand_setpins(f->dev, 0, 0, 0, 1, 0);
208     omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
209 }
210 
211 static const MemoryRegionOps omap_nand_ops = {
212     .read = omap_nand_read,
213     .write = omap_nand_write,
214     .endianness = DEVICE_NATIVE_ENDIAN,
215 };
216 
217 static void fill_prefetch_fifo(struct omap_gpmc_s *s)
218 {
219     /* Fill the prefetch FIFO by reading data from NAND.
220      * We do this synchronously, unlike the hardware which
221      * will do this asynchronously. We refill when the
222      * FIFO has THRESHOLD bytes free, and we always refill
223      * as much data as possible starting at the top end
224      * of the FIFO.
225      * (We have to refill at THRESHOLD rather than waiting
226      * for the FIFO to empty to allow for the case where
227      * the FIFO size isn't an exact multiple of THRESHOLD
228      * and we're doing DMA transfers.)
229      * This means we never need to handle wrap-around in
230      * the fifo-reading code, and the next byte of data
231      * to read is always fifo[63 - fifopointer].
232      */
233     int fptr;
234     int cs = prefetch_cs(s->prefetch.config1);
235     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
236     int bytes;
237     /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
238      * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
239      * Instead believe the bit that says it is always a byte count.
240      */
241     bytes = 64 - s->prefetch.fifopointer;
242     if (bytes > s->prefetch.count) {
243         bytes = s->prefetch.count;
244     }
245     if (is16bit) {
246         bytes &= ~1;
247     }
248 
249     s->prefetch.count -= bytes;
250     s->prefetch.fifopointer += bytes;
251     fptr = 64 - s->prefetch.fifopointer;
252     /* Move the existing data in the FIFO so it sits just
253      * before what we're about to read in
254      */
255     while (fptr < (64 - bytes)) {
256         s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
257         fptr++;
258     }
259     while (fptr < 64) {
260         if (is16bit) {
261             uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
262             s->prefetch.fifo[fptr++] = v & 0xff;
263             s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
264         } else {
265             s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
266         }
267     }
268     if (s->prefetch.startengine && (s->prefetch.count == 0)) {
269         /* This was the final transfer: raise TERMINALCOUNTSTATUS */
270         s->irqst |= 2;
271         s->prefetch.startengine = 0;
272     }
273     /* If there are any bytes in the FIFO at this point then
274      * we must raise a DMA request (either this is a final part
275      * transfer, or we filled the FIFO in which case we certainly
276      * have THRESHOLD bytes available)
277      */
278     if (s->prefetch.fifopointer != 0) {
279         omap_gpmc_dma_update(s, 1);
280     }
281     omap_gpmc_int_update(s);
282 }
283 
284 /* Access functions for a NAND-like device when the prefetch/postwrite
285  * engine is enabled -- all addresses in the region behave alike:
286  * data is read or written to the FIFO.
287  */
288 static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
289                                         unsigned size)
290 {
291     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
292     uint32_t data;
293     if (s->prefetch.config1 & 1) {
294         /* The TRM doesn't define the behaviour if you read from the
295          * FIFO when the prefetch engine is in write mode. We choose
296          * to always return zero.
297          */
298         return 0;
299     }
300     /* Note that trying to read an empty fifo repeats the last byte */
301     if (s->prefetch.fifopointer) {
302         s->prefetch.fifopointer--;
303     }
304     data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
305     if (s->prefetch.fifopointer ==
306         (64 - prefetch_threshold(s->prefetch.config1))) {
307         /* We've drained THRESHOLD bytes now. So deassert the
308          * DMA request, then refill the FIFO (which will probably
309          * assert it again.)
310          */
311         omap_gpmc_dma_update(s, 0);
312         fill_prefetch_fifo(s);
313     }
314     omap_gpmc_int_update(s);
315     return data;
316 }
317 
318 static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
319                                      uint64_t value, unsigned size)
320 {
321     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
322     int cs = prefetch_cs(s->prefetch.config1);
323     if ((s->prefetch.config1 & 1) == 0) {
324         /* The TRM doesn't define the behaviour of writing to the
325          * FIFO when the prefetch engine is in read mode. We
326          * choose to ignore the write.
327          */
328         return;
329     }
330     if (s->prefetch.count == 0) {
331         /* The TRM doesn't define the behaviour of writing to the
332          * FIFO if the transfer is complete. We choose to ignore.
333          */
334         return;
335     }
336     /* The only reason we do any data buffering in postwrite
337      * mode is if we are talking to a 16 bit NAND device, in
338      * which case we need to buffer the first byte of the
339      * 16 bit word until the other byte arrives.
340      */
341     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
342     if (is16bit) {
343         /* fifopointer alternates between 64 (waiting for first
344          * byte of word) and 63 (waiting for second byte)
345          */
346         if (s->prefetch.fifopointer == 64) {
347             s->prefetch.fifo[0] = value;
348             s->prefetch.fifopointer--;
349         } else {
350             value = (value << 8) | s->prefetch.fifo[0];
351             omap_nand_write(&s->cs_file[cs], 0, value, 2);
352             s->prefetch.count--;
353             s->prefetch.fifopointer = 64;
354         }
355     } else {
356         /* Just write the byte : fifopointer remains 64 at all times */
357         omap_nand_write(&s->cs_file[cs], 0, value, 1);
358         s->prefetch.count--;
359     }
360     if (s->prefetch.count == 0) {
361         /* Final transfer: raise TERMINALCOUNTSTATUS */
362         s->irqst |= 2;
363         s->prefetch.startengine = 0;
364     }
365     omap_gpmc_int_update(s);
366 }
367 
368 static const MemoryRegionOps omap_prefetch_ops = {
369     .read = omap_gpmc_prefetch_read,
370     .write = omap_gpmc_prefetch_write,
371     .endianness = DEVICE_NATIVE_ENDIAN,
372     .impl.min_access_size = 1,
373     .impl.max_access_size = 1,
374 };
375 
376 static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
377 {
378     /* Return the MemoryRegion* to map/unmap for this chipselect */
379     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
380     if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
381         return f->iomem;
382     }
383     if ((s->prefetch.config1 & 0x80) &&
384         (prefetch_cs(s->prefetch.config1) == cs)) {
385         /* The prefetch engine is enabled for this CS: map the FIFO */
386         return &s->prefetch.iomem;
387     }
388     return &f->nandiomem;
389 }
390 
391 static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
392 {
393     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
394     uint32_t mask = (f->config[6] >> 8) & 0xf;
395     uint32_t base = f->config[6] & 0x3f;
396     uint32_t size;
397 
398     if (!f->iomem && !f->dev) {
399         return;
400     }
401 
402     if (!(f->config[6] & (1 << 6))) {
403         /* Do nothing unless CSVALID */
404         return;
405     }
406 
407     /* TODO: check for overlapping regions and report access errors */
408     if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
409          && !(s->accept_256 && !mask)) {
410         fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
411                  __func__, mask);
412     }
413 
414     base <<= 24;
415     size = (0x0fffffff & ~(mask << 24)) + 1;
416     /* TODO: rather than setting the size of the mapping (which should be
417      * constant), the mask should cause wrapping of the address space, so
418      * that the same memory becomes accessible at every <i>size</i> bytes
419      * starting from <i>base</i>.  */
420     memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
421     memory_region_add_subregion(&f->container, 0,
422                                 omap_gpmc_cs_memregion(s, cs));
423     memory_region_add_subregion(get_system_memory(), base,
424                                 &f->container);
425 }
426 
427 static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
428 {
429     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
430     if (!(f->config[6] & (1 << 6))) {
431         /* Do nothing unless CSVALID */
432         return;
433     }
434     if (!f->iomem && !f->dev) {
435         return;
436     }
437     memory_region_del_subregion(get_system_memory(), &f->container);
438     memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
439     object_unparent(OBJECT(&f->container));
440 }
441 
442 void omap_gpmc_reset(struct omap_gpmc_s *s)
443 {
444     int i;
445 
446     s->sysconfig = 0;
447     s->irqst = 0;
448     s->irqen = 0;
449     omap_gpmc_int_update(s);
450     for (i = 0; i < 8; i++) {
451         /* This has to happen before we change any of the config
452          * used to determine which memory regions are mapped or unmapped.
453          */
454         omap_gpmc_cs_unmap(s, i);
455     }
456     s->timeout = 0;
457     s->config = 0xa00;
458     s->prefetch.config1 = 0x00004000;
459     s->prefetch.transfercount = 0x00000000;
460     s->prefetch.startengine = 0;
461     s->prefetch.fifopointer = 0;
462     s->prefetch.count = 0;
463     for (i = 0; i < 8; i ++) {
464         s->cs_file[i].config[1] = 0x101001;
465         s->cs_file[i].config[2] = 0x020201;
466         s->cs_file[i].config[3] = 0x10031003;
467         s->cs_file[i].config[4] = 0x10f1111;
468         s->cs_file[i].config[5] = 0;
469         s->cs_file[i].config[6] = 0xf00;
470         /* In theory we could probe attached devices for some CFG1
471          * bits here, but we just retain them across resets as they
472          * were set initially by omap_gpmc_attach().
473          */
474         if (i == 0) {
475             s->cs_file[i].config[0] &= 0x00433e00;
476             s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
477             omap_gpmc_cs_map(s, i);
478         } else {
479             s->cs_file[i].config[0] &= 0x00403c00;
480         }
481     }
482     s->ecc_cs = 0;
483     s->ecc_ptr = 0;
484     s->ecc_cfg = 0x3fcff000;
485     for (i = 0; i < 9; i ++)
486         ecc_reset(&s->ecc[i]);
487 }
488 
489 static int gpmc_wordaccess_only(hwaddr addr)
490 {
491     /* Return true if the register offset is to a register that
492      * only permits word width accesses.
493      * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
494      * for any chipselect.
495      */
496     if (addr >= 0x60 && addr <= 0x1d4) {
497         int cs = (addr - 0x60) / 0x30;
498         addr -= cs * 0x30;
499         if (addr >= 0x7c && addr < 0x88) {
500             /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
501             return 0;
502         }
503     }
504     return 1;
505 }
506 
507 static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
508                                unsigned size)
509 {
510     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
511     int cs;
512     struct omap_gpmc_cs_file_s *f;
513 
514     if (size != 4 && gpmc_wordaccess_only(addr)) {
515         return omap_badwidth_read32(opaque, addr);
516     }
517 
518     switch (addr) {
519     case 0x000:	/* GPMC_REVISION */
520         return s->revision;
521 
522     case 0x010:	/* GPMC_SYSCONFIG */
523         return s->sysconfig;
524 
525     case 0x014:	/* GPMC_SYSSTATUS */
526         return 1;						/* RESETDONE */
527 
528     case 0x018:	/* GPMC_IRQSTATUS */
529         return s->irqst;
530 
531     case 0x01c:	/* GPMC_IRQENABLE */
532         return s->irqen;
533 
534     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
535         return s->timeout;
536 
537     case 0x044:	/* GPMC_ERR_ADDRESS */
538     case 0x048:	/* GPMC_ERR_TYPE */
539         return 0;
540 
541     case 0x050:	/* GPMC_CONFIG */
542         return s->config;
543 
544     case 0x054:	/* GPMC_STATUS */
545         return 0x001;
546 
547     case 0x060 ... 0x1d4:
548         cs = (addr - 0x060) / 0x30;
549         addr -= cs * 0x30;
550         f = s->cs_file + cs;
551         switch (addr) {
552         case 0x60:      /* GPMC_CONFIG1 */
553             return f->config[0];
554         case 0x64:      /* GPMC_CONFIG2 */
555             return f->config[1];
556         case 0x68:      /* GPMC_CONFIG3 */
557             return f->config[2];
558         case 0x6c:      /* GPMC_CONFIG4 */
559             return f->config[3];
560         case 0x70:      /* GPMC_CONFIG5 */
561             return f->config[4];
562         case 0x74:      /* GPMC_CONFIG6 */
563             return f->config[5];
564         case 0x78:      /* GPMC_CONFIG7 */
565             return f->config[6];
566         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
567             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
568                 return omap_nand_read(f, 0, size);
569             }
570             return 0;
571         }
572         break;
573 
574     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
575         return s->prefetch.config1;
576     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
577         return s->prefetch.transfercount;
578     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
579         return s->prefetch.startengine;
580     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
581         /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
582          * FIFOTHRESHOLDSTATUS bit should be set when
583          * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
584          * Apparently the underlying functional spec from which the TRM was
585          * created states that the behaviour is ">=", and this also
586          * makes more conceptual sense.
587          */
588         return (s->prefetch.fifopointer << 24) |
589                 ((s->prefetch.fifopointer >=
590                   ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
591                 s->prefetch.count;
592 
593     case 0x1f4:	/* GPMC_ECC_CONFIG */
594         return s->ecc_cs;
595     case 0x1f8:	/* GPMC_ECC_CONTROL */
596         return s->ecc_ptr;
597     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
598         return s->ecc_cfg;
599     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
600         cs = (addr & 0x1f) >> 2;
601         /* TODO: check correctness */
602         return
603                 ((s->ecc[cs].cp    &  0x07) <<  0) |
604                 ((s->ecc[cs].cp    &  0x38) << 13) |
605                 ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
606                 ((s->ecc[cs].lp[1] & 0x1ff) << 19);
607 
608     case 0x230:	/* GPMC_TESTMODE_CTRL */
609         return 0;
610     case 0x234:	/* GPMC_PSA_LSB */
611     case 0x238:	/* GPMC_PSA_MSB */
612         return 0x00000000;
613     }
614 
615     OMAP_BAD_REG(addr);
616     return 0;
617 }
618 
619 static void omap_gpmc_write(void *opaque, hwaddr addr,
620                             uint64_t value, unsigned size)
621 {
622     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
623     int cs;
624     struct omap_gpmc_cs_file_s *f;
625 
626     if (size != 4 && gpmc_wordaccess_only(addr)) {
627         omap_badwidth_write32(opaque, addr, value);
628         return;
629     }
630 
631     switch (addr) {
632     case 0x000:	/* GPMC_REVISION */
633     case 0x014:	/* GPMC_SYSSTATUS */
634     case 0x054:	/* GPMC_STATUS */
635     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
636     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
637     case 0x234:	/* GPMC_PSA_LSB */
638     case 0x238:	/* GPMC_PSA_MSB */
639         OMAP_RO_REG(addr);
640         break;
641 
642     case 0x010:	/* GPMC_SYSCONFIG */
643         if ((value >> 3) == 0x3)
644             fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
645                             __FUNCTION__, value >> 3);
646         if (value & 2)
647             omap_gpmc_reset(s);
648         s->sysconfig = value & 0x19;
649         break;
650 
651     case 0x018:	/* GPMC_IRQSTATUS */
652         s->irqst &= ~value;
653         omap_gpmc_int_update(s);
654         break;
655 
656     case 0x01c:	/* GPMC_IRQENABLE */
657         s->irqen = value & 0xf03;
658         omap_gpmc_int_update(s);
659         break;
660 
661     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
662         s->timeout = value & 0x1ff1;
663         break;
664 
665     case 0x044:	/* GPMC_ERR_ADDRESS */
666     case 0x048:	/* GPMC_ERR_TYPE */
667         break;
668 
669     case 0x050:	/* GPMC_CONFIG */
670         s->config = value & 0xf13;
671         break;
672 
673     case 0x060 ... 0x1d4:
674         cs = (addr - 0x060) / 0x30;
675         addr -= cs * 0x30;
676         f = s->cs_file + cs;
677         switch (addr) {
678         case 0x60:      /* GPMC_CONFIG1 */
679             f->config[0] = value & 0xffef3e13;
680             break;
681         case 0x64:      /* GPMC_CONFIG2 */
682             f->config[1] = value & 0x001f1f8f;
683             break;
684         case 0x68:      /* GPMC_CONFIG3 */
685             f->config[2] = value & 0x001f1f8f;
686             break;
687         case 0x6c:      /* GPMC_CONFIG4 */
688             f->config[3] = value & 0x1f8f1f8f;
689             break;
690         case 0x70:      /* GPMC_CONFIG5 */
691             f->config[4] = value & 0x0f1f1f1f;
692             break;
693         case 0x74:      /* GPMC_CONFIG6 */
694             f->config[5] = value & 0x00000fcf;
695             break;
696         case 0x78:      /* GPMC_CONFIG7 */
697             if ((f->config[6] ^ value) & 0xf7f) {
698                 omap_gpmc_cs_unmap(s, cs);
699                 f->config[6] = value & 0x00000f7f;
700                 omap_gpmc_cs_map(s, cs);
701             }
702             break;
703         case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
704             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
705                 nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
706                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
707             }
708             break;
709         case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
710             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
711                 nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
712                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
713             }
714             break;
715         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
716             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
717                 omap_nand_write(f, 0, value, size);
718             }
719             break;
720         default:
721             goto bad_reg;
722         }
723         break;
724 
725     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
726         if (!s->prefetch.startengine) {
727             uint32_t newconfig1 = value & 0x7f8f7fbf;
728             uint32_t changed;
729             changed = newconfig1 ^ s->prefetch.config1;
730             if (changed & (0x80 | 0x7000000)) {
731                 /* Turning the engine on or off, or mapping it somewhere else.
732                  * cs_map() and cs_unmap() check the prefetch config and
733                  * overall CSVALID bits, so it is sufficient to unmap-and-map
734                  * both the old cs and the new one. Note that we adhere to
735                  * the "unmap/change config/map" order (and not unmap twice
736                  * if newcs == oldcs), otherwise we'll try to delete the wrong
737                  * memory region.
738                  */
739                 int oldcs = prefetch_cs(s->prefetch.config1);
740                 int newcs = prefetch_cs(newconfig1);
741                 omap_gpmc_cs_unmap(s, oldcs);
742                 if (oldcs != newcs) {
743                     omap_gpmc_cs_unmap(s, newcs);
744                 }
745                 s->prefetch.config1 = newconfig1;
746                 omap_gpmc_cs_map(s, oldcs);
747                 if (oldcs != newcs) {
748                     omap_gpmc_cs_map(s, newcs);
749                 }
750             } else {
751                 s->prefetch.config1 = newconfig1;
752             }
753         }
754         break;
755 
756     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
757         if (!s->prefetch.startengine) {
758             s->prefetch.transfercount = value & 0x3fff;
759         }
760         break;
761 
762     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
763         if (s->prefetch.startengine != (value & 1)) {
764             s->prefetch.startengine = value & 1;
765             if (s->prefetch.startengine) {
766                 /* Prefetch engine start */
767                 s->prefetch.count = s->prefetch.transfercount;
768                 if (s->prefetch.config1 & 1) {
769                     /* Write */
770                     s->prefetch.fifopointer = 64;
771                 } else {
772                     /* Read */
773                     s->prefetch.fifopointer = 0;
774                     fill_prefetch_fifo(s);
775                 }
776             } else {
777                 /* Prefetch engine forcibly stopped. The TRM
778                  * doesn't define the behaviour if you do this.
779                  * We clear the prefetch count, which means that
780                  * we permit no more writes, and don't read any
781                  * more data from NAND. The CPU can still drain
782                  * the FIFO of unread data.
783                  */
784                 s->prefetch.count = 0;
785             }
786             omap_gpmc_int_update(s);
787         }
788         break;
789 
790     case 0x1f4:	/* GPMC_ECC_CONFIG */
791         s->ecc_cs = 0x8f;
792         break;
793     case 0x1f8:	/* GPMC_ECC_CONTROL */
794         if (value & (1 << 8))
795             for (cs = 0; cs < 9; cs ++)
796                 ecc_reset(&s->ecc[cs]);
797         s->ecc_ptr = value & 0xf;
798         if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
799             s->ecc_ptr = 0;
800             s->ecc_cs &= ~1;
801         }
802         break;
803     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
804         s->ecc_cfg = value & 0x3fcff1ff;
805         break;
806     case 0x230:	/* GPMC_TESTMODE_CTRL */
807         if (value & 7)
808             fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
809         break;
810 
811     default:
812     bad_reg:
813         OMAP_BAD_REG(addr);
814         return;
815     }
816 }
817 
818 static const MemoryRegionOps omap_gpmc_ops = {
819     .read = omap_gpmc_read,
820     .write = omap_gpmc_write,
821     .endianness = DEVICE_NATIVE_ENDIAN,
822 };
823 
824 struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
825                                    hwaddr base,
826                                    qemu_irq irq, qemu_irq drq)
827 {
828     int cs;
829     struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
830 
831     memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
832     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
833 
834     s->irq = irq;
835     s->drq = drq;
836     s->accept_256 = cpu_is_omap3630(mpu);
837     s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
838     s->lastirq = 0;
839     omap_gpmc_reset(s);
840 
841     /* We have to register a different IO memory handler for each
842      * chip select region in case a NAND device is mapped there. We
843      * make the region the worst-case size of 256MB and rely on the
844      * container memory region in cs_map to chop it down to the actual
845      * guest-requested size.
846      */
847     for (cs = 0; cs < 8; cs++) {
848         memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
849                               &omap_nand_ops,
850                               &s->cs_file[cs],
851                               "omap-nand",
852                               256 * 1024 * 1024);
853     }
854 
855     memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
856                           "omap-gpmc-prefetch", 256 * 1024 * 1024);
857     return s;
858 }
859 
860 void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
861 {
862     struct omap_gpmc_cs_file_s *f;
863     assert(iomem);
864 
865     if (cs < 0 || cs >= 8) {
866         fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
867         exit(-1);
868     }
869     f = &s->cs_file[cs];
870 
871     omap_gpmc_cs_unmap(s, cs);
872     f->config[0] &= ~(0xf << 10);
873     f->iomem = iomem;
874     omap_gpmc_cs_map(s, cs);
875 }
876 
877 void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
878 {
879     struct omap_gpmc_cs_file_s *f;
880     assert(nand);
881 
882     if (cs < 0 || cs >= 8) {
883         fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
884         exit(-1);
885     }
886     f = &s->cs_file[cs];
887 
888     omap_gpmc_cs_unmap(s, cs);
889     f->config[0] &= ~(0xf << 10);
890     f->config[0] |= (OMAP_GPMC_NAND << 10);
891     f->dev = nand;
892     if (nand_getbuswidth(f->dev) == 16) {
893         f->config[0] |= OMAP_GPMC_16BIT << 12;
894     }
895     omap_gpmc_cs_map(s, cs);
896 }
897