1 /*
2 * ARM MPS2 SCC emulation
3 *
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 /* This is a model of the SCC (Serial Communication Controller)
13 * found in the FPGA images of MPS2 development boards.
14 *
15 * Documentation of it can be found in the MPS2 TRM:
16 * https://developer.arm.com/documentation/100112/latest/
17 * and also in the Application Notes documenting individual FPGA images.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "qemu/bitops.h"
24 #include "trace.h"
25 #include "hw/sysbus.h"
26 #include "hw/irq.h"
27 #include "migration/vmstate.h"
28 #include "hw/registerfields.h"
29 #include "hw/misc/mps2-scc.h"
30 #include "hw/misc/led.h"
31 #include "hw/qdev-properties.h"
32
33 REG32(CFG0, 0)
34 REG32(CFG1, 4)
35 REG32(CFG2, 8)
36 REG32(CFG3, 0xc)
37 REG32(CFG4, 0x10)
38 REG32(CFG5, 0x14)
39 REG32(CFG6, 0x18)
40 REG32(CFG7, 0x1c)
41 REG32(CFGDATA_RTN, 0xa0)
42 REG32(CFGDATA_OUT, 0xa4)
43 REG32(CFGCTRL, 0xa8)
44 FIELD(CFGCTRL, DEVICE, 0, 12)
45 FIELD(CFGCTRL, RES1, 12, 8)
46 FIELD(CFGCTRL, FUNCTION, 20, 6)
47 FIELD(CFGCTRL, RES2, 26, 4)
48 FIELD(CFGCTRL, WRITE, 30, 1)
49 FIELD(CFGCTRL, START, 31, 1)
50 REG32(CFGSTAT, 0xac)
51 FIELD(CFGSTAT, DONE, 0, 1)
52 FIELD(CFGSTAT, ERROR, 1, 1)
53 REG32(DLL, 0x100)
54 REG32(AID, 0xFF8)
55 REG32(ID, 0xFFC)
56
scc_partno(MPS2SCC * s)57 static int scc_partno(MPS2SCC *s)
58 {
59 /* Return the partno field of the SCC_ID (0x524, 0x511, etc) */
60 return extract32(s->id, 4, 8);
61 }
62
63 /* Is CFG_REG2 present? */
have_cfg2(MPS2SCC * s)64 static bool have_cfg2(MPS2SCC *s)
65 {
66 return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
67 scc_partno(s) == 0x536;
68 }
69
70 /* Is CFG_REG3 present? */
have_cfg3(MPS2SCC * s)71 static bool have_cfg3(MPS2SCC *s)
72 {
73 return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 &&
74 scc_partno(s) != 0x536;
75 }
76
77 /* Is CFG_REG5 present? */
have_cfg5(MPS2SCC * s)78 static bool have_cfg5(MPS2SCC *s)
79 {
80 return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
81 scc_partno(s) == 0x536;
82 }
83
84 /* Is CFG_REG6 present? */
have_cfg6(MPS2SCC * s)85 static bool have_cfg6(MPS2SCC *s)
86 {
87 return scc_partno(s) == 0x524 || scc_partno(s) == 0x536;
88 }
89
90 /* Is CFG_REG7 present? */
have_cfg7(MPS2SCC * s)91 static bool have_cfg7(MPS2SCC *s)
92 {
93 return scc_partno(s) == 0x536;
94 }
95
96 /* Does CFG_REG0 drive the 'remap' GPIO output? */
cfg0_is_remap(MPS2SCC * s)97 static bool cfg0_is_remap(MPS2SCC *s)
98 {
99 return scc_partno(s) != 0x536;
100 }
101
102 /* Is CFG_REG1 driving a set of LEDs? */
cfg1_is_leds(MPS2SCC * s)103 static bool cfg1_is_leds(MPS2SCC *s)
104 {
105 return scc_partno(s) != 0x536;
106 }
107
108 /* Handle a write via the SYS_CFG channel to the specified function/device.
109 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit).
110 */
scc_cfg_write(MPS2SCC * s,unsigned function,unsigned device,uint32_t value)111 static bool scc_cfg_write(MPS2SCC *s, unsigned function,
112 unsigned device, uint32_t value)
113 {
114 trace_mps2_scc_cfg_write(function, device, value);
115
116 if (function != 1 || device >= s->num_oscclk) {
117 qemu_log_mask(LOG_GUEST_ERROR,
118 "MPS2 SCC config write: bad function %d device %d\n",
119 function, device);
120 return false;
121 }
122
123 s->oscclk[device] = value;
124 return true;
125 }
126
127 /* Handle a read via the SYS_CFG channel to the specified function/device.
128 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit),
129 * or set *value on success.
130 */
scc_cfg_read(MPS2SCC * s,unsigned function,unsigned device,uint32_t * value)131 static bool scc_cfg_read(MPS2SCC *s, unsigned function,
132 unsigned device, uint32_t *value)
133 {
134 if (function != 1 || device >= s->num_oscclk) {
135 qemu_log_mask(LOG_GUEST_ERROR,
136 "MPS2 SCC config read: bad function %d device %d\n",
137 function, device);
138 return false;
139 }
140
141 *value = s->oscclk[device];
142
143 trace_mps2_scc_cfg_read(function, device, *value);
144 return true;
145 }
146
mps2_scc_read(void * opaque,hwaddr offset,unsigned size)147 static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
148 {
149 MPS2SCC *s = MPS2_SCC(opaque);
150 uint64_t r;
151
152 switch (offset) {
153 case A_CFG0:
154 r = s->cfg0;
155 break;
156 case A_CFG1:
157 r = s->cfg1;
158 break;
159 case A_CFG2:
160 if (!have_cfg2(s)) {
161 goto bad_offset;
162 }
163 r = s->cfg2;
164 break;
165 case A_CFG3:
166 if (!have_cfg3(s)) {
167 goto bad_offset;
168 }
169 /*
170 * These are user-settable DIP switches on the board. We don't
171 * model that, so just return zeroes.
172 *
173 * TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing
174 * bits". These change which part of the DDR4 the motherboard
175 * configuration controller can see in its memory map (see the
176 * appnote section 2.4). QEMU doesn't model the MCC at all, so these
177 * bits are not interesting to us; read-as-zero is as good as anything
178 * else.
179 */
180 r = 0;
181 break;
182 case A_CFG4:
183 r = s->cfg4;
184 break;
185 case A_CFG5:
186 if (!have_cfg5(s)) {
187 goto bad_offset;
188 }
189 r = s->cfg5;
190 break;
191 case A_CFG6:
192 if (!have_cfg6(s)) {
193 goto bad_offset;
194 }
195 r = s->cfg6;
196 break;
197 case A_CFG7:
198 if (!have_cfg7(s)) {
199 goto bad_offset;
200 }
201 r = s->cfg7;
202 break;
203 case A_CFGDATA_RTN:
204 r = s->cfgdata_rtn;
205 break;
206 case A_CFGDATA_OUT:
207 r = s->cfgdata_out;
208 break;
209 case A_CFGCTRL:
210 r = s->cfgctrl;
211 break;
212 case A_CFGSTAT:
213 r = s->cfgstat;
214 break;
215 case A_DLL:
216 r = s->dll;
217 break;
218 case A_AID:
219 r = s->aid;
220 break;
221 case A_ID:
222 r = s->id;
223 break;
224 default:
225 bad_offset:
226 qemu_log_mask(LOG_GUEST_ERROR,
227 "MPS2 SCC read: bad offset %x\n", (int) offset);
228 r = 0;
229 break;
230 }
231
232 trace_mps2_scc_read(offset, r, size);
233 return r;
234 }
235
mps2_scc_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)236 static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
237 unsigned size)
238 {
239 MPS2SCC *s = MPS2_SCC(opaque);
240
241 trace_mps2_scc_write(offset, value, size);
242
243 switch (offset) {
244 case A_CFG0:
245 /*
246 * On some boards bit 0 controls board-specific remapping;
247 * we always reflect bit 0 in the 'remap' GPIO output line,
248 * and let the board wire it up or not as it chooses.
249 * TODO on some boards bit 1 is CPU_WAIT.
250 *
251 * TODO: on the AN536 this register controls reset and halt
252 * for both CPUs. For the moment we don't implement this, so the
253 * register just reads as written.
254 */
255 s->cfg0 = value;
256 if (cfg0_is_remap(s)) {
257 qemu_set_irq(s->remap, s->cfg0 & 1);
258 }
259 break;
260 case A_CFG1:
261 s->cfg1 = value;
262 /*
263 * On most boards this register drives LEDs.
264 *
265 * TODO: for AN536 this controls whether flash and ATCM are
266 * enabled or disabled on reset. QEMU doesn't model this, and
267 * always wires up RAM in the ATCM area and ROM in the flash area.
268 */
269 if (cfg1_is_leds(s)) {
270 for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
271 led_set_state(s->led[i], extract32(value, i, 1));
272 }
273 }
274 break;
275 case A_CFG2:
276 if (!have_cfg2(s)) {
277 goto bad_offset;
278 }
279 /* AN524, AN536: QSPI Select signal */
280 s->cfg2 = value;
281 break;
282 case A_CFG5:
283 if (!have_cfg5(s)) {
284 goto bad_offset;
285 }
286 /* AN524, AN536: ACLK frequency in Hz */
287 s->cfg5 = value;
288 break;
289 case A_CFG6:
290 if (!have_cfg6(s)) {
291 goto bad_offset;
292 }
293 /* AN524: Clock divider for BRAM */
294 /* AN536: Core 0 vector table base address */
295 s->cfg6 = value;
296 break;
297 case A_CFG7:
298 if (!have_cfg7(s)) {
299 goto bad_offset;
300 }
301 /* AN536: Core 1 vector table base address */
302 s->cfg6 = value;
303 break;
304 case A_CFGDATA_OUT:
305 s->cfgdata_out = value;
306 break;
307 case A_CFGCTRL:
308 /* Writing to CFGCTRL clears SYS_CFGSTAT */
309 s->cfgstat = 0;
310 s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK |
311 R_CFGCTRL_RES2_MASK |
312 R_CFGCTRL_START_MASK);
313
314 if (value & R_CFGCTRL_START_MASK) {
315 /* Start bit set -- do a read or write (instantaneously) */
316 int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT,
317 R_CFGCTRL_DEVICE_LENGTH);
318 int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT,
319 R_CFGCTRL_FUNCTION_LENGTH);
320
321 s->cfgstat = R_CFGSTAT_DONE_MASK;
322 if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) {
323 if (!scc_cfg_write(s, function, device, s->cfgdata_out)) {
324 s->cfgstat |= R_CFGSTAT_ERROR_MASK;
325 }
326 } else {
327 uint32_t result;
328 if (!scc_cfg_read(s, function, device, &result)) {
329 s->cfgstat |= R_CFGSTAT_ERROR_MASK;
330 } else {
331 s->cfgdata_rtn = result;
332 }
333 }
334 }
335 break;
336 case A_DLL:
337 /* DLL stands for Digital Locked Loop.
338 * Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a
339 * mask of which of the DLL_LOCKED bits [16:23] should be ORed
340 * together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0].
341 * For QEMU, our DLLs are always locked, so we can leave bit 0
342 * as 1 always and don't need to recalculate it.
343 */
344 s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8));
345 break;
346 default:
347 bad_offset:
348 qemu_log_mask(LOG_GUEST_ERROR,
349 "MPS2 SCC write: bad offset 0x%x\n", (int) offset);
350 break;
351 }
352 }
353
354 static const MemoryRegionOps mps2_scc_ops = {
355 .read = mps2_scc_read,
356 .write = mps2_scc_write,
357 .endianness = DEVICE_LITTLE_ENDIAN,
358 };
359
mps2_scc_reset(DeviceState * dev)360 static void mps2_scc_reset(DeviceState *dev)
361 {
362 MPS2SCC *s = MPS2_SCC(dev);
363 int i;
364
365 trace_mps2_scc_reset();
366 s->cfg0 = s->cfg0_reset;
367 s->cfg1 = 0;
368 s->cfg2 = 0;
369 s->cfg5 = 0;
370 s->cfg6 = 0;
371 s->cfgdata_rtn = 0;
372 s->cfgdata_out = 0;
373 s->cfgctrl = 0x100000;
374 s->cfgstat = 0;
375 s->dll = 0xffff0001;
376 for (i = 0; i < s->num_oscclk; i++) {
377 s->oscclk[i] = s->oscclk_reset[i];
378 }
379 for (i = 0; i < ARRAY_SIZE(s->led); i++) {
380 device_cold_reset(DEVICE(s->led[i]));
381 }
382 }
383
mps2_scc_init(Object * obj)384 static void mps2_scc_init(Object *obj)
385 {
386 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
387 MPS2SCC *s = MPS2_SCC(obj);
388
389 memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000);
390 sysbus_init_mmio(sbd, &s->iomem);
391 qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1);
392 }
393
mps2_scc_realize(DeviceState * dev,Error ** errp)394 static void mps2_scc_realize(DeviceState *dev, Error **errp)
395 {
396 MPS2SCC *s = MPS2_SCC(dev);
397
398 for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
399 char *name = g_strdup_printf("SCC LED%zu", i);
400 s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
401 LED_COLOR_GREEN, name);
402 g_free(name);
403 }
404
405 s->oscclk = g_new0(uint32_t, s->num_oscclk);
406 }
407
mps2_scc_finalize(Object * obj)408 static void mps2_scc_finalize(Object *obj)
409 {
410 MPS2SCC *s = MPS2_SCC(obj);
411
412 g_free(s->oscclk_reset);
413 }
414
cfg7_needed(void * opaque)415 static bool cfg7_needed(void *opaque)
416 {
417 MPS2SCC *s = opaque;
418
419 return have_cfg7(s);
420 }
421
422 static const VMStateDescription vmstate_cfg7 = {
423 .name = "mps2-scc/cfg7",
424 .version_id = 1,
425 .minimum_version_id = 1,
426 .needed = cfg7_needed,
427 .fields = (const VMStateField[]) {
428 VMSTATE_UINT32(cfg7, MPS2SCC),
429 VMSTATE_END_OF_LIST()
430 }
431 };
432
433 static const VMStateDescription mps2_scc_vmstate = {
434 .name = "mps2-scc",
435 .version_id = 3,
436 .minimum_version_id = 3,
437 .fields = (const VMStateField[]) {
438 VMSTATE_UINT32(cfg0, MPS2SCC),
439 VMSTATE_UINT32(cfg1, MPS2SCC),
440 VMSTATE_UINT32(cfg2, MPS2SCC),
441 /* cfg3, cfg4 are read-only so need not be migrated */
442 VMSTATE_UINT32(cfg5, MPS2SCC),
443 VMSTATE_UINT32(cfg6, MPS2SCC),
444 VMSTATE_UINT32(cfgdata_rtn, MPS2SCC),
445 VMSTATE_UINT32(cfgdata_out, MPS2SCC),
446 VMSTATE_UINT32(cfgctrl, MPS2SCC),
447 VMSTATE_UINT32(cfgstat, MPS2SCC),
448 VMSTATE_UINT32(dll, MPS2SCC),
449 VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk,
450 0, vmstate_info_uint32, uint32_t),
451 VMSTATE_END_OF_LIST()
452 },
453 .subsections = (const VMStateDescription * const []) {
454 &vmstate_cfg7,
455 NULL
456 }
457 };
458
459 static Property mps2_scc_properties[] = {
460 /* Values for various read-only ID registers (which are specific
461 * to the board model or FPGA image)
462 */
463 DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0),
464 DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0),
465 DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0),
466 /* Reset value for CFG0 register */
467 DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0),
468 /*
469 * These are the initial settings for the source clocks on the board.
470 * In hardware they can be configured via a config file read by the
471 * motherboard configuration controller to suit the FPGA image.
472 */
473 DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset,
474 qdev_prop_uint32, uint32_t),
475 DEFINE_PROP_END_OF_LIST(),
476 };
477
mps2_scc_class_init(ObjectClass * klass,void * data)478 static void mps2_scc_class_init(ObjectClass *klass, void *data)
479 {
480 DeviceClass *dc = DEVICE_CLASS(klass);
481
482 dc->realize = mps2_scc_realize;
483 dc->vmsd = &mps2_scc_vmstate;
484 device_class_set_legacy_reset(dc, mps2_scc_reset);
485 device_class_set_props(dc, mps2_scc_properties);
486 }
487
488 static const TypeInfo mps2_scc_info = {
489 .name = TYPE_MPS2_SCC,
490 .parent = TYPE_SYS_BUS_DEVICE,
491 .instance_size = sizeof(MPS2SCC),
492 .instance_init = mps2_scc_init,
493 .instance_finalize = mps2_scc_finalize,
494 .class_init = mps2_scc_class_init,
495 };
496
mps2_scc_register_types(void)497 static void mps2_scc_register_types(void)
498 {
499 type_register_static(&mps2_scc_info);
500 }
501
502 type_init(mps2_scc_register_types);
503