1 /* 2 * ARM MPS2 SCC emulation 3 * 4 * Copyright (c) 2017 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* This is a model of the SCC (Serial Communication Controller) 13 * found in the FPGA images of MPS2 development boards. 14 * 15 * Documentation of it can be found in the MPS2 TRM: 16 * https://developer.arm.com/documentation/100112/latest/ 17 * and also in the Application Notes documenting individual FPGA images. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/module.h" 23 #include "qemu/bitops.h" 24 #include "trace.h" 25 #include "hw/sysbus.h" 26 #include "hw/irq.h" 27 #include "migration/vmstate.h" 28 #include "hw/registerfields.h" 29 #include "hw/misc/mps2-scc.h" 30 #include "hw/misc/led.h" 31 #include "hw/qdev-properties.h" 32 33 REG32(CFG0, 0) 34 REG32(CFG1, 4) 35 REG32(CFG2, 8) 36 REG32(CFG3, 0xc) 37 REG32(CFG4, 0x10) 38 REG32(CFG5, 0x14) 39 REG32(CFG6, 0x18) 40 REG32(CFG7, 0x1c) 41 REG32(CFGDATA_RTN, 0xa0) 42 REG32(CFGDATA_OUT, 0xa4) 43 REG32(CFGCTRL, 0xa8) 44 FIELD(CFGCTRL, DEVICE, 0, 12) 45 FIELD(CFGCTRL, RES1, 12, 8) 46 FIELD(CFGCTRL, FUNCTION, 20, 6) 47 FIELD(CFGCTRL, RES2, 26, 4) 48 FIELD(CFGCTRL, WRITE, 30, 1) 49 FIELD(CFGCTRL, START, 31, 1) 50 REG32(CFGSTAT, 0xac) 51 FIELD(CFGSTAT, DONE, 0, 1) 52 FIELD(CFGSTAT, ERROR, 1, 1) 53 REG32(DLL, 0x100) 54 REG32(AID, 0xFF8) 55 REG32(ID, 0xFFC) 56 57 static int scc_partno(MPS2SCC *s) 58 { 59 /* Return the partno field of the SCC_ID (0x524, 0x511, etc) */ 60 return extract32(s->id, 4, 8); 61 } 62 63 /* Is CFG_REG2 present? */ 64 static bool have_cfg2(MPS2SCC *s) 65 { 66 return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 || 67 scc_partno(s) == 0x536; 68 } 69 70 /* Is CFG_REG3 present? */ 71 static bool have_cfg3(MPS2SCC *s) 72 { 73 return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 && 74 scc_partno(s) != 0x536; 75 } 76 77 /* Is CFG_REG5 present? */ 78 static bool have_cfg5(MPS2SCC *s) 79 { 80 return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 || 81 scc_partno(s) == 0x536; 82 } 83 84 /* Is CFG_REG6 present? */ 85 static bool have_cfg6(MPS2SCC *s) 86 { 87 return scc_partno(s) == 0x524 || scc_partno(s) == 0x536; 88 } 89 90 /* Is CFG_REG7 present? */ 91 static bool have_cfg7(MPS2SCC *s) 92 { 93 return scc_partno(s) == 0x536; 94 } 95 96 /* Does CFG_REG0 drive the 'remap' GPIO output? */ 97 static bool cfg0_is_remap(MPS2SCC *s) 98 { 99 return scc_partno(s) != 0x536; 100 } 101 102 /* Is CFG_REG1 driving a set of LEDs? */ 103 static bool cfg1_is_leds(MPS2SCC *s) 104 { 105 return scc_partno(s) != 0x536; 106 } 107 108 /* Handle a write via the SYS_CFG channel to the specified function/device. 109 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit). 110 */ 111 static bool scc_cfg_write(MPS2SCC *s, unsigned function, 112 unsigned device, uint32_t value) 113 { 114 trace_mps2_scc_cfg_write(function, device, value); 115 116 if (function != 1 || device >= s->num_oscclk) { 117 qemu_log_mask(LOG_GUEST_ERROR, 118 "MPS2 SCC config write: bad function %d device %d\n", 119 function, device); 120 return false; 121 } 122 123 s->oscclk[device] = value; 124 return true; 125 } 126 127 /* Handle a read via the SYS_CFG channel to the specified function/device. 128 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit), 129 * or set *value on success. 130 */ 131 static bool scc_cfg_read(MPS2SCC *s, unsigned function, 132 unsigned device, uint32_t *value) 133 { 134 if (function != 1 || device >= s->num_oscclk) { 135 qemu_log_mask(LOG_GUEST_ERROR, 136 "MPS2 SCC config read: bad function %d device %d\n", 137 function, device); 138 return false; 139 } 140 141 *value = s->oscclk[device]; 142 143 trace_mps2_scc_cfg_read(function, device, *value); 144 return true; 145 } 146 147 static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size) 148 { 149 MPS2SCC *s = MPS2_SCC(opaque); 150 uint64_t r; 151 152 switch (offset) { 153 case A_CFG0: 154 r = s->cfg0; 155 break; 156 case A_CFG1: 157 r = s->cfg1; 158 break; 159 case A_CFG2: 160 if (!have_cfg2(s)) { 161 goto bad_offset; 162 } 163 r = s->cfg2; 164 break; 165 case A_CFG3: 166 if (!have_cfg3(s)) { 167 goto bad_offset; 168 } 169 /* 170 * These are user-settable DIP switches on the board. We don't 171 * model that, so just return zeroes. 172 * 173 * TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing 174 * bits". These change which part of the DDR4 the motherboard 175 * configuration controller can see in its memory map (see the 176 * appnote section 2.4). QEMU doesn't model the MCC at all, so these 177 * bits are not interesting to us; read-as-zero is as good as anything 178 * else. 179 */ 180 r = 0; 181 break; 182 case A_CFG4: 183 r = s->cfg4; 184 break; 185 case A_CFG5: 186 if (!have_cfg5(s)) { 187 goto bad_offset; 188 } 189 r = s->cfg5; 190 break; 191 case A_CFG6: 192 if (!have_cfg6(s)) { 193 goto bad_offset; 194 } 195 r = s->cfg6; 196 break; 197 case A_CFG7: 198 if (!have_cfg7(s)) { 199 goto bad_offset; 200 } 201 r = s->cfg7; 202 break; 203 case A_CFGDATA_RTN: 204 r = s->cfgdata_rtn; 205 break; 206 case A_CFGDATA_OUT: 207 r = s->cfgdata_out; 208 break; 209 case A_CFGCTRL: 210 r = s->cfgctrl; 211 break; 212 case A_CFGSTAT: 213 r = s->cfgstat; 214 break; 215 case A_DLL: 216 r = s->dll; 217 break; 218 case A_AID: 219 r = s->aid; 220 break; 221 case A_ID: 222 r = s->id; 223 break; 224 default: 225 bad_offset: 226 qemu_log_mask(LOG_GUEST_ERROR, 227 "MPS2 SCC read: bad offset %x\n", (int) offset); 228 r = 0; 229 break; 230 } 231 232 trace_mps2_scc_read(offset, r, size); 233 return r; 234 } 235 236 static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value, 237 unsigned size) 238 { 239 MPS2SCC *s = MPS2_SCC(opaque); 240 241 trace_mps2_scc_write(offset, value, size); 242 243 switch (offset) { 244 case A_CFG0: 245 /* 246 * On some boards bit 0 controls board-specific remapping; 247 * we always reflect bit 0 in the 'remap' GPIO output line, 248 * and let the board wire it up or not as it chooses. 249 * TODO on some boards bit 1 is CPU_WAIT. 250 * 251 * TODO: on the AN536 this register controls reset and halt 252 * for both CPUs. For the moment we don't implement this, so the 253 * register just reads as written. 254 */ 255 s->cfg0 = value; 256 if (cfg0_is_remap(s)) { 257 qemu_set_irq(s->remap, s->cfg0 & 1); 258 } 259 break; 260 case A_CFG1: 261 s->cfg1 = value; 262 /* 263 * On most boards this register drives LEDs. 264 * 265 * TODO: for AN536 this controls whether flash and ATCM are 266 * enabled or disabled on reset. QEMU doesn't model this, and 267 * always wires up RAM in the ATCM area and ROM in the flash area. 268 */ 269 if (cfg1_is_leds(s)) { 270 for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) { 271 led_set_state(s->led[i], extract32(value, i, 1)); 272 } 273 } 274 break; 275 case A_CFG2: 276 if (!have_cfg2(s)) { 277 goto bad_offset; 278 } 279 /* AN524, AN536: QSPI Select signal */ 280 s->cfg2 = value; 281 break; 282 case A_CFG5: 283 if (!have_cfg5(s)) { 284 goto bad_offset; 285 } 286 /* AN524, AN536: ACLK frequency in Hz */ 287 s->cfg5 = value; 288 break; 289 case A_CFG6: 290 if (!have_cfg6(s)) { 291 goto bad_offset; 292 } 293 /* AN524: Clock divider for BRAM */ 294 /* AN536: Core 0 vector table base address */ 295 s->cfg6 = value; 296 break; 297 case A_CFG7: 298 if (!have_cfg7(s)) { 299 goto bad_offset; 300 } 301 /* AN536: Core 1 vector table base address */ 302 s->cfg6 = value; 303 break; 304 case A_CFGDATA_OUT: 305 s->cfgdata_out = value; 306 break; 307 case A_CFGCTRL: 308 /* Writing to CFGCTRL clears SYS_CFGSTAT */ 309 s->cfgstat = 0; 310 s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK | 311 R_CFGCTRL_RES2_MASK | 312 R_CFGCTRL_START_MASK); 313 314 if (value & R_CFGCTRL_START_MASK) { 315 /* Start bit set -- do a read or write (instantaneously) */ 316 int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT, 317 R_CFGCTRL_DEVICE_LENGTH); 318 int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT, 319 R_CFGCTRL_FUNCTION_LENGTH); 320 321 s->cfgstat = R_CFGSTAT_DONE_MASK; 322 if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) { 323 if (!scc_cfg_write(s, function, device, s->cfgdata_out)) { 324 s->cfgstat |= R_CFGSTAT_ERROR_MASK; 325 } 326 } else { 327 uint32_t result; 328 if (!scc_cfg_read(s, function, device, &result)) { 329 s->cfgstat |= R_CFGSTAT_ERROR_MASK; 330 } else { 331 s->cfgdata_rtn = result; 332 } 333 } 334 } 335 break; 336 case A_DLL: 337 /* DLL stands for Digital Locked Loop. 338 * Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a 339 * mask of which of the DLL_LOCKED bits [16:23] should be ORed 340 * together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0]. 341 * For QEMU, our DLLs are always locked, so we can leave bit 0 342 * as 1 always and don't need to recalculate it. 343 */ 344 s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8)); 345 break; 346 default: 347 bad_offset: 348 qemu_log_mask(LOG_GUEST_ERROR, 349 "MPS2 SCC write: bad offset 0x%x\n", (int) offset); 350 break; 351 } 352 } 353 354 static const MemoryRegionOps mps2_scc_ops = { 355 .read = mps2_scc_read, 356 .write = mps2_scc_write, 357 .endianness = DEVICE_LITTLE_ENDIAN, 358 }; 359 360 static void mps2_scc_reset(DeviceState *dev) 361 { 362 MPS2SCC *s = MPS2_SCC(dev); 363 int i; 364 365 trace_mps2_scc_reset(); 366 s->cfg0 = s->cfg0_reset; 367 s->cfg1 = 0; 368 s->cfg2 = 0; 369 s->cfg5 = 0; 370 s->cfg6 = 0; 371 s->cfgdata_rtn = 0; 372 s->cfgdata_out = 0; 373 s->cfgctrl = 0x100000; 374 s->cfgstat = 0; 375 s->dll = 0xffff0001; 376 for (i = 0; i < s->num_oscclk; i++) { 377 s->oscclk[i] = s->oscclk_reset[i]; 378 } 379 for (i = 0; i < ARRAY_SIZE(s->led); i++) { 380 device_cold_reset(DEVICE(s->led[i])); 381 } 382 } 383 384 static void mps2_scc_init(Object *obj) 385 { 386 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 387 MPS2SCC *s = MPS2_SCC(obj); 388 389 memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000); 390 sysbus_init_mmio(sbd, &s->iomem); 391 qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1); 392 } 393 394 static void mps2_scc_realize(DeviceState *dev, Error **errp) 395 { 396 MPS2SCC *s = MPS2_SCC(dev); 397 398 for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) { 399 char *name = g_strdup_printf("SCC LED%zu", i); 400 s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH, 401 LED_COLOR_GREEN, name); 402 g_free(name); 403 } 404 405 s->oscclk = g_new0(uint32_t, s->num_oscclk); 406 } 407 408 static void mps2_scc_finalize(Object *obj) 409 { 410 MPS2SCC *s = MPS2_SCC(obj); 411 412 g_free(s->oscclk_reset); 413 } 414 415 static bool cfg7_needed(void *opaque) 416 { 417 MPS2SCC *s = opaque; 418 419 return have_cfg7(s); 420 } 421 422 static const VMStateDescription vmstate_cfg7 = { 423 .name = "mps2-scc/cfg7", 424 .version_id = 1, 425 .minimum_version_id = 1, 426 .needed = cfg7_needed, 427 .fields = (const VMStateField[]) { 428 VMSTATE_UINT32(cfg7, MPS2SCC), 429 VMSTATE_END_OF_LIST() 430 } 431 }; 432 433 static const VMStateDescription mps2_scc_vmstate = { 434 .name = "mps2-scc", 435 .version_id = 3, 436 .minimum_version_id = 3, 437 .fields = (const VMStateField[]) { 438 VMSTATE_UINT32(cfg0, MPS2SCC), 439 VMSTATE_UINT32(cfg1, MPS2SCC), 440 VMSTATE_UINT32(cfg2, MPS2SCC), 441 /* cfg3, cfg4 are read-only so need not be migrated */ 442 VMSTATE_UINT32(cfg5, MPS2SCC), 443 VMSTATE_UINT32(cfg6, MPS2SCC), 444 VMSTATE_UINT32(cfgdata_rtn, MPS2SCC), 445 VMSTATE_UINT32(cfgdata_out, MPS2SCC), 446 VMSTATE_UINT32(cfgctrl, MPS2SCC), 447 VMSTATE_UINT32(cfgstat, MPS2SCC), 448 VMSTATE_UINT32(dll, MPS2SCC), 449 VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk, 450 0, vmstate_info_uint32, uint32_t), 451 VMSTATE_END_OF_LIST() 452 }, 453 .subsections = (const VMStateDescription * const []) { 454 &vmstate_cfg7, 455 NULL 456 } 457 }; 458 459 static Property mps2_scc_properties[] = { 460 /* Values for various read-only ID registers (which are specific 461 * to the board model or FPGA image) 462 */ 463 DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0), 464 DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0), 465 DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0), 466 /* Reset value for CFG0 register */ 467 DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0), 468 /* 469 * These are the initial settings for the source clocks on the board. 470 * In hardware they can be configured via a config file read by the 471 * motherboard configuration controller to suit the FPGA image. 472 */ 473 DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset, 474 qdev_prop_uint32, uint32_t), 475 DEFINE_PROP_END_OF_LIST(), 476 }; 477 478 static void mps2_scc_class_init(ObjectClass *klass, void *data) 479 { 480 DeviceClass *dc = DEVICE_CLASS(klass); 481 482 dc->realize = mps2_scc_realize; 483 dc->vmsd = &mps2_scc_vmstate; 484 device_class_set_legacy_reset(dc, mps2_scc_reset); 485 device_class_set_props(dc, mps2_scc_properties); 486 } 487 488 static const TypeInfo mps2_scc_info = { 489 .name = TYPE_MPS2_SCC, 490 .parent = TYPE_SYS_BUS_DEVICE, 491 .instance_size = sizeof(MPS2SCC), 492 .instance_init = mps2_scc_init, 493 .instance_finalize = mps2_scc_finalize, 494 .class_init = mps2_scc_class_init, 495 }; 496 497 static void mps2_scc_register_types(void) 498 { 499 type_register_static(&mps2_scc_info); 500 } 501 502 type_init(mps2_scc_register_types); 503