xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision cba42d61)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * https://developer.arm.com/documentation/dai0505/latest/
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/misc/led.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/timer.h"
30 
31 REG32(LED0, 0)
32 REG32(BUTTON, 8)
33 REG32(CLK1HZ, 0x10)
34 REG32(CLK100HZ, 0x14)
35 REG32(COUNTER, 0x18)
36 REG32(PRESCALE, 0x1c)
37 REG32(PSCNTR, 0x20)
38 REG32(SWITCH, 0x28)
39 REG32(MISC, 0x4c)
40 
41 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
42 {
43     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
44 }
45 
46 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
47 {
48     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
49 }
50 
51 static void resync_counter(MPS2FPGAIO *s)
52 {
53     /*
54      * Update s->counter and s->pscntr to their true current values
55      * by calculating how many times PSCNTR has ticked since the
56      * last time we did a resync.
57      */
58     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
59     int64_t elapsed = now - s->pscntr_sync_ticks;
60 
61     /*
62      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
63      * lose time if we do multiple resyncs in a single tick.
64      */
65     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
66 
67     /*
68      * Work out what PSCNTR and COUNTER have moved to. We assume that
69      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
70      * and that COUNTER increments at the same moment.
71      */
72     if (ticks == 0) {
73         /* We haven't ticked since the last time we were asked */
74         return;
75     } else if (ticks < s->pscntr) {
76         /* We haven't yet reached zero, just reduce the PSCNTR */
77         s->pscntr -= ticks;
78     } else {
79         if (s->prescale == 0) {
80             /*
81              * If the reload value is zero then the PSCNTR will stick
82              * at zero once it reaches it, and so we will increment
83              * COUNTER every tick after that.
84              */
85             s->counter += ticks - s->pscntr;
86             s->pscntr = 0;
87         } else {
88             /*
89              * This is the complicated bit. This ASCII art diagram gives an
90              * example with PRESCALE==5 PSCNTR==7:
91              *
92              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
93              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
94              * cinc                           1                 2
95              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
96              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
97              *
98              * where x = y % (s->prescale + 1)
99              * and so PSCNTR = s->prescale - x
100              * and COUNTER is incremented by y / (s->prescale + 1)
101              *
102              * The case where PSCNTR < PRESCALE works out the same,
103              * though we must be careful to calculate y as 64-bit unsigned
104              * for all parts of the expression.
105              * y < 0 is not possible because that implies ticks < s->pscntr.
106              */
107             uint64_t y = ticks - s->pscntr + s->prescale;
108             s->pscntr = s->prescale - (y % (s->prescale + 1));
109             s->counter += y / (s->prescale + 1);
110         }
111     }
112 
113     /*
114      * Only advance the sync time to the timestamp of the last PSCNTR tick,
115      * not all the way to 'now', so we don't lose time if we do multiple
116      * resyncs in a single tick.
117      */
118     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
119                                      s->prescale_clk);
120 }
121 
122 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
123 {
124     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
125     uint64_t r;
126     int64_t now;
127 
128     switch (offset) {
129     case A_LED0:
130         r = s->led0;
131         break;
132     case A_BUTTON:
133         /* User-pressable board buttons. We don't model that, so just return
134          * zeroes.
135          */
136         r = 0;
137         break;
138     case A_PRESCALE:
139         r = s->prescale;
140         break;
141     case A_MISC:
142         r = s->misc;
143         break;
144     case A_CLK1HZ:
145         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
146         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
147         break;
148     case A_CLK100HZ:
149         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
150         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
151         break;
152     case A_COUNTER:
153         resync_counter(s);
154         r = s->counter;
155         break;
156     case A_PSCNTR:
157         resync_counter(s);
158         r = s->pscntr;
159         break;
160     case A_SWITCH:
161         if (!s->has_switches) {
162             goto bad_offset;
163         }
164         /* User-togglable board switches. We don't model that, so report 0. */
165         r = 0;
166         break;
167     default:
168     bad_offset:
169         qemu_log_mask(LOG_GUEST_ERROR,
170                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
171         r = 0;
172         break;
173     }
174 
175     trace_mps2_fpgaio_read(offset, r, size);
176     return r;
177 }
178 
179 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
180                               unsigned size)
181 {
182     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
183     int64_t now;
184 
185     trace_mps2_fpgaio_write(offset, value, size);
186 
187     switch (offset) {
188     case A_LED0:
189         if (s->num_leds != 0) {
190             uint32_t i;
191 
192             s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
193             for (i = 0; i < s->num_leds; i++) {
194                 led_set_state(s->led[i], value & (1 << i));
195             }
196         }
197         break;
198     case A_PRESCALE:
199         resync_counter(s);
200         s->prescale = value;
201         break;
202     case A_MISC:
203         /* These are control bits for some of the other devices on the
204          * board (SPI, CLCD, etc). We don't implement that yet, so just
205          * make the bits read as written.
206          */
207         qemu_log_mask(LOG_UNIMP,
208                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
209         s->misc = value;
210         break;
211     case A_CLK1HZ:
212         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
213         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
214         break;
215     case A_CLK100HZ:
216         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
217         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
218         break;
219     case A_COUNTER:
220         resync_counter(s);
221         s->counter = value;
222         break;
223     case A_PSCNTR:
224         resync_counter(s);
225         s->pscntr = value;
226         break;
227     default:
228         qemu_log_mask(LOG_GUEST_ERROR,
229                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
230         break;
231     }
232 }
233 
234 static const MemoryRegionOps mps2_fpgaio_ops = {
235     .read = mps2_fpgaio_read,
236     .write = mps2_fpgaio_write,
237     .endianness = DEVICE_LITTLE_ENDIAN,
238 };
239 
240 static void mps2_fpgaio_reset(DeviceState *dev)
241 {
242     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
243     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
244 
245     trace_mps2_fpgaio_reset();
246     s->led0 = 0;
247     s->prescale = 0;
248     s->misc = 0;
249     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
250     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
251     s->counter = 0;
252     s->pscntr = 0;
253     s->pscntr_sync_ticks = now;
254 
255     for (size_t i = 0; i < s->num_leds; i++) {
256         device_cold_reset(DEVICE(s->led[i]));
257     }
258 }
259 
260 static void mps2_fpgaio_init(Object *obj)
261 {
262     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
263     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
264 
265     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
266                           "mps2-fpgaio", 0x1000);
267     sysbus_init_mmio(sbd, &s->iomem);
268 }
269 
270 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
271 {
272     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
273     uint32_t i;
274 
275     if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
276         error_setg(errp, "num-leds cannot be greater than %d",
277                    MPS2FPGAIO_MAX_LEDS);
278         return;
279     }
280 
281     for (i = 0; i < s->num_leds; i++) {
282         g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
283         s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
284                                       LED_COLOR_GREEN, ledname);
285     }
286 }
287 
288 static bool mps2_fpgaio_counters_needed(void *opaque)
289 {
290     /* Currently vmstate.c insists all subsections have a 'needed' function */
291     return true;
292 }
293 
294 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
295     .name = "mps2-fpgaio/counters",
296     .version_id = 2,
297     .minimum_version_id = 2,
298     .needed = mps2_fpgaio_counters_needed,
299     .fields = (VMStateField[]) {
300         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
301         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
302         VMSTATE_UINT32(counter, MPS2FPGAIO),
303         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
304         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
305         VMSTATE_END_OF_LIST()
306     }
307 };
308 
309 static const VMStateDescription mps2_fpgaio_vmstate = {
310     .name = "mps2-fpgaio",
311     .version_id = 1,
312     .minimum_version_id = 1,
313     .fields = (VMStateField[]) {
314         VMSTATE_UINT32(led0, MPS2FPGAIO),
315         VMSTATE_UINT32(prescale, MPS2FPGAIO),
316         VMSTATE_UINT32(misc, MPS2FPGAIO),
317         VMSTATE_END_OF_LIST()
318     },
319     .subsections = (const VMStateDescription*[]) {
320         &mps2_fpgaio_counters_vmstate,
321         NULL
322     }
323 };
324 
325 static Property mps2_fpgaio_properties[] = {
326     /* Frequency of the prescale counter */
327     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
328     /* Number of LEDs controlled by LED0 register */
329     DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
330     DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
331     DEFINE_PROP_END_OF_LIST(),
332 };
333 
334 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
335 {
336     DeviceClass *dc = DEVICE_CLASS(klass);
337 
338     dc->vmsd = &mps2_fpgaio_vmstate;
339     dc->realize = mps2_fpgaio_realize;
340     dc->reset = mps2_fpgaio_reset;
341     device_class_set_props(dc, mps2_fpgaio_properties);
342 }
343 
344 static const TypeInfo mps2_fpgaio_info = {
345     .name = TYPE_MPS2_FPGAIO,
346     .parent = TYPE_SYS_BUS_DEVICE,
347     .instance_size = sizeof(MPS2FPGAIO),
348     .instance_init = mps2_fpgaio_init,
349     .class_init = mps2_fpgaio_class_init,
350 };
351 
352 static void mps2_fpgaio_register_types(void)
353 {
354     type_register_static(&mps2_fpgaio_info);
355 }
356 
357 type_init(mps2_fpgaio_register_types);
358