xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision 9f6df01d)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/misc/led.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/timer.h"
30 
31 REG32(LED0, 0)
32 REG32(BUTTON, 8)
33 REG32(CLK1HZ, 0x10)
34 REG32(CLK100HZ, 0x14)
35 REG32(COUNTER, 0x18)
36 REG32(PRESCALE, 0x1c)
37 REG32(PSCNTR, 0x20)
38 REG32(MISC, 0x4c)
39 
40 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
41 {
42     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
43 }
44 
45 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
46 {
47     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
48 }
49 
50 static void resync_counter(MPS2FPGAIO *s)
51 {
52     /*
53      * Update s->counter and s->pscntr to their true current values
54      * by calculating how many times PSCNTR has ticked since the
55      * last time we did a resync.
56      */
57     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
58     int64_t elapsed = now - s->pscntr_sync_ticks;
59 
60     /*
61      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
62      * lose time if we do multiple resyncs in a single tick.
63      */
64     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
65 
66     /*
67      * Work out what PSCNTR and COUNTER have moved to. We assume that
68      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
69      * and that COUNTER increments at the same moment.
70      */
71     if (ticks == 0) {
72         /* We haven't ticked since the last time we were asked */
73         return;
74     } else if (ticks < s->pscntr) {
75         /* We haven't yet reached zero, just reduce the PSCNTR */
76         s->pscntr -= ticks;
77     } else {
78         if (s->prescale == 0) {
79             /*
80              * If the reload value is zero then the PSCNTR will stick
81              * at zero once it reaches it, and so we will increment
82              * COUNTER every tick after that.
83              */
84             s->counter += ticks - s->pscntr;
85             s->pscntr = 0;
86         } else {
87             /*
88              * This is the complicated bit. This ASCII art diagram gives an
89              * example with PRESCALE==5 PSCNTR==7:
90              *
91              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
92              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
93              * cinc                           1                 2
94              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
95              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
96              *
97              * where x = y % (s->prescale + 1)
98              * and so PSCNTR = s->prescale - x
99              * and COUNTER is incremented by y / (s->prescale + 1)
100              *
101              * The case where PSCNTR < PRESCALE works out the same,
102              * though we must be careful to calculate y as 64-bit unsigned
103              * for all parts of the expression.
104              * y < 0 is not possible because that implies ticks < s->pscntr.
105              */
106             uint64_t y = ticks - s->pscntr + s->prescale;
107             s->pscntr = s->prescale - (y % (s->prescale + 1));
108             s->counter += y / (s->prescale + 1);
109         }
110     }
111 
112     /*
113      * Only advance the sync time to the timestamp of the last PSCNTR tick,
114      * not all the way to 'now', so we don't lose time if we do multiple
115      * resyncs in a single tick.
116      */
117     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
118                                      s->prescale_clk);
119 }
120 
121 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
122 {
123     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
124     uint64_t r;
125     int64_t now;
126 
127     switch (offset) {
128     case A_LED0:
129         r = s->led0;
130         break;
131     case A_BUTTON:
132         /* User-pressable board buttons. We don't model that, so just return
133          * zeroes.
134          */
135         r = 0;
136         break;
137     case A_PRESCALE:
138         r = s->prescale;
139         break;
140     case A_MISC:
141         r = s->misc;
142         break;
143     case A_CLK1HZ:
144         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
145         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
146         break;
147     case A_CLK100HZ:
148         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
149         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
150         break;
151     case A_COUNTER:
152         resync_counter(s);
153         r = s->counter;
154         break;
155     case A_PSCNTR:
156         resync_counter(s);
157         r = s->pscntr;
158         break;
159     default:
160         qemu_log_mask(LOG_GUEST_ERROR,
161                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
162         r = 0;
163         break;
164     }
165 
166     trace_mps2_fpgaio_read(offset, r, size);
167     return r;
168 }
169 
170 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
171                               unsigned size)
172 {
173     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
174     int64_t now;
175 
176     trace_mps2_fpgaio_write(offset, value, size);
177 
178     switch (offset) {
179     case A_LED0:
180         s->led0 = value & 0x3;
181         led_set_state(s->led[0], value & 0x01);
182         led_set_state(s->led[1], value & 0x02);
183         break;
184     case A_PRESCALE:
185         resync_counter(s);
186         s->prescale = value;
187         break;
188     case A_MISC:
189         /* These are control bits for some of the other devices on the
190          * board (SPI, CLCD, etc). We don't implement that yet, so just
191          * make the bits read as written.
192          */
193         qemu_log_mask(LOG_UNIMP,
194                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
195         s->misc = value;
196         break;
197     case A_CLK1HZ:
198         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
199         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
200         break;
201     case A_CLK100HZ:
202         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
203         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
204         break;
205     case A_COUNTER:
206         resync_counter(s);
207         s->counter = value;
208         break;
209     case A_PSCNTR:
210         resync_counter(s);
211         s->pscntr = value;
212         break;
213     default:
214         qemu_log_mask(LOG_GUEST_ERROR,
215                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
216         break;
217     }
218 }
219 
220 static const MemoryRegionOps mps2_fpgaio_ops = {
221     .read = mps2_fpgaio_read,
222     .write = mps2_fpgaio_write,
223     .endianness = DEVICE_LITTLE_ENDIAN,
224 };
225 
226 static void mps2_fpgaio_reset(DeviceState *dev)
227 {
228     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
229     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
230 
231     trace_mps2_fpgaio_reset();
232     s->led0 = 0;
233     s->prescale = 0;
234     s->misc = 0;
235     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
236     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
237     s->counter = 0;
238     s->pscntr = 0;
239     s->pscntr_sync_ticks = now;
240 
241     for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
242         device_cold_reset(DEVICE(s->led[i]));
243     }
244 }
245 
246 static void mps2_fpgaio_init(Object *obj)
247 {
248     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
249     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
250 
251     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
252                           "mps2-fpgaio", 0x1000);
253     sysbus_init_mmio(sbd, &s->iomem);
254 }
255 
256 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
257 {
258     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
259 
260     s->led[0] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
261                                   LED_COLOR_GREEN, "USERLED0");
262     s->led[1] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
263                                   LED_COLOR_GREEN, "USERLED1");
264 }
265 
266 static bool mps2_fpgaio_counters_needed(void *opaque)
267 {
268     /* Currently vmstate.c insists all subsections have a 'needed' function */
269     return true;
270 }
271 
272 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
273     .name = "mps2-fpgaio/counters",
274     .version_id = 2,
275     .minimum_version_id = 2,
276     .needed = mps2_fpgaio_counters_needed,
277     .fields = (VMStateField[]) {
278         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
279         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
280         VMSTATE_UINT32(counter, MPS2FPGAIO),
281         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
282         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
283         VMSTATE_END_OF_LIST()
284     }
285 };
286 
287 static const VMStateDescription mps2_fpgaio_vmstate = {
288     .name = "mps2-fpgaio",
289     .version_id = 1,
290     .minimum_version_id = 1,
291     .fields = (VMStateField[]) {
292         VMSTATE_UINT32(led0, MPS2FPGAIO),
293         VMSTATE_UINT32(prescale, MPS2FPGAIO),
294         VMSTATE_UINT32(misc, MPS2FPGAIO),
295         VMSTATE_END_OF_LIST()
296     },
297     .subsections = (const VMStateDescription*[]) {
298         &mps2_fpgaio_counters_vmstate,
299         NULL
300     }
301 };
302 
303 static Property mps2_fpgaio_properties[] = {
304     /* Frequency of the prescale counter */
305     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
306     DEFINE_PROP_END_OF_LIST(),
307 };
308 
309 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
310 {
311     DeviceClass *dc = DEVICE_CLASS(klass);
312 
313     dc->vmsd = &mps2_fpgaio_vmstate;
314     dc->realize = mps2_fpgaio_realize;
315     dc->reset = mps2_fpgaio_reset;
316     device_class_set_props(dc, mps2_fpgaio_properties);
317 }
318 
319 static const TypeInfo mps2_fpgaio_info = {
320     .name = TYPE_MPS2_FPGAIO,
321     .parent = TYPE_SYS_BUS_DEVICE,
322     .instance_size = sizeof(MPS2FPGAIO),
323     .instance_init = mps2_fpgaio_init,
324     .class_init = mps2_fpgaio_class_init,
325 };
326 
327 static void mps2_fpgaio_register_types(void)
328 {
329     type_register_static(&mps2_fpgaio_info);
330 }
331 
332 type_init(mps2_fpgaio_register_types);
333