xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision 500eb6db)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "hw/registerfields.h"
25 #include "hw/misc/mps2-fpgaio.h"
26 #include "qemu/timer.h"
27 
28 REG32(LED0, 0)
29 REG32(BUTTON, 8)
30 REG32(CLK1HZ, 0x10)
31 REG32(CLK100HZ, 0x14)
32 REG32(COUNTER, 0x18)
33 REG32(PRESCALE, 0x1c)
34 REG32(PSCNTR, 0x20)
35 REG32(MISC, 0x4c)
36 
37 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
38 {
39     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
40 }
41 
42 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
43 {
44     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
45 }
46 
47 static void resync_counter(MPS2FPGAIO *s)
48 {
49     /*
50      * Update s->counter and s->pscntr to their true current values
51      * by calculating how many times PSCNTR has ticked since the
52      * last time we did a resync.
53      */
54     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
55     int64_t elapsed = now - s->pscntr_sync_ticks;
56 
57     /*
58      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
59      * lose time if we do multiple resyncs in a single tick.
60      */
61     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
62 
63     /*
64      * Work out what PSCNTR and COUNTER have moved to. We assume that
65      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
66      * and that COUNTER increments at the same moment.
67      */
68     if (ticks == 0) {
69         /* We haven't ticked since the last time we were asked */
70         return;
71     } else if (ticks < s->pscntr) {
72         /* We haven't yet reached zero, just reduce the PSCNTR */
73         s->pscntr -= ticks;
74     } else {
75         if (s->prescale == 0) {
76             /*
77              * If the reload value is zero then the PSCNTR will stick
78              * at zero once it reaches it, and so we will increment
79              * COUNTER every tick after that.
80              */
81             s->counter += ticks - s->pscntr;
82             s->pscntr = 0;
83         } else {
84             /*
85              * This is the complicated bit. This ASCII art diagram gives an
86              * example with PRESCALE==5 PSCNTR==7:
87              *
88              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
89              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
90              * cinc                           1                 2
91              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
92              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
93              *
94              * where x = y % (s->prescale + 1)
95              * and so PSCNTR = s->prescale - x
96              * and COUNTER is incremented by y / (s->prescale + 1)
97              *
98              * The case where PSCNTR < PRESCALE works out the same,
99              * though we must be careful to calculate y as 64-bit unsigned
100              * for all parts of the expression.
101              * y < 0 is not possible because that implies ticks < s->pscntr.
102              */
103             uint64_t y = ticks - s->pscntr + s->prescale;
104             s->pscntr = s->prescale - (y % (s->prescale + 1));
105             s->counter += y / (s->prescale + 1);
106         }
107     }
108 
109     /*
110      * Only advance the sync time to the timestamp of the last PSCNTR tick,
111      * not all the way to 'now', so we don't lose time if we do multiple
112      * resyncs in a single tick.
113      */
114     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
115                                      s->prescale_clk);
116 }
117 
118 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
119 {
120     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
121     uint64_t r;
122     int64_t now;
123 
124     switch (offset) {
125     case A_LED0:
126         r = s->led0;
127         break;
128     case A_BUTTON:
129         /* User-pressable board buttons. We don't model that, so just return
130          * zeroes.
131          */
132         r = 0;
133         break;
134     case A_PRESCALE:
135         r = s->prescale;
136         break;
137     case A_MISC:
138         r = s->misc;
139         break;
140     case A_CLK1HZ:
141         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
142         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
143         break;
144     case A_CLK100HZ:
145         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
146         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
147         break;
148     case A_COUNTER:
149         resync_counter(s);
150         r = s->counter;
151         break;
152     case A_PSCNTR:
153         resync_counter(s);
154         r = s->pscntr;
155         break;
156     default:
157         qemu_log_mask(LOG_GUEST_ERROR,
158                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
159         r = 0;
160         break;
161     }
162 
163     trace_mps2_fpgaio_read(offset, r, size);
164     return r;
165 }
166 
167 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
168                               unsigned size)
169 {
170     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
171     int64_t now;
172 
173     trace_mps2_fpgaio_write(offset, value, size);
174 
175     switch (offset) {
176     case A_LED0:
177         /* LED bits [1:0] control board LEDs. We don't currently have
178          * a mechanism for displaying this graphically, so use a trace event.
179          */
180         trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
181                                value & 0x01 ? '*' : '.');
182         s->led0 = value & 0x3;
183         break;
184     case A_PRESCALE:
185         resync_counter(s);
186         s->prescale = value;
187         break;
188     case A_MISC:
189         /* These are control bits for some of the other devices on the
190          * board (SPI, CLCD, etc). We don't implement that yet, so just
191          * make the bits read as written.
192          */
193         qemu_log_mask(LOG_UNIMP,
194                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
195         s->misc = value;
196         break;
197     case A_CLK1HZ:
198         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
199         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
200         break;
201     case A_CLK100HZ:
202         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
203         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
204         break;
205     case A_COUNTER:
206         resync_counter(s);
207         s->counter = value;
208         break;
209     case A_PSCNTR:
210         resync_counter(s);
211         s->pscntr = value;
212         break;
213     default:
214         qemu_log_mask(LOG_GUEST_ERROR,
215                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
216         break;
217     }
218 }
219 
220 static const MemoryRegionOps mps2_fpgaio_ops = {
221     .read = mps2_fpgaio_read,
222     .write = mps2_fpgaio_write,
223     .endianness = DEVICE_LITTLE_ENDIAN,
224 };
225 
226 static void mps2_fpgaio_reset(DeviceState *dev)
227 {
228     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
229     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
230 
231     trace_mps2_fpgaio_reset();
232     s->led0 = 0;
233     s->prescale = 0;
234     s->misc = 0;
235     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
236     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
237     s->counter = 0;
238     s->pscntr = 0;
239     s->pscntr_sync_ticks = now;
240 }
241 
242 static void mps2_fpgaio_init(Object *obj)
243 {
244     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
245     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
246 
247     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
248                           "mps2-fpgaio", 0x1000);
249     sysbus_init_mmio(sbd, &s->iomem);
250 }
251 
252 static bool mps2_fpgaio_counters_needed(void *opaque)
253 {
254     /* Currently vmstate.c insists all subsections have a 'needed' function */
255     return true;
256 }
257 
258 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
259     .name = "mps2-fpgaio/counters",
260     .version_id = 2,
261     .minimum_version_id = 2,
262     .needed = mps2_fpgaio_counters_needed,
263     .fields = (VMStateField[]) {
264         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
265         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
266         VMSTATE_UINT32(counter, MPS2FPGAIO),
267         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
268         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
269         VMSTATE_END_OF_LIST()
270     }
271 };
272 
273 static const VMStateDescription mps2_fpgaio_vmstate = {
274     .name = "mps2-fpgaio",
275     .version_id = 1,
276     .minimum_version_id = 1,
277     .fields = (VMStateField[]) {
278         VMSTATE_UINT32(led0, MPS2FPGAIO),
279         VMSTATE_UINT32(prescale, MPS2FPGAIO),
280         VMSTATE_UINT32(misc, MPS2FPGAIO),
281         VMSTATE_END_OF_LIST()
282     },
283     .subsections = (const VMStateDescription*[]) {
284         &mps2_fpgaio_counters_vmstate,
285         NULL
286     }
287 };
288 
289 static Property mps2_fpgaio_properties[] = {
290     /* Frequency of the prescale counter */
291     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
292     DEFINE_PROP_END_OF_LIST(),
293 };
294 
295 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
296 {
297     DeviceClass *dc = DEVICE_CLASS(klass);
298 
299     dc->vmsd = &mps2_fpgaio_vmstate;
300     dc->reset = mps2_fpgaio_reset;
301     dc->props = mps2_fpgaio_properties;
302 }
303 
304 static const TypeInfo mps2_fpgaio_info = {
305     .name = TYPE_MPS2_FPGAIO,
306     .parent = TYPE_SYS_BUS_DEVICE,
307     .instance_size = sizeof(MPS2FPGAIO),
308     .instance_init = mps2_fpgaio_init,
309     .class_init = mps2_fpgaio_class_init,
310 };
311 
312 static void mps2_fpgaio_register_types(void)
313 {
314     type_register_static(&mps2_fpgaio_info);
315 }
316 
317 type_init(mps2_fpgaio_register_types);
318