xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision 2b74dd918007d91f5fee94ad0034b5e7a30ed777)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * https://developer.arm.com/documentation/dai0505/latest/
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/misc/led.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/timer.h"
30 
31 REG32(LED0, 0)
32 REG32(DBGCTRL, 4)
33 REG32(BUTTON, 8)
34 REG32(CLK1HZ, 0x10)
35 REG32(CLK100HZ, 0x14)
36 REG32(COUNTER, 0x18)
37 REG32(PRESCALE, 0x1c)
38 REG32(PSCNTR, 0x20)
39 REG32(SWITCH, 0x28)
40 REG32(MISC, 0x4c)
41 
42 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
43 {
44     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
45 }
46 
47 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
48 {
49     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
50 }
51 
52 static void resync_counter(MPS2FPGAIO *s)
53 {
54     /*
55      * Update s->counter and s->pscntr to their true current values
56      * by calculating how many times PSCNTR has ticked since the
57      * last time we did a resync.
58      */
59     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
60     int64_t elapsed = now - s->pscntr_sync_ticks;
61 
62     /*
63      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
64      * lose time if we do multiple resyncs in a single tick.
65      */
66     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
67 
68     /*
69      * Work out what PSCNTR and COUNTER have moved to. We assume that
70      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
71      * and that COUNTER increments at the same moment.
72      */
73     if (ticks == 0) {
74         /* We haven't ticked since the last time we were asked */
75         return;
76     } else if (ticks < s->pscntr) {
77         /* We haven't yet reached zero, just reduce the PSCNTR */
78         s->pscntr -= ticks;
79     } else {
80         if (s->prescale == 0) {
81             /*
82              * If the reload value is zero then the PSCNTR will stick
83              * at zero once it reaches it, and so we will increment
84              * COUNTER every tick after that.
85              */
86             s->counter += ticks - s->pscntr;
87             s->pscntr = 0;
88         } else {
89             /*
90              * This is the complicated bit. This ASCII art diagram gives an
91              * example with PRESCALE==5 PSCNTR==7:
92              *
93              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
94              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
95              * cinc                           1                 2
96              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
97              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
98              *
99              * where x = y % (s->prescale + 1)
100              * and so PSCNTR = s->prescale - x
101              * and COUNTER is incremented by y / (s->prescale + 1)
102              *
103              * The case where PSCNTR < PRESCALE works out the same,
104              * though we must be careful to calculate y as 64-bit unsigned
105              * for all parts of the expression.
106              * y < 0 is not possible because that implies ticks < s->pscntr.
107              */
108             uint64_t y = ticks - s->pscntr + s->prescale;
109             s->pscntr = s->prescale - (y % (s->prescale + 1));
110             s->counter += y / (s->prescale + 1);
111         }
112     }
113 
114     /*
115      * Only advance the sync time to the timestamp of the last PSCNTR tick,
116      * not all the way to 'now', so we don't lose time if we do multiple
117      * resyncs in a single tick.
118      */
119     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
120                                      s->prescale_clk);
121 }
122 
123 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
124 {
125     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
126     uint64_t r;
127     int64_t now;
128 
129     switch (offset) {
130     case A_LED0:
131         r = s->led0;
132         break;
133     case A_DBGCTRL:
134         if (!s->has_dbgctrl) {
135             goto bad_offset;
136         }
137         r = s->dbgctrl;
138         break;
139     case A_BUTTON:
140         /* User-pressable board buttons. We don't model that, so just return
141          * zeroes.
142          */
143         r = 0;
144         break;
145     case A_PRESCALE:
146         r = s->prescale;
147         break;
148     case A_MISC:
149         r = s->misc;
150         break;
151     case A_CLK1HZ:
152         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
153         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
154         break;
155     case A_CLK100HZ:
156         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
157         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
158         break;
159     case A_COUNTER:
160         resync_counter(s);
161         r = s->counter;
162         break;
163     case A_PSCNTR:
164         resync_counter(s);
165         r = s->pscntr;
166         break;
167     case A_SWITCH:
168         if (!s->has_switches) {
169             goto bad_offset;
170         }
171         /* User-togglable board switches. We don't model that, so report 0. */
172         r = 0;
173         break;
174     default:
175     bad_offset:
176         qemu_log_mask(LOG_GUEST_ERROR,
177                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
178         r = 0;
179         break;
180     }
181 
182     trace_mps2_fpgaio_read(offset, r, size);
183     return r;
184 }
185 
186 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
187                               unsigned size)
188 {
189     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
190     int64_t now;
191 
192     trace_mps2_fpgaio_write(offset, value, size);
193 
194     switch (offset) {
195     case A_LED0:
196         if (s->num_leds != 0) {
197             uint32_t i;
198 
199             s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
200             for (i = 0; i < s->num_leds; i++) {
201                 led_set_state(s->led[i], value & (1 << i));
202             }
203         }
204         break;
205     case A_DBGCTRL:
206         if (!s->has_dbgctrl) {
207             goto bad_offset;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "MPS2 FPGAIO: DBGCTRL unimplemented\n");
211         s->dbgctrl = value;
212         break;
213     case A_PRESCALE:
214         resync_counter(s);
215         s->prescale = value;
216         break;
217     case A_MISC:
218         /* These are control bits for some of the other devices on the
219          * board (SPI, CLCD, etc). We don't implement that yet, so just
220          * make the bits read as written.
221          */
222         qemu_log_mask(LOG_UNIMP,
223                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
224         s->misc = value;
225         break;
226     case A_CLK1HZ:
227         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
228         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
229         break;
230     case A_CLK100HZ:
231         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
232         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
233         break;
234     case A_COUNTER:
235         resync_counter(s);
236         s->counter = value;
237         break;
238     case A_PSCNTR:
239         resync_counter(s);
240         s->pscntr = value;
241         break;
242     default:
243     bad_offset:
244         qemu_log_mask(LOG_GUEST_ERROR,
245                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
246         break;
247     }
248 }
249 
250 static const MemoryRegionOps mps2_fpgaio_ops = {
251     .read = mps2_fpgaio_read,
252     .write = mps2_fpgaio_write,
253     .endianness = DEVICE_LITTLE_ENDIAN,
254 };
255 
256 static void mps2_fpgaio_reset(DeviceState *dev)
257 {
258     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
259     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
260 
261     trace_mps2_fpgaio_reset();
262     s->led0 = 0;
263     s->prescale = 0;
264     s->misc = 0;
265     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
266     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
267     s->counter = 0;
268     s->pscntr = 0;
269     s->pscntr_sync_ticks = now;
270 
271     for (size_t i = 0; i < s->num_leds; i++) {
272         device_cold_reset(DEVICE(s->led[i]));
273     }
274 }
275 
276 static void mps2_fpgaio_init(Object *obj)
277 {
278     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
279     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
280 
281     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
282                           "mps2-fpgaio", 0x1000);
283     sysbus_init_mmio(sbd, &s->iomem);
284 }
285 
286 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
287 {
288     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
289     uint32_t i;
290 
291     if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
292         error_setg(errp, "num-leds cannot be greater than %d",
293                    MPS2FPGAIO_MAX_LEDS);
294         return;
295     }
296 
297     for (i = 0; i < s->num_leds; i++) {
298         g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
299         s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
300                                       LED_COLOR_GREEN, ledname);
301     }
302 }
303 
304 static const VMStateDescription mps2_fpgaio_vmstate = {
305     .name = "mps2-fpgaio",
306     .version_id = 3,
307     .minimum_version_id = 3,
308     .fields = (const VMStateField[]) {
309         VMSTATE_UINT32(led0, MPS2FPGAIO),
310         VMSTATE_UINT32(prescale, MPS2FPGAIO),
311         VMSTATE_UINT32(misc, MPS2FPGAIO),
312         VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
313         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
314         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
315         VMSTATE_UINT32(counter, MPS2FPGAIO),
316         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
317         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
318         VMSTATE_END_OF_LIST()
319     },
320 };
321 
322 static Property mps2_fpgaio_properties[] = {
323     /* Frequency of the prescale counter */
324     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
325     /* Number of LEDs controlled by LED0 register */
326     DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
327     DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
328     DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
329     DEFINE_PROP_END_OF_LIST(),
330 };
331 
332 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
333 {
334     DeviceClass *dc = DEVICE_CLASS(klass);
335 
336     dc->vmsd = &mps2_fpgaio_vmstate;
337     dc->realize = mps2_fpgaio_realize;
338     device_class_set_legacy_reset(dc, mps2_fpgaio_reset);
339     device_class_set_props(dc, mps2_fpgaio_properties);
340 }
341 
342 static const TypeInfo mps2_fpgaio_info = {
343     .name = TYPE_MPS2_FPGAIO,
344     .parent = TYPE_SYS_BUS_DEVICE,
345     .instance_size = sizeof(MPS2FPGAIO),
346     .instance_init = mps2_fpgaio_init,
347     .class_init = mps2_fpgaio_class_init,
348 };
349 
350 static void mps2_fpgaio_register_types(void)
351 {
352     type_register_static(&mps2_fpgaio_info);
353 }
354 
355 type_init(mps2_fpgaio_register_types);
356