xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision 09a274d8)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qapi/error.h"
21 #include "trace.h"
22 #include "hw/sysbus.h"
23 #include "hw/registerfields.h"
24 #include "hw/misc/mps2-fpgaio.h"
25 #include "qemu/timer.h"
26 
27 REG32(LED0, 0)
28 REG32(BUTTON, 8)
29 REG32(CLK1HZ, 0x10)
30 REG32(CLK100HZ, 0x14)
31 REG32(COUNTER, 0x18)
32 REG32(PRESCALE, 0x1c)
33 REG32(PSCNTR, 0x20)
34 REG32(MISC, 0x4c)
35 
36 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
37 {
38     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
39 }
40 
41 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
42 {
43     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
44 }
45 
46 static void resync_counter(MPS2FPGAIO *s)
47 {
48     /*
49      * Update s->counter and s->pscntr to their true current values
50      * by calculating how many times PSCNTR has ticked since the
51      * last time we did a resync.
52      */
53     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
54     int64_t elapsed = now - s->pscntr_sync_ticks;
55 
56     /*
57      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
58      * lose time if we do multiple resyncs in a single tick.
59      */
60     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
61 
62     /*
63      * Work out what PSCNTR and COUNTER have moved to. We assume that
64      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
65      * and that COUNTER increments at the same moment.
66      */
67     if (ticks == 0) {
68         /* We haven't ticked since the last time we were asked */
69         return;
70     } else if (ticks < s->pscntr) {
71         /* We haven't yet reached zero, just reduce the PSCNTR */
72         s->pscntr -= ticks;
73     } else {
74         if (s->prescale == 0) {
75             /*
76              * If the reload value is zero then the PSCNTR will stick
77              * at zero once it reaches it, and so we will increment
78              * COUNTER every tick after that.
79              */
80             s->counter += ticks - s->pscntr;
81             s->pscntr = 0;
82         } else {
83             /*
84              * This is the complicated bit. This ASCII art diagram gives an
85              * example with PRESCALE==5 PSCNTR==7:
86              *
87              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
88              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
89              * cinc                           1                 2
90              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
91              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
92              *
93              * where x = y % (s->prescale + 1)
94              * and so PSCNTR = s->prescale - x
95              * and COUNTER is incremented by y / (s->prescale + 1)
96              *
97              * The case where PSCNTR < PRESCALE works out the same,
98              * though we must be careful to calculate y as 64-bit unsigned
99              * for all parts of the expression.
100              * y < 0 is not possible because that implies ticks < s->pscntr.
101              */
102             uint64_t y = ticks - s->pscntr + s->prescale;
103             s->pscntr = s->prescale - (y % (s->prescale + 1));
104             s->counter += y / (s->prescale + 1);
105         }
106     }
107 
108     /*
109      * Only advance the sync time to the timestamp of the last PSCNTR tick,
110      * not all the way to 'now', so we don't lose time if we do multiple
111      * resyncs in a single tick.
112      */
113     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
114                                      s->prescale_clk);
115 }
116 
117 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
118 {
119     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
120     uint64_t r;
121     int64_t now;
122 
123     switch (offset) {
124     case A_LED0:
125         r = s->led0;
126         break;
127     case A_BUTTON:
128         /* User-pressable board buttons. We don't model that, so just return
129          * zeroes.
130          */
131         r = 0;
132         break;
133     case A_PRESCALE:
134         r = s->prescale;
135         break;
136     case A_MISC:
137         r = s->misc;
138         break;
139     case A_CLK1HZ:
140         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
141         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
142         break;
143     case A_CLK100HZ:
144         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
145         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
146         break;
147     case A_COUNTER:
148         resync_counter(s);
149         r = s->counter;
150         break;
151     case A_PSCNTR:
152         resync_counter(s);
153         r = s->pscntr;
154         break;
155     default:
156         qemu_log_mask(LOG_GUEST_ERROR,
157                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
158         r = 0;
159         break;
160     }
161 
162     trace_mps2_fpgaio_read(offset, r, size);
163     return r;
164 }
165 
166 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
167                               unsigned size)
168 {
169     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
170     int64_t now;
171 
172     trace_mps2_fpgaio_write(offset, value, size);
173 
174     switch (offset) {
175     case A_LED0:
176         /* LED bits [1:0] control board LEDs. We don't currently have
177          * a mechanism for displaying this graphically, so use a trace event.
178          */
179         trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
180                                value & 0x01 ? '*' : '.');
181         s->led0 = value & 0x3;
182         break;
183     case A_PRESCALE:
184         resync_counter(s);
185         s->prescale = value;
186         break;
187     case A_MISC:
188         /* These are control bits for some of the other devices on the
189          * board (SPI, CLCD, etc). We don't implement that yet, so just
190          * make the bits read as written.
191          */
192         qemu_log_mask(LOG_UNIMP,
193                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
194         s->misc = value;
195         break;
196     case A_CLK1HZ:
197         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
198         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
199         break;
200     case A_CLK100HZ:
201         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
202         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
203         break;
204     case A_COUNTER:
205         resync_counter(s);
206         s->counter = value;
207         break;
208     case A_PSCNTR:
209         resync_counter(s);
210         s->pscntr = value;
211         break;
212     default:
213         qemu_log_mask(LOG_GUEST_ERROR,
214                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
215         break;
216     }
217 }
218 
219 static const MemoryRegionOps mps2_fpgaio_ops = {
220     .read = mps2_fpgaio_read,
221     .write = mps2_fpgaio_write,
222     .endianness = DEVICE_LITTLE_ENDIAN,
223 };
224 
225 static void mps2_fpgaio_reset(DeviceState *dev)
226 {
227     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
228     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
229 
230     trace_mps2_fpgaio_reset();
231     s->led0 = 0;
232     s->prescale = 0;
233     s->misc = 0;
234     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
235     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
236     s->counter = 0;
237     s->pscntr = 0;
238     s->pscntr_sync_ticks = now;
239 }
240 
241 static void mps2_fpgaio_init(Object *obj)
242 {
243     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
244     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
245 
246     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
247                           "mps2-fpgaio", 0x1000);
248     sysbus_init_mmio(sbd, &s->iomem);
249 }
250 
251 static bool mps2_fpgaio_counters_needed(void *opaque)
252 {
253     /* Currently vmstate.c insists all subsections have a 'needed' function */
254     return true;
255 }
256 
257 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
258     .name = "mps2-fpgaio/counters",
259     .version_id = 2,
260     .minimum_version_id = 2,
261     .needed = mps2_fpgaio_counters_needed,
262     .fields = (VMStateField[]) {
263         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
264         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
265         VMSTATE_UINT32(counter, MPS2FPGAIO),
266         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
267         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
268         VMSTATE_END_OF_LIST()
269     }
270 };
271 
272 static const VMStateDescription mps2_fpgaio_vmstate = {
273     .name = "mps2-fpgaio",
274     .version_id = 1,
275     .minimum_version_id = 1,
276     .fields = (VMStateField[]) {
277         VMSTATE_UINT32(led0, MPS2FPGAIO),
278         VMSTATE_UINT32(prescale, MPS2FPGAIO),
279         VMSTATE_UINT32(misc, MPS2FPGAIO),
280         VMSTATE_END_OF_LIST()
281     },
282     .subsections = (const VMStateDescription*[]) {
283         &mps2_fpgaio_counters_vmstate,
284         NULL
285     }
286 };
287 
288 static Property mps2_fpgaio_properties[] = {
289     /* Frequency of the prescale counter */
290     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
291     DEFINE_PROP_END_OF_LIST(),
292 };
293 
294 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
295 {
296     DeviceClass *dc = DEVICE_CLASS(klass);
297 
298     dc->vmsd = &mps2_fpgaio_vmstate;
299     dc->reset = mps2_fpgaio_reset;
300     dc->props = mps2_fpgaio_properties;
301 }
302 
303 static const TypeInfo mps2_fpgaio_info = {
304     .name = TYPE_MPS2_FPGAIO,
305     .parent = TYPE_SYS_BUS_DEVICE,
306     .instance_size = sizeof(MPS2FPGAIO),
307     .instance_init = mps2_fpgaio_init,
308     .class_init = mps2_fpgaio_class_init,
309 };
310 
311 static void mps2_fpgaio_register_types(void)
312 {
313     type_register_static(&mps2_fpgaio_info);
314 }
315 
316 type_init(mps2_fpgaio_register_types);
317