xref: /openbmc/qemu/hw/misc/mos6522.c (revision 2df1eb27)
1 /*
2  * QEMU MOS6522 VIA emulation
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2018 Mark Cave-Ayland
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "hw/irq.h"
29 #include "hw/misc/mos6522.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "monitor/monitor.h"
33 #include "monitor/hmp.h"
34 #include "qapi/type-helpers.h"
35 #include "qemu/timer.h"
36 #include "qemu/cutils.h"
37 #include "qemu/log.h"
38 #include "qemu/module.h"
39 #include "trace.h"
40 
41 
42 static const char *mos6522_reg_names[MOS6522_NUM_REGS] = {
43     "ORB", "ORA", "DDRB", "DDRA", "T1CL", "T1CH", "T1LL", "T1LH",
44     "T2CL", "T2CH", "SR", "ACR", "PCR", "IFR", "IER", "ANH"
45 };
46 
47 /* XXX: implement all timer modes */
48 
49 static void mos6522_timer1_update(MOS6522State *s, MOS6522Timer *ti,
50                                   int64_t current_time);
51 static void mos6522_timer2_update(MOS6522State *s, MOS6522Timer *ti,
52                                   int64_t current_time);
53 
54 static void mos6522_update_irq(MOS6522State *s)
55 {
56     if (s->ifr & s->ier) {
57         qemu_irq_raise(s->irq);
58     } else {
59         qemu_irq_lower(s->irq);
60     }
61 }
62 
63 static void mos6522_set_irq(void *opaque, int n, int level)
64 {
65     MOS6522State *s = MOS6522(opaque);
66     int last_level = !!(s->last_irq_levels & (1 << n));
67     uint8_t last_ifr = s->ifr;
68     bool positive_edge = true;
69     int ctrl;
70 
71     /*
72      * SR_INT is managed by mos6522 instances and cleared upon SR
73      * read. It is only the external CA1/2 and CB1/2 lines that
74      * are edge-triggered and latched in IFR
75      */
76     if (n != SR_INT_BIT && level == last_level) {
77         return;
78     }
79 
80     /* Detect negative edge trigger */
81     if (last_level == 1 && level == 0) {
82         positive_edge = false;
83     }
84 
85     switch (n) {
86     case CA2_INT_BIT:
87         ctrl = (s->pcr & CA2_CTRL_MASK) >> CA2_CTRL_SHIFT;
88         if ((positive_edge && (ctrl & C2_POS)) ||
89              (!positive_edge && !(ctrl & C2_POS))) {
90             s->ifr |= 1 << n;
91         }
92         break;
93     case CA1_INT_BIT:
94         ctrl = (s->pcr & CA1_CTRL_MASK) >> CA1_CTRL_SHIFT;
95         if ((positive_edge && (ctrl & C1_POS)) ||
96              (!positive_edge && !(ctrl & C1_POS))) {
97             s->ifr |= 1 << n;
98         }
99         break;
100     case SR_INT_BIT:
101         s->ifr |= 1 << n;
102         break;
103     case CB2_INT_BIT:
104         ctrl = (s->pcr & CB2_CTRL_MASK) >> CB2_CTRL_SHIFT;
105         if ((positive_edge && (ctrl & C2_POS)) ||
106              (!positive_edge && !(ctrl & C2_POS))) {
107             s->ifr |= 1 << n;
108         }
109         break;
110     case CB1_INT_BIT:
111         ctrl = (s->pcr & CB1_CTRL_MASK) >> CB1_CTRL_SHIFT;
112         if ((positive_edge && (ctrl & C1_POS)) ||
113              (!positive_edge && !(ctrl & C1_POS))) {
114             s->ifr |= 1 << n;
115         }
116         break;
117     }
118 
119     if (s->ifr != last_ifr) {
120         mos6522_update_irq(s);
121     }
122 
123     if (level) {
124         s->last_irq_levels |= 1 << n;
125     } else {
126         s->last_irq_levels &= ~(1 << n);
127     }
128 }
129 
130 static uint64_t get_counter_value(MOS6522State *s, MOS6522Timer *ti)
131 {
132     MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(s);
133 
134     if (ti->index == 0) {
135         return mdc->get_timer1_counter_value(s, ti);
136     } else {
137         return mdc->get_timer2_counter_value(s, ti);
138     }
139 }
140 
141 static uint64_t get_load_time(MOS6522State *s, MOS6522Timer *ti)
142 {
143     MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(s);
144 
145     if (ti->index == 0) {
146         return mdc->get_timer1_load_time(s, ti);
147     } else {
148         return mdc->get_timer2_load_time(s, ti);
149     }
150 }
151 
152 static unsigned int get_counter(MOS6522State *s, MOS6522Timer *ti)
153 {
154     int64_t d;
155     unsigned int counter;
156 
157     d = get_counter_value(s, ti);
158 
159     if (ti->index == 0) {
160         /* the timer goes down from latch to -1 (period of latch + 2) */
161         if (d <= (ti->counter_value + 1)) {
162             counter = (ti->counter_value - d) & 0xffff;
163         } else {
164             counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
165             counter = (ti->latch - counter) & 0xffff;
166         }
167     } else {
168         counter = (ti->counter_value - d) & 0xffff;
169     }
170     return counter;
171 }
172 
173 static void set_counter(MOS6522State *s, MOS6522Timer *ti, unsigned int val)
174 {
175     trace_mos6522_set_counter(1 + ti->index, val);
176     ti->load_time = get_load_time(s, ti);
177     ti->counter_value = val;
178     if (ti->index == 0) {
179         mos6522_timer1_update(s, ti, ti->load_time);
180     } else {
181         mos6522_timer2_update(s, ti, ti->load_time);
182     }
183 }
184 
185 static int64_t get_next_irq_time(MOS6522State *s, MOS6522Timer *ti,
186                                  int64_t current_time)
187 {
188     int64_t d, next_time;
189     unsigned int counter;
190 
191     if (ti->frequency == 0) {
192         return INT64_MAX;
193     }
194 
195     /* current counter value */
196     d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
197                  ti->frequency, NANOSECONDS_PER_SECOND);
198 
199     /* the timer goes down from latch to -1 (period of latch + 2) */
200     if (d <= (ti->counter_value + 1)) {
201         counter = (ti->counter_value - d) & 0xffff;
202     } else {
203         counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
204         counter = (ti->latch - counter) & 0xffff;
205     }
206 
207     /* Note: we consider the irq is raised on 0 */
208     if (counter == 0xffff) {
209         next_time = d + ti->latch + 1;
210     } else if (counter == 0) {
211         next_time = d + ti->latch + 2;
212     } else {
213         next_time = d + counter;
214     }
215     trace_mos6522_get_next_irq_time(ti->latch, d, next_time - d);
216     next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, ti->frequency) +
217                          ti->load_time;
218 
219     if (next_time <= current_time) {
220         next_time = current_time + 1;
221     }
222     return next_time;
223 }
224 
225 static void mos6522_timer1_update(MOS6522State *s, MOS6522Timer *ti,
226                                  int64_t current_time)
227 {
228     if (!ti->timer) {
229         return;
230     }
231     ti->next_irq_time = get_next_irq_time(s, ti, current_time);
232     if ((s->ier & T1_INT) == 0 || (s->acr & T1MODE) != T1MODE_CONT) {
233         timer_del(ti->timer);
234     } else {
235         timer_mod(ti->timer, ti->next_irq_time);
236     }
237 }
238 
239 static void mos6522_timer2_update(MOS6522State *s, MOS6522Timer *ti,
240                                  int64_t current_time)
241 {
242     if (!ti->timer) {
243         return;
244     }
245     ti->next_irq_time = get_next_irq_time(s, ti, current_time);
246     if ((s->ier & T2_INT) == 0) {
247         timer_del(ti->timer);
248     } else {
249         timer_mod(ti->timer, ti->next_irq_time);
250     }
251 }
252 
253 static void mos6522_timer1(void *opaque)
254 {
255     MOS6522State *s = opaque;
256     MOS6522Timer *ti = &s->timers[0];
257 
258     mos6522_timer1_update(s, ti, ti->next_irq_time);
259     s->ifr |= T1_INT;
260     mos6522_update_irq(s);
261 }
262 
263 static void mos6522_timer2(void *opaque)
264 {
265     MOS6522State *s = opaque;
266     MOS6522Timer *ti = &s->timers[1];
267 
268     mos6522_timer2_update(s, ti, ti->next_irq_time);
269     s->ifr |= T2_INT;
270     mos6522_update_irq(s);
271 }
272 
273 static uint64_t mos6522_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
274 {
275     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
276                     ti->frequency, NANOSECONDS_PER_SECOND);
277 }
278 
279 static uint64_t mos6522_get_load_time(MOS6522State *s, MOS6522Timer *ti)
280 {
281     uint64_t load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
282 
283     return load_time;
284 }
285 
286 static void mos6522_portA_write(MOS6522State *s)
287 {
288     qemu_log_mask(LOG_UNIMP, "portA_write unimplemented\n");
289 }
290 
291 static void mos6522_portB_write(MOS6522State *s)
292 {
293     qemu_log_mask(LOG_UNIMP, "portB_write unimplemented\n");
294 }
295 
296 uint64_t mos6522_read(void *opaque, hwaddr addr, unsigned size)
297 {
298     MOS6522State *s = opaque;
299     uint32_t val;
300     int ctrl;
301     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
302 
303     if (now >= s->timers[0].next_irq_time) {
304         mos6522_timer1_update(s, &s->timers[0], now);
305         s->ifr |= T1_INT;
306     }
307     if (now >= s->timers[1].next_irq_time) {
308         mos6522_timer2_update(s, &s->timers[1], now);
309         s->ifr |= T2_INT;
310     }
311     switch (addr) {
312     case VIA_REG_B:
313         val = s->b;
314         ctrl = (s->pcr & CB2_CTRL_MASK) >> CB2_CTRL_SHIFT;
315         if (!(ctrl & C2_IND)) {
316             s->ifr &= ~CB2_INT;
317         }
318         s->ifr &= ~CB1_INT;
319         mos6522_update_irq(s);
320         break;
321     case VIA_REG_A:
322        qemu_log_mask(LOG_UNIMP, "Read access to register A with handshake");
323        /* fall through */
324     case VIA_REG_ANH:
325         val = s->a;
326         ctrl = (s->pcr & CA2_CTRL_MASK) >> CA2_CTRL_SHIFT;
327         if (!(ctrl & C2_IND)) {
328             s->ifr &= ~CA2_INT;
329         }
330         s->ifr &= ~CA1_INT;
331         mos6522_update_irq(s);
332         break;
333     case VIA_REG_DIRB:
334         val = s->dirb;
335         break;
336     case VIA_REG_DIRA:
337         val = s->dira;
338         break;
339     case VIA_REG_T1CL:
340         val = get_counter(s, &s->timers[0]) & 0xff;
341         s->ifr &= ~T1_INT;
342         mos6522_update_irq(s);
343         break;
344     case VIA_REG_T1CH:
345         val = get_counter(s, &s->timers[0]) >> 8;
346         mos6522_update_irq(s);
347         break;
348     case VIA_REG_T1LL:
349         val = s->timers[0].latch & 0xff;
350         break;
351     case VIA_REG_T1LH:
352         /* XXX: check this */
353         val = (s->timers[0].latch >> 8) & 0xff;
354         break;
355     case VIA_REG_T2CL:
356         val = get_counter(s, &s->timers[1]) & 0xff;
357         s->ifr &= ~T2_INT;
358         mos6522_update_irq(s);
359         break;
360     case VIA_REG_T2CH:
361         val = get_counter(s, &s->timers[1]) >> 8;
362         break;
363     case VIA_REG_SR:
364         val = s->sr;
365         s->ifr &= ~SR_INT;
366         mos6522_update_irq(s);
367         break;
368     case VIA_REG_ACR:
369         val = s->acr;
370         break;
371     case VIA_REG_PCR:
372         val = s->pcr;
373         break;
374     case VIA_REG_IFR:
375         val = s->ifr;
376         if (s->ifr & s->ier) {
377             val |= 0x80;
378         }
379         break;
380     case VIA_REG_IER:
381         val = s->ier | 0x80;
382         break;
383     default:
384         g_assert_not_reached();
385     }
386 
387     if (addr != VIA_REG_IFR || val != 0) {
388         trace_mos6522_read(addr, mos6522_reg_names[addr], val);
389     }
390 
391     return val;
392 }
393 
394 void mos6522_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
395 {
396     MOS6522State *s = opaque;
397     MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(s);
398     int ctrl;
399 
400     trace_mos6522_write(addr, mos6522_reg_names[addr], val);
401 
402     switch (addr) {
403     case VIA_REG_B:
404         s->b = (s->b & ~s->dirb) | (val & s->dirb);
405         mdc->portB_write(s);
406         ctrl = (s->pcr & CB2_CTRL_MASK) >> CB2_CTRL_SHIFT;
407         if (!(ctrl & C2_IND)) {
408             s->ifr &= ~CB2_INT;
409         }
410         s->ifr &= ~CB1_INT;
411         mos6522_update_irq(s);
412         break;
413     case VIA_REG_A:
414        qemu_log_mask(LOG_UNIMP, "Write access to register A with handshake");
415        /* fall through */
416     case VIA_REG_ANH:
417         s->a = (s->a & ~s->dira) | (val & s->dira);
418         mdc->portA_write(s);
419         ctrl = (s->pcr & CA2_CTRL_MASK) >> CA2_CTRL_SHIFT;
420         if (!(ctrl & C2_IND)) {
421             s->ifr &= ~CA2_INT;
422         }
423         s->ifr &= ~CA1_INT;
424         mos6522_update_irq(s);
425         break;
426     case VIA_REG_DIRB:
427         s->dirb = val;
428         break;
429     case VIA_REG_DIRA:
430         s->dira = val;
431         break;
432     case VIA_REG_T1CL:
433         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
434         mos6522_timer1_update(s, &s->timers[0],
435                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
436         break;
437     case VIA_REG_T1CH:
438         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
439         s->ifr &= ~T1_INT;
440         set_counter(s, &s->timers[0], s->timers[0].latch);
441         break;
442     case VIA_REG_T1LL:
443         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
444         mos6522_timer1_update(s, &s->timers[0],
445                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
446         break;
447     case VIA_REG_T1LH:
448         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
449         s->ifr &= ~T1_INT;
450         mos6522_timer1_update(s, &s->timers[0],
451                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
452         break;
453     case VIA_REG_T2CL:
454         s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
455         break;
456     case VIA_REG_T2CH:
457         /* To ensure T2 generates an interrupt on zero crossing with the
458            common timer code, write the value directly from the latch to
459            the counter */
460         s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
461         s->ifr &= ~T2_INT;
462         set_counter(s, &s->timers[1], s->timers[1].latch);
463         break;
464     case VIA_REG_SR:
465         s->sr = val;
466         break;
467     case VIA_REG_ACR:
468         s->acr = val;
469         mos6522_timer1_update(s, &s->timers[0],
470                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
471         break;
472     case VIA_REG_PCR:
473         s->pcr = val;
474         break;
475     case VIA_REG_IFR:
476         /* reset bits */
477         s->ifr &= ~val;
478         mos6522_update_irq(s);
479         break;
480     case VIA_REG_IER:
481         if (val & IER_SET) {
482             /* set bits */
483             s->ier |= val & 0x7f;
484         } else {
485             /* reset bits */
486             s->ier &= ~val;
487         }
488         mos6522_update_irq(s);
489         /* if IER is modified starts needed timers */
490         mos6522_timer1_update(s, &s->timers[0],
491                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
492         mos6522_timer2_update(s, &s->timers[1],
493                               qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
494         break;
495     default:
496         g_assert_not_reached();
497     }
498 }
499 
500 static int qmp_x_query_via_foreach(Object *obj, void *opaque)
501 {
502     GString *buf = opaque;
503 
504     if (object_dynamic_cast(obj, TYPE_MOS6522)) {
505         MOS6522State *s = MOS6522(obj);
506         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
507         uint16_t t1counter = get_counter(s, &s->timers[0]);
508         uint16_t t2counter = get_counter(s, &s->timers[1]);
509 
510         g_string_append_printf(buf, "%s:\n", object_get_typename(obj));
511 
512         g_string_append_printf(buf, "  Registers:\n");
513         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
514                                mos6522_reg_names[0], s->b);
515         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
516                                mos6522_reg_names[1], s->a);
517         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
518                                mos6522_reg_names[2], s->dirb);
519         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
520                                mos6522_reg_names[3], s->dira);
521         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
522                                mos6522_reg_names[4], t1counter & 0xff);
523         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
524                                mos6522_reg_names[5], t1counter >> 8);
525         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
526                                mos6522_reg_names[6],
527                                s->timers[0].latch & 0xff);
528         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
529                                mos6522_reg_names[7],
530                                s->timers[0].latch >> 8);
531         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
532                                mos6522_reg_names[8], t2counter & 0xff);
533         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
534                                mos6522_reg_names[9], t2counter >> 8);
535         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
536                                mos6522_reg_names[10], s->sr);
537         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
538                                mos6522_reg_names[11], s->acr);
539         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
540                                mos6522_reg_names[12], s->pcr);
541         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
542                                mos6522_reg_names[13], s->ifr);
543         g_string_append_printf(buf, "    %-*s:    0x%x\n", 4,
544                                mos6522_reg_names[14], s->ier);
545 
546         g_string_append_printf(buf, "  Timers:\n");
547         g_string_append_printf(buf, "    Using current time now(ns)=%"PRId64
548                                     "\n", now);
549         g_string_append_printf(buf, "    T1 freq(hz)=%"PRId64
550                                " mode=%s"
551                                " counter=0x%x"
552                                " latch=0x%x\n"
553                                "       load_time(ns)=%"PRId64
554                                " next_irq_time(ns)=%"PRId64 "\n",
555                                s->timers[0].frequency,
556                                ((s->acr & T1MODE) == T1MODE_CONT) ? "continuous"
557                                                                   : "one-shot",
558                                t1counter,
559                                s->timers[0].latch,
560                                s->timers[0].load_time,
561                                get_next_irq_time(s, &s->timers[0], now));
562         g_string_append_printf(buf, "    T2 freq(hz)=%"PRId64
563                                " mode=%s"
564                                " counter=0x%x"
565                                " latch=0x%x\n"
566                                "       load_time(ns)=%"PRId64
567                                " next_irq_time(ns)=%"PRId64 "\n",
568                                s->timers[1].frequency,
569                                "one-shot",
570                                t2counter,
571                                s->timers[1].latch,
572                                s->timers[1].load_time,
573                                get_next_irq_time(s, &s->timers[1], now));
574     }
575 
576     return 0;
577 }
578 
579 static HumanReadableText *qmp_x_query_via(Error **errp)
580 {
581     g_autoptr(GString) buf = g_string_new("");
582 
583     object_child_foreach_recursive(object_get_root(),
584                                    qmp_x_query_via_foreach, buf);
585 
586     return human_readable_text_from_str(buf);
587 }
588 
589 void hmp_info_via(Monitor *mon, const QDict *qdict)
590 {
591     Error *err = NULL;
592     g_autoptr(HumanReadableText) info = qmp_x_query_via(&err);
593 
594     if (hmp_handle_error(mon, err)) {
595         return;
596     }
597     monitor_puts(mon, info->human_readable_text);
598 }
599 
600 static const MemoryRegionOps mos6522_ops = {
601     .read = mos6522_read,
602     .write = mos6522_write,
603     .endianness = DEVICE_NATIVE_ENDIAN,
604     .valid = {
605         .min_access_size = 1,
606         .max_access_size = 1,
607     },
608 };
609 
610 static const VMStateDescription vmstate_mos6522_timer = {
611     .name = "mos6522_timer",
612     .version_id = 0,
613     .minimum_version_id = 0,
614     .fields = (const VMStateField[]) {
615         VMSTATE_UINT16(latch, MOS6522Timer),
616         VMSTATE_UINT16(counter_value, MOS6522Timer),
617         VMSTATE_INT64(load_time, MOS6522Timer),
618         VMSTATE_INT64(next_irq_time, MOS6522Timer),
619         VMSTATE_TIMER_PTR(timer, MOS6522Timer),
620         VMSTATE_END_OF_LIST()
621     }
622 };
623 
624 const VMStateDescription vmstate_mos6522 = {
625     .name = "mos6522",
626     .version_id = 1,
627     .minimum_version_id = 1,
628     .fields = (const VMStateField[]) {
629         VMSTATE_UINT8(a, MOS6522State),
630         VMSTATE_UINT8(b, MOS6522State),
631         VMSTATE_UINT8(dira, MOS6522State),
632         VMSTATE_UINT8(dirb, MOS6522State),
633         VMSTATE_UINT8(sr, MOS6522State),
634         VMSTATE_UINT8(acr, MOS6522State),
635         VMSTATE_UINT8(pcr, MOS6522State),
636         VMSTATE_UINT8(ifr, MOS6522State),
637         VMSTATE_UINT8(ier, MOS6522State),
638         VMSTATE_UINT8(last_irq_levels, MOS6522State),
639         VMSTATE_STRUCT_ARRAY(timers, MOS6522State, 2, 0,
640                              vmstate_mos6522_timer, MOS6522Timer),
641         VMSTATE_END_OF_LIST()
642     }
643 };
644 
645 static void mos6522_reset_hold(Object *obj)
646 {
647     MOS6522State *s = MOS6522(obj);
648 
649     s->b = 0;
650     s->a = 0;
651     s->dirb = 0xff;
652     s->dira = 0;
653     s->sr = 0;
654     s->acr = 0;
655     s->pcr = 0;
656     s->ifr = 0;
657     s->ier = 0;
658     /* s->ier = T1_INT | SR_INT; */
659 
660     s->timers[0].frequency = s->frequency;
661     s->timers[0].latch = 0xffff;
662     set_counter(s, &s->timers[0], 0xffff);
663     timer_del(s->timers[0].timer);
664 
665     s->timers[1].frequency = s->frequency;
666     s->timers[1].latch = 0xffff;
667     timer_del(s->timers[1].timer);
668 }
669 
670 static void mos6522_init(Object *obj)
671 {
672     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
673     MOS6522State *s = MOS6522(obj);
674     int i;
675 
676     memory_region_init_io(&s->mem, obj, &mos6522_ops, s, "mos6522",
677                           MOS6522_NUM_REGS);
678     sysbus_init_mmio(sbd, &s->mem);
679     sysbus_init_irq(sbd, &s->irq);
680 
681     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
682         s->timers[i].index = i;
683     }
684 
685     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer1, s);
686     s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer2, s);
687 
688     qdev_init_gpio_in(DEVICE(obj), mos6522_set_irq, VIA_NUM_INTS);
689 }
690 
691 static void mos6522_finalize(Object *obj)
692 {
693     MOS6522State *s = MOS6522(obj);
694 
695     timer_free(s->timers[0].timer);
696     timer_free(s->timers[1].timer);
697 }
698 
699 static Property mos6522_properties[] = {
700     DEFINE_PROP_UINT64("frequency", MOS6522State, frequency, 0),
701     DEFINE_PROP_END_OF_LIST()
702 };
703 
704 static void mos6522_class_init(ObjectClass *oc, void *data)
705 {
706     DeviceClass *dc = DEVICE_CLASS(oc);
707     ResettableClass *rc = RESETTABLE_CLASS(oc);
708     MOS6522DeviceClass *mdc = MOS6522_CLASS(oc);
709 
710     rc->phases.hold = mos6522_reset_hold;
711     dc->vmsd = &vmstate_mos6522;
712     device_class_set_props(dc, mos6522_properties);
713     mdc->portB_write = mos6522_portB_write;
714     mdc->portA_write = mos6522_portA_write;
715     mdc->get_timer1_counter_value = mos6522_get_counter_value;
716     mdc->get_timer2_counter_value = mos6522_get_counter_value;
717     mdc->get_timer1_load_time = mos6522_get_load_time;
718     mdc->get_timer2_load_time = mos6522_get_load_time;
719 }
720 
721 static const TypeInfo mos6522_type_info = {
722     .name = TYPE_MOS6522,
723     .parent = TYPE_SYS_BUS_DEVICE,
724     .instance_size = sizeof(MOS6522State),
725     .instance_init = mos6522_init,
726     .instance_finalize = mos6522_finalize,
727     .abstract = true,
728     .class_size = sizeof(MOS6522DeviceClass),
729     .class_init = mos6522_class_init,
730 };
731 
732 static void mos6522_register_types(void)
733 {
734     type_register_static(&mos6522_type_info);
735 }
736 
737 type_init(mos6522_register_types)
738