xref: /openbmc/qemu/hw/misc/macio/mac_dbdma.c (revision f2f963fd0775263f9c1cdd3cd92b171c8dae6c77)
1 /*
2  * PowerMac descriptor-based DMA emulation
3  *
4  * Copyright (c) 2005-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2009 Laurent Vivier
7  *
8  * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
9  *
10  *   Definitions for using the Apple Descriptor-Based DMA controller
11  *   in Power Macintosh computers.
12  *
13  *   Copyright (C) 1996 Paul Mackerras.
14  *
15  * some parts from mol 0.9.71
16  *
17  *   Descriptor based DMA emulation
18  *
19  *   Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
20  *
21  * Permission is hereby granted, free of charge, to any person obtaining a copy
22  * of this software and associated documentation files (the "Software"), to deal
23  * in the Software without restriction, including without limitation the rights
24  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
25  * copies of the Software, and to permit persons to whom the Software is
26  * furnished to do so, subject to the following conditions:
27  *
28  * The above copyright notice and this permission notice shall be included in
29  * all copies or substantial portions of the Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
34  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
36  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
37  * THE SOFTWARE.
38  */
39 #include "hw/hw.h"
40 #include "hw/isa/isa.h"
41 #include "hw/ppc/mac_dbdma.h"
42 #include "qemu/main-loop.h"
43 
44 /* debug DBDMA */
45 //#define DEBUG_DBDMA
46 
47 #ifdef DEBUG_DBDMA
48 #define DBDMA_DPRINTF(fmt, ...)                                 \
49     do { printf("DBDMA: " fmt , ## __VA_ARGS__); } while (0)
50 #else
51 #define DBDMA_DPRINTF(fmt, ...)
52 #endif
53 
54 /*
55  */
56 
57 #ifdef DEBUG_DBDMA
58 static void dump_dbdma_cmd(dbdma_cmd *cmd)
59 {
60     printf("dbdma_cmd %p\n", cmd);
61     printf("    req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
62     printf("    command 0x%04x\n", le16_to_cpu(cmd->command));
63     printf("    phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
64     printf("    cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
65     printf("    res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
66     printf("    xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status));
67 }
68 #else
69 static void dump_dbdma_cmd(dbdma_cmd *cmd)
70 {
71 }
72 #endif
73 static void dbdma_cmdptr_load(DBDMA_channel *ch)
74 {
75     DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
76                   ch->regs[DBDMA_CMDPTR_LO]);
77     cpu_physical_memory_read(ch->regs[DBDMA_CMDPTR_LO],
78                              &ch->current, sizeof(dbdma_cmd));
79 }
80 
81 static void dbdma_cmdptr_save(DBDMA_channel *ch)
82 {
83     DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n",
84                   ch->regs[DBDMA_CMDPTR_LO]);
85     DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n",
86                   le16_to_cpu(ch->current.xfer_status),
87                   le16_to_cpu(ch->current.res_count));
88     cpu_physical_memory_write(ch->regs[DBDMA_CMDPTR_LO],
89                               &ch->current, sizeof(dbdma_cmd));
90 }
91 
92 static void kill_channel(DBDMA_channel *ch)
93 {
94     DBDMA_DPRINTF("kill_channel\n");
95 
96     ch->regs[DBDMA_STATUS] |= DEAD;
97     ch->regs[DBDMA_STATUS] &= ~ACTIVE;
98 
99     qemu_irq_raise(ch->irq);
100 }
101 
102 static void conditional_interrupt(DBDMA_channel *ch)
103 {
104     dbdma_cmd *current = &ch->current;
105     uint16_t intr;
106     uint16_t sel_mask, sel_value;
107     uint32_t status;
108     int cond;
109 
110     DBDMA_DPRINTF("%s\n", __func__);
111 
112     intr = le16_to_cpu(current->command) & INTR_MASK;
113 
114     switch(intr) {
115     case INTR_NEVER:  /* don't interrupt */
116         return;
117     case INTR_ALWAYS: /* always interrupt */
118         qemu_irq_raise(ch->irq);
119         DBDMA_DPRINTF("%s: raise\n", __func__);
120         return;
121     }
122 
123     status = ch->regs[DBDMA_STATUS] & DEVSTAT;
124 
125     sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f;
126     sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f;
127 
128     cond = (status & sel_mask) == (sel_value & sel_mask);
129 
130     switch(intr) {
131     case INTR_IFSET:  /* intr if condition bit is 1 */
132         if (cond) {
133             qemu_irq_raise(ch->irq);
134             DBDMA_DPRINTF("%s: raise\n", __func__);
135         }
136         return;
137     case INTR_IFCLR:  /* intr if condition bit is 0 */
138         if (!cond) {
139             qemu_irq_raise(ch->irq);
140             DBDMA_DPRINTF("%s: raise\n", __func__);
141         }
142         return;
143     }
144 }
145 
146 static int conditional_wait(DBDMA_channel *ch)
147 {
148     dbdma_cmd *current = &ch->current;
149     uint16_t wait;
150     uint16_t sel_mask, sel_value;
151     uint32_t status;
152     int cond;
153 
154     DBDMA_DPRINTF("conditional_wait\n");
155 
156     wait = le16_to_cpu(current->command) & WAIT_MASK;
157 
158     switch(wait) {
159     case WAIT_NEVER:  /* don't wait */
160         return 0;
161     case WAIT_ALWAYS: /* always wait */
162         return 1;
163     }
164 
165     status = ch->regs[DBDMA_STATUS] & DEVSTAT;
166 
167     sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f;
168     sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f;
169 
170     cond = (status & sel_mask) == (sel_value & sel_mask);
171 
172     switch(wait) {
173     case WAIT_IFSET:  /* wait if condition bit is 1 */
174         if (cond)
175             return 1;
176         return 0;
177     case WAIT_IFCLR:  /* wait if condition bit is 0 */
178         if (!cond)
179             return 1;
180         return 0;
181     }
182     return 0;
183 }
184 
185 static void next(DBDMA_channel *ch)
186 {
187     uint32_t cp;
188 
189     ch->regs[DBDMA_STATUS] &= ~BT;
190 
191     cp = ch->regs[DBDMA_CMDPTR_LO];
192     ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd);
193     dbdma_cmdptr_load(ch);
194 }
195 
196 static void branch(DBDMA_channel *ch)
197 {
198     dbdma_cmd *current = &ch->current;
199 
200     ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep;
201     ch->regs[DBDMA_STATUS] |= BT;
202     dbdma_cmdptr_load(ch);
203 }
204 
205 static void conditional_branch(DBDMA_channel *ch)
206 {
207     dbdma_cmd *current = &ch->current;
208     uint16_t br;
209     uint16_t sel_mask, sel_value;
210     uint32_t status;
211     int cond;
212 
213     DBDMA_DPRINTF("conditional_branch\n");
214 
215     /* check if we must branch */
216 
217     br = le16_to_cpu(current->command) & BR_MASK;
218 
219     switch(br) {
220     case BR_NEVER:  /* don't branch */
221         next(ch);
222         return;
223     case BR_ALWAYS: /* always branch */
224         branch(ch);
225         return;
226     }
227 
228     status = ch->regs[DBDMA_STATUS] & DEVSTAT;
229 
230     sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f;
231     sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f;
232 
233     cond = (status & sel_mask) == (sel_value & sel_mask);
234 
235     switch(br) {
236     case BR_IFSET:  /* branch if condition bit is 1 */
237         if (cond)
238             branch(ch);
239         else
240             next(ch);
241         return;
242     case BR_IFCLR:  /* branch if condition bit is 0 */
243         if (!cond)
244             branch(ch);
245         else
246             next(ch);
247         return;
248     }
249 }
250 
251 static QEMUBH *dbdma_bh;
252 static void channel_run(DBDMA_channel *ch);
253 
254 static void dbdma_end(DBDMA_io *io)
255 {
256     DBDMA_channel *ch = io->channel;
257     dbdma_cmd *current = &ch->current;
258 
259     DBDMA_DPRINTF("%s\n", __func__);
260 
261     if (conditional_wait(ch))
262         goto wait;
263 
264     current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
265     current->res_count = cpu_to_le16(io->len);
266     dbdma_cmdptr_save(ch);
267     if (io->is_last)
268         ch->regs[DBDMA_STATUS] &= ~FLUSH;
269 
270     conditional_interrupt(ch);
271     conditional_branch(ch);
272 
273 wait:
274     ch->processing = 0;
275     if ((ch->regs[DBDMA_STATUS] & RUN) &&
276         (ch->regs[DBDMA_STATUS] & ACTIVE))
277         channel_run(ch);
278 }
279 
280 static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
281                         uint16_t req_count, int is_last)
282 {
283     DBDMA_DPRINTF("start_output\n");
284 
285     /* KEY_REGS, KEY_DEVICE and KEY_STREAM
286      * are not implemented in the mac-io chip
287      */
288 
289     DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
290     if (!addr || key > KEY_STREAM3) {
291         kill_channel(ch);
292         return;
293     }
294 
295     ch->io.addr = addr;
296     ch->io.len = req_count;
297     ch->io.is_last = is_last;
298     ch->io.dma_end = dbdma_end;
299     ch->io.is_dma_out = 1;
300     ch->processing = 1;
301     if (ch->rw) {
302         ch->rw(&ch->io);
303     }
304 }
305 
306 static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
307                        uint16_t req_count, int is_last)
308 {
309     DBDMA_DPRINTF("start_input\n");
310 
311     /* KEY_REGS, KEY_DEVICE and KEY_STREAM
312      * are not implemented in the mac-io chip
313      */
314 
315     DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
316     if (!addr || key > KEY_STREAM3) {
317         kill_channel(ch);
318         return;
319     }
320 
321     ch->io.addr = addr;
322     ch->io.len = req_count;
323     ch->io.is_last = is_last;
324     ch->io.dma_end = dbdma_end;
325     ch->io.is_dma_out = 0;
326     ch->processing = 1;
327     if (ch->rw) {
328         ch->rw(&ch->io);
329     }
330 }
331 
332 static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
333                      uint16_t len)
334 {
335     dbdma_cmd *current = &ch->current;
336     uint32_t val;
337 
338     DBDMA_DPRINTF("load_word\n");
339 
340     /* only implements KEY_SYSTEM */
341 
342     if (key != KEY_SYSTEM) {
343         printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
344         kill_channel(ch);
345         return;
346     }
347 
348     cpu_physical_memory_read(addr, &val, len);
349 
350     if (len == 2)
351         val = (val << 16) | (current->cmd_dep & 0x0000ffff);
352     else if (len == 1)
353         val = (val << 24) | (current->cmd_dep & 0x00ffffff);
354 
355     current->cmd_dep = val;
356 
357     if (conditional_wait(ch))
358         goto wait;
359 
360     current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
361     dbdma_cmdptr_save(ch);
362     ch->regs[DBDMA_STATUS] &= ~FLUSH;
363 
364     conditional_interrupt(ch);
365     next(ch);
366 
367 wait:
368     qemu_bh_schedule(dbdma_bh);
369 }
370 
371 static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
372                       uint16_t len)
373 {
374     dbdma_cmd *current = &ch->current;
375     uint32_t val;
376 
377     DBDMA_DPRINTF("store_word\n");
378 
379     /* only implements KEY_SYSTEM */
380 
381     if (key != KEY_SYSTEM) {
382         printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
383         kill_channel(ch);
384         return;
385     }
386 
387     val = current->cmd_dep;
388     if (len == 2)
389         val >>= 16;
390     else if (len == 1)
391         val >>= 24;
392 
393     cpu_physical_memory_write(addr, &val, len);
394 
395     if (conditional_wait(ch))
396         goto wait;
397 
398     current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
399     dbdma_cmdptr_save(ch);
400     ch->regs[DBDMA_STATUS] &= ~FLUSH;
401 
402     conditional_interrupt(ch);
403     next(ch);
404 
405 wait:
406     qemu_bh_schedule(dbdma_bh);
407 }
408 
409 static void nop(DBDMA_channel *ch)
410 {
411     dbdma_cmd *current = &ch->current;
412 
413     if (conditional_wait(ch))
414         goto wait;
415 
416     current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
417     dbdma_cmdptr_save(ch);
418 
419     conditional_interrupt(ch);
420     conditional_branch(ch);
421 
422 wait:
423     qemu_bh_schedule(dbdma_bh);
424 }
425 
426 static void stop(DBDMA_channel *ch)
427 {
428     ch->regs[DBDMA_STATUS] &= ~(ACTIVE|DEAD|FLUSH);
429 
430     /* the stop command does not increment command pointer */
431 }
432 
433 static void channel_run(DBDMA_channel *ch)
434 {
435     dbdma_cmd *current = &ch->current;
436     uint16_t cmd, key;
437     uint16_t req_count;
438     uint32_t phy_addr;
439 
440     DBDMA_DPRINTF("channel_run\n");
441     dump_dbdma_cmd(current);
442 
443     /* clear WAKE flag at command fetch */
444 
445     ch->regs[DBDMA_STATUS] &= ~WAKE;
446 
447     cmd = le16_to_cpu(current->command) & COMMAND_MASK;
448 
449     switch (cmd) {
450     case DBDMA_NOP:
451         nop(ch);
452         return;
453 
454     case DBDMA_STOP:
455         stop(ch);
456         return;
457     }
458 
459     key = le16_to_cpu(current->command) & 0x0700;
460     req_count = le16_to_cpu(current->req_count);
461     phy_addr = le32_to_cpu(current->phy_addr);
462 
463     if (key == KEY_STREAM4) {
464         printf("command %x, invalid key 4\n", cmd);
465         kill_channel(ch);
466         return;
467     }
468 
469     switch (cmd) {
470     case OUTPUT_MORE:
471         start_output(ch, key, phy_addr, req_count, 0);
472         return;
473 
474     case OUTPUT_LAST:
475         start_output(ch, key, phy_addr, req_count, 1);
476         return;
477 
478     case INPUT_MORE:
479         start_input(ch, key, phy_addr, req_count, 0);
480         return;
481 
482     case INPUT_LAST:
483         start_input(ch, key, phy_addr, req_count, 1);
484         return;
485     }
486 
487     if (key < KEY_REGS) {
488         printf("command %x, invalid key %x\n", cmd, key);
489         key = KEY_SYSTEM;
490     }
491 
492     /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
493      * and BRANCH is invalid
494      */
495 
496     req_count = req_count & 0x0007;
497     if (req_count & 0x4) {
498         req_count = 4;
499         phy_addr &= ~3;
500     } else if (req_count & 0x2) {
501         req_count = 2;
502         phy_addr &= ~1;
503     } else
504         req_count = 1;
505 
506     switch (cmd) {
507     case LOAD_WORD:
508         load_word(ch, key, phy_addr, req_count);
509         return;
510 
511     case STORE_WORD:
512         store_word(ch, key, phy_addr, req_count);
513         return;
514     }
515 }
516 
517 static void DBDMA_run(DBDMAState *s)
518 {
519     int channel;
520 
521     for (channel = 0; channel < DBDMA_CHANNELS; channel++) {
522         DBDMA_channel *ch = &s->channels[channel];
523         uint32_t status = ch->regs[DBDMA_STATUS];
524         if (!ch->processing && (status & RUN) && (status & ACTIVE)) {
525             channel_run(ch);
526         }
527     }
528 }
529 
530 static void DBDMA_run_bh(void *opaque)
531 {
532     DBDMAState *s = opaque;
533 
534     DBDMA_DPRINTF("DBDMA_run_bh\n");
535 
536     DBDMA_run(s);
537 }
538 
539 void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
540                             DBDMA_rw rw, DBDMA_flush flush,
541                             void *opaque)
542 {
543     DBDMAState *s = dbdma;
544     DBDMA_channel *ch = &s->channels[nchan];
545 
546     DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan);
547 
548     ch->irq = irq;
549     ch->channel = nchan;
550     ch->rw = rw;
551     ch->flush = flush;
552     ch->io.opaque = opaque;
553     ch->io.channel = ch;
554 }
555 
556 static void
557 dbdma_control_write(DBDMA_channel *ch)
558 {
559     uint16_t mask, value;
560     uint32_t status;
561 
562     mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff;
563     value = ch->regs[DBDMA_CONTROL] & 0xffff;
564 
565     value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT);
566 
567     status = ch->regs[DBDMA_STATUS];
568 
569     status = (value & mask) | (status & ~mask);
570 
571     if (status & WAKE)
572         status |= ACTIVE;
573     if (status & RUN) {
574         status |= ACTIVE;
575         status &= ~DEAD;
576     }
577     if (status & PAUSE)
578         status &= ~ACTIVE;
579     if ((ch->regs[DBDMA_STATUS] & RUN) && !(status & RUN)) {
580         /* RUN is cleared */
581         status &= ~(ACTIVE|DEAD);
582         if ((status & FLUSH) && ch->flush) {
583             ch->flush(&ch->io);
584             status &= ~FLUSH;
585         }
586     }
587 
588     DBDMA_DPRINTF("    status 0x%08x\n", status);
589 
590     ch->regs[DBDMA_STATUS] = status;
591 
592     if (status & ACTIVE)
593         qemu_bh_schedule(dbdma_bh);
594     if ((status & FLUSH) && ch->flush)
595         ch->flush(&ch->io);
596 }
597 
598 static void dbdma_write(void *opaque, hwaddr addr,
599                         uint64_t value, unsigned size)
600 {
601     int channel = addr >> DBDMA_CHANNEL_SHIFT;
602     DBDMAState *s = opaque;
603     DBDMA_channel *ch = &s->channels[channel];
604     int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
605 
606     DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n",
607                   addr, value);
608     DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
609                   (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
610 
611     /* cmdptr cannot be modified if channel is ACTIVE */
612 
613     if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) {
614         return;
615     }
616 
617     ch->regs[reg] = value;
618 
619     switch(reg) {
620     case DBDMA_CONTROL:
621         dbdma_control_write(ch);
622         break;
623     case DBDMA_CMDPTR_LO:
624         /* 16-byte aligned */
625         ch->regs[DBDMA_CMDPTR_LO] &= ~0xf;
626         dbdma_cmdptr_load(ch);
627         break;
628     case DBDMA_STATUS:
629     case DBDMA_INTR_SEL:
630     case DBDMA_BRANCH_SEL:
631     case DBDMA_WAIT_SEL:
632         /* nothing to do */
633         break;
634     case DBDMA_XFER_MODE:
635     case DBDMA_CMDPTR_HI:
636     case DBDMA_DATA2PTR_HI:
637     case DBDMA_DATA2PTR_LO:
638     case DBDMA_ADDRESS_HI:
639     case DBDMA_BRANCH_ADDR_HI:
640     case DBDMA_RES1:
641     case DBDMA_RES2:
642     case DBDMA_RES3:
643     case DBDMA_RES4:
644         /* unused */
645         break;
646     }
647 }
648 
649 static uint64_t dbdma_read(void *opaque, hwaddr addr,
650                            unsigned size)
651 {
652     uint32_t value;
653     int channel = addr >> DBDMA_CHANNEL_SHIFT;
654     DBDMAState *s = opaque;
655     DBDMA_channel *ch = &s->channels[channel];
656     int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
657 
658     value = ch->regs[reg];
659 
660     DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
661     DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
662                   (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
663 
664     switch(reg) {
665     case DBDMA_CONTROL:
666         value = 0;
667         break;
668     case DBDMA_STATUS:
669     case DBDMA_CMDPTR_LO:
670     case DBDMA_INTR_SEL:
671     case DBDMA_BRANCH_SEL:
672     case DBDMA_WAIT_SEL:
673         /* nothing to do */
674         break;
675     case DBDMA_XFER_MODE:
676     case DBDMA_CMDPTR_HI:
677     case DBDMA_DATA2PTR_HI:
678     case DBDMA_DATA2PTR_LO:
679     case DBDMA_ADDRESS_HI:
680     case DBDMA_BRANCH_ADDR_HI:
681         /* unused */
682         value = 0;
683         break;
684     case DBDMA_RES1:
685     case DBDMA_RES2:
686     case DBDMA_RES3:
687     case DBDMA_RES4:
688         /* reserved */
689         break;
690     }
691 
692     return value;
693 }
694 
695 static const MemoryRegionOps dbdma_ops = {
696     .read = dbdma_read,
697     .write = dbdma_write,
698     .endianness = DEVICE_LITTLE_ENDIAN,
699     .valid = {
700         .min_access_size = 4,
701         .max_access_size = 4,
702     },
703 };
704 
705 static const VMStateDescription vmstate_dbdma_channel = {
706     .name = "dbdma_channel",
707     .version_id = 0,
708     .minimum_version_id = 0,
709     .minimum_version_id_old = 0,
710     .fields      = (VMStateField[]) {
711         VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS),
712         VMSTATE_END_OF_LIST()
713     }
714 };
715 
716 static const VMStateDescription vmstate_dbdma = {
717     .name = "dbdma",
718     .version_id = 2,
719     .minimum_version_id = 2,
720     .minimum_version_id_old = 2,
721     .fields      = (VMStateField[]) {
722         VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1,
723                              vmstate_dbdma_channel, DBDMA_channel),
724         VMSTATE_END_OF_LIST()
725     }
726 };
727 
728 static void dbdma_reset(void *opaque)
729 {
730     DBDMAState *s = opaque;
731     int i;
732 
733     for (i = 0; i < DBDMA_CHANNELS; i++)
734         memset(s->channels[i].regs, 0, DBDMA_SIZE);
735 }
736 
737 void* DBDMA_init (MemoryRegion **dbdma_mem)
738 {
739     DBDMAState *s;
740 
741     s = g_malloc0(sizeof(DBDMAState));
742 
743     memory_region_init_io(&s->mem, NULL, &dbdma_ops, s, "dbdma", 0x1000);
744     *dbdma_mem = &s->mem;
745     vmstate_register(NULL, -1, &vmstate_dbdma, s);
746     qemu_register_reset(dbdma_reset, s);
747 
748     dbdma_bh = qemu_bh_new(DBDMA_run_bh, s);
749 
750     return s;
751 }
752