1 /* 2 * PowerMac descriptor-based DMA emulation 3 * 4 * Copyright (c) 2005-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2009 Laurent Vivier 7 * 8 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h 9 * 10 * Definitions for using the Apple Descriptor-Based DMA controller 11 * in Power Macintosh computers. 12 * 13 * Copyright (C) 1996 Paul Mackerras. 14 * 15 * some parts from mol 0.9.71 16 * 17 * Descriptor based DMA emulation 18 * 19 * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se) 20 * 21 * Permission is hereby granted, free of charge, to any person obtaining a copy 22 * of this software and associated documentation files (the "Software"), to deal 23 * in the Software without restriction, including without limitation the rights 24 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 25 * copies of the Software, and to permit persons to whom the Software is 26 * furnished to do so, subject to the following conditions: 27 * 28 * The above copyright notice and this permission notice shall be included in 29 * all copies or substantial portions of the Software. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 32 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 33 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 34 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 35 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 36 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 37 * THE SOFTWARE. 38 */ 39 #include "hw/hw.h" 40 #include "hw/isa/isa.h" 41 #include "hw/ppc/mac_dbdma.h" 42 #include "qemu/main-loop.h" 43 44 /* debug DBDMA */ 45 //#define DEBUG_DBDMA 46 47 #ifdef DEBUG_DBDMA 48 #define DBDMA_DPRINTF(fmt, ...) \ 49 do { printf("DBDMA: " fmt , ## __VA_ARGS__); } while (0) 50 #else 51 #define DBDMA_DPRINTF(fmt, ...) 52 #endif 53 54 /* 55 */ 56 57 static DBDMAState *dbdma_from_ch(DBDMA_channel *ch) 58 { 59 return container_of(ch, DBDMAState, channels[ch->channel]); 60 } 61 62 #ifdef DEBUG_DBDMA 63 static void dump_dbdma_cmd(dbdma_cmd *cmd) 64 { 65 printf("dbdma_cmd %p\n", cmd); 66 printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count)); 67 printf(" command 0x%04x\n", le16_to_cpu(cmd->command)); 68 printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr)); 69 printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep)); 70 printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count)); 71 printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status)); 72 } 73 #else 74 static void dump_dbdma_cmd(dbdma_cmd *cmd) 75 { 76 } 77 #endif 78 static void dbdma_cmdptr_load(DBDMA_channel *ch) 79 { 80 DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n", 81 ch->regs[DBDMA_CMDPTR_LO]); 82 cpu_physical_memory_read(ch->regs[DBDMA_CMDPTR_LO], 83 &ch->current, sizeof(dbdma_cmd)); 84 } 85 86 static void dbdma_cmdptr_save(DBDMA_channel *ch) 87 { 88 DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n", 89 ch->regs[DBDMA_CMDPTR_LO]); 90 DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n", 91 le16_to_cpu(ch->current.xfer_status), 92 le16_to_cpu(ch->current.res_count)); 93 cpu_physical_memory_write(ch->regs[DBDMA_CMDPTR_LO], 94 &ch->current, sizeof(dbdma_cmd)); 95 } 96 97 static void kill_channel(DBDMA_channel *ch) 98 { 99 DBDMA_DPRINTF("kill_channel\n"); 100 101 ch->regs[DBDMA_STATUS] |= DEAD; 102 ch->regs[DBDMA_STATUS] &= ~ACTIVE; 103 104 qemu_irq_raise(ch->irq); 105 } 106 107 static void conditional_interrupt(DBDMA_channel *ch) 108 { 109 dbdma_cmd *current = &ch->current; 110 uint16_t intr; 111 uint16_t sel_mask, sel_value; 112 uint32_t status; 113 int cond; 114 115 DBDMA_DPRINTF("%s\n", __func__); 116 117 intr = le16_to_cpu(current->command) & INTR_MASK; 118 119 switch(intr) { 120 case INTR_NEVER: /* don't interrupt */ 121 return; 122 case INTR_ALWAYS: /* always interrupt */ 123 qemu_irq_raise(ch->irq); 124 DBDMA_DPRINTF("%s: raise\n", __func__); 125 return; 126 } 127 128 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 129 130 sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f; 131 sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f; 132 133 cond = (status & sel_mask) == (sel_value & sel_mask); 134 135 switch(intr) { 136 case INTR_IFSET: /* intr if condition bit is 1 */ 137 if (cond) { 138 qemu_irq_raise(ch->irq); 139 DBDMA_DPRINTF("%s: raise\n", __func__); 140 } 141 return; 142 case INTR_IFCLR: /* intr if condition bit is 0 */ 143 if (!cond) { 144 qemu_irq_raise(ch->irq); 145 DBDMA_DPRINTF("%s: raise\n", __func__); 146 } 147 return; 148 } 149 } 150 151 static int conditional_wait(DBDMA_channel *ch) 152 { 153 dbdma_cmd *current = &ch->current; 154 uint16_t wait; 155 uint16_t sel_mask, sel_value; 156 uint32_t status; 157 int cond; 158 159 DBDMA_DPRINTF("conditional_wait\n"); 160 161 wait = le16_to_cpu(current->command) & WAIT_MASK; 162 163 switch(wait) { 164 case WAIT_NEVER: /* don't wait */ 165 return 0; 166 case WAIT_ALWAYS: /* always wait */ 167 return 1; 168 } 169 170 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 171 172 sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f; 173 sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f; 174 175 cond = (status & sel_mask) == (sel_value & sel_mask); 176 177 switch(wait) { 178 case WAIT_IFSET: /* wait if condition bit is 1 */ 179 if (cond) 180 return 1; 181 return 0; 182 case WAIT_IFCLR: /* wait if condition bit is 0 */ 183 if (!cond) 184 return 1; 185 return 0; 186 } 187 return 0; 188 } 189 190 static void next(DBDMA_channel *ch) 191 { 192 uint32_t cp; 193 194 ch->regs[DBDMA_STATUS] &= ~BT; 195 196 cp = ch->regs[DBDMA_CMDPTR_LO]; 197 ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd); 198 dbdma_cmdptr_load(ch); 199 } 200 201 static void branch(DBDMA_channel *ch) 202 { 203 dbdma_cmd *current = &ch->current; 204 205 ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep; 206 ch->regs[DBDMA_STATUS] |= BT; 207 dbdma_cmdptr_load(ch); 208 } 209 210 static void conditional_branch(DBDMA_channel *ch) 211 { 212 dbdma_cmd *current = &ch->current; 213 uint16_t br; 214 uint16_t sel_mask, sel_value; 215 uint32_t status; 216 int cond; 217 218 DBDMA_DPRINTF("conditional_branch\n"); 219 220 /* check if we must branch */ 221 222 br = le16_to_cpu(current->command) & BR_MASK; 223 224 switch(br) { 225 case BR_NEVER: /* don't branch */ 226 next(ch); 227 return; 228 case BR_ALWAYS: /* always branch */ 229 branch(ch); 230 return; 231 } 232 233 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 234 235 sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f; 236 sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f; 237 238 cond = (status & sel_mask) == (sel_value & sel_mask); 239 240 switch(br) { 241 case BR_IFSET: /* branch if condition bit is 1 */ 242 if (cond) 243 branch(ch); 244 else 245 next(ch); 246 return; 247 case BR_IFCLR: /* branch if condition bit is 0 */ 248 if (!cond) 249 branch(ch); 250 else 251 next(ch); 252 return; 253 } 254 } 255 256 static void channel_run(DBDMA_channel *ch); 257 258 static void dbdma_end(DBDMA_io *io) 259 { 260 DBDMA_channel *ch = io->channel; 261 dbdma_cmd *current = &ch->current; 262 263 DBDMA_DPRINTF("%s\n", __func__); 264 265 if (conditional_wait(ch)) 266 goto wait; 267 268 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 269 current->res_count = cpu_to_le16(io->len); 270 dbdma_cmdptr_save(ch); 271 if (io->is_last) 272 ch->regs[DBDMA_STATUS] &= ~FLUSH; 273 274 conditional_interrupt(ch); 275 conditional_branch(ch); 276 277 wait: 278 /* Indicate that we're ready for a new DMA round */ 279 ch->io.processing = false; 280 281 if ((ch->regs[DBDMA_STATUS] & RUN) && 282 (ch->regs[DBDMA_STATUS] & ACTIVE)) 283 channel_run(ch); 284 } 285 286 static void start_output(DBDMA_channel *ch, int key, uint32_t addr, 287 uint16_t req_count, int is_last) 288 { 289 DBDMA_DPRINTF("start_output\n"); 290 291 /* KEY_REGS, KEY_DEVICE and KEY_STREAM 292 * are not implemented in the mac-io chip 293 */ 294 295 DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key); 296 if (!addr || key > KEY_STREAM3) { 297 kill_channel(ch); 298 return; 299 } 300 301 ch->io.addr = addr; 302 ch->io.len = req_count; 303 ch->io.is_last = is_last; 304 ch->io.dma_end = dbdma_end; 305 ch->io.is_dma_out = 1; 306 ch->io.processing = true; 307 if (ch->rw) { 308 ch->rw(&ch->io); 309 } 310 } 311 312 static void start_input(DBDMA_channel *ch, int key, uint32_t addr, 313 uint16_t req_count, int is_last) 314 { 315 DBDMA_DPRINTF("start_input\n"); 316 317 /* KEY_REGS, KEY_DEVICE and KEY_STREAM 318 * are not implemented in the mac-io chip 319 */ 320 321 DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key); 322 if (!addr || key > KEY_STREAM3) { 323 kill_channel(ch); 324 return; 325 } 326 327 ch->io.addr = addr; 328 ch->io.len = req_count; 329 ch->io.is_last = is_last; 330 ch->io.dma_end = dbdma_end; 331 ch->io.is_dma_out = 0; 332 ch->io.processing = true; 333 if (ch->rw) { 334 ch->rw(&ch->io); 335 } 336 } 337 338 static void load_word(DBDMA_channel *ch, int key, uint32_t addr, 339 uint16_t len) 340 { 341 dbdma_cmd *current = &ch->current; 342 uint32_t val; 343 344 DBDMA_DPRINTF("load_word\n"); 345 346 /* only implements KEY_SYSTEM */ 347 348 if (key != KEY_SYSTEM) { 349 printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key); 350 kill_channel(ch); 351 return; 352 } 353 354 cpu_physical_memory_read(addr, &val, len); 355 356 if (len == 2) 357 val = (val << 16) | (current->cmd_dep & 0x0000ffff); 358 else if (len == 1) 359 val = (val << 24) | (current->cmd_dep & 0x00ffffff); 360 361 current->cmd_dep = val; 362 363 if (conditional_wait(ch)) 364 goto wait; 365 366 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 367 dbdma_cmdptr_save(ch); 368 ch->regs[DBDMA_STATUS] &= ~FLUSH; 369 370 conditional_interrupt(ch); 371 next(ch); 372 373 wait: 374 DBDMA_kick(dbdma_from_ch(ch)); 375 } 376 377 static void store_word(DBDMA_channel *ch, int key, uint32_t addr, 378 uint16_t len) 379 { 380 dbdma_cmd *current = &ch->current; 381 uint32_t val; 382 383 DBDMA_DPRINTF("store_word\n"); 384 385 /* only implements KEY_SYSTEM */ 386 387 if (key != KEY_SYSTEM) { 388 printf("DBDMA: STORE_WORD, unimplemented key %x\n", key); 389 kill_channel(ch); 390 return; 391 } 392 393 val = current->cmd_dep; 394 if (len == 2) 395 val >>= 16; 396 else if (len == 1) 397 val >>= 24; 398 399 cpu_physical_memory_write(addr, &val, len); 400 401 if (conditional_wait(ch)) 402 goto wait; 403 404 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 405 dbdma_cmdptr_save(ch); 406 ch->regs[DBDMA_STATUS] &= ~FLUSH; 407 408 conditional_interrupt(ch); 409 next(ch); 410 411 wait: 412 DBDMA_kick(dbdma_from_ch(ch)); 413 } 414 415 static void nop(DBDMA_channel *ch) 416 { 417 dbdma_cmd *current = &ch->current; 418 419 if (conditional_wait(ch)) 420 goto wait; 421 422 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 423 dbdma_cmdptr_save(ch); 424 425 conditional_interrupt(ch); 426 conditional_branch(ch); 427 428 wait: 429 DBDMA_kick(dbdma_from_ch(ch)); 430 } 431 432 static void stop(DBDMA_channel *ch) 433 { 434 ch->regs[DBDMA_STATUS] &= ~(ACTIVE|DEAD|FLUSH); 435 436 /* the stop command does not increment command pointer */ 437 } 438 439 static void channel_run(DBDMA_channel *ch) 440 { 441 dbdma_cmd *current = &ch->current; 442 uint16_t cmd, key; 443 uint16_t req_count; 444 uint32_t phy_addr; 445 446 DBDMA_DPRINTF("channel_run\n"); 447 dump_dbdma_cmd(current); 448 449 /* clear WAKE flag at command fetch */ 450 451 ch->regs[DBDMA_STATUS] &= ~WAKE; 452 453 cmd = le16_to_cpu(current->command) & COMMAND_MASK; 454 455 switch (cmd) { 456 case DBDMA_NOP: 457 nop(ch); 458 return; 459 460 case DBDMA_STOP: 461 stop(ch); 462 return; 463 } 464 465 key = le16_to_cpu(current->command) & 0x0700; 466 req_count = le16_to_cpu(current->req_count); 467 phy_addr = le32_to_cpu(current->phy_addr); 468 469 if (key == KEY_STREAM4) { 470 printf("command %x, invalid key 4\n", cmd); 471 kill_channel(ch); 472 return; 473 } 474 475 switch (cmd) { 476 case OUTPUT_MORE: 477 start_output(ch, key, phy_addr, req_count, 0); 478 return; 479 480 case OUTPUT_LAST: 481 start_output(ch, key, phy_addr, req_count, 1); 482 return; 483 484 case INPUT_MORE: 485 start_input(ch, key, phy_addr, req_count, 0); 486 return; 487 488 case INPUT_LAST: 489 start_input(ch, key, phy_addr, req_count, 1); 490 return; 491 } 492 493 if (key < KEY_REGS) { 494 printf("command %x, invalid key %x\n", cmd, key); 495 key = KEY_SYSTEM; 496 } 497 498 /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits 499 * and BRANCH is invalid 500 */ 501 502 req_count = req_count & 0x0007; 503 if (req_count & 0x4) { 504 req_count = 4; 505 phy_addr &= ~3; 506 } else if (req_count & 0x2) { 507 req_count = 2; 508 phy_addr &= ~1; 509 } else 510 req_count = 1; 511 512 switch (cmd) { 513 case LOAD_WORD: 514 load_word(ch, key, phy_addr, req_count); 515 return; 516 517 case STORE_WORD: 518 store_word(ch, key, phy_addr, req_count); 519 return; 520 } 521 } 522 523 static void DBDMA_run(DBDMAState *s) 524 { 525 int channel; 526 527 for (channel = 0; channel < DBDMA_CHANNELS; channel++) { 528 DBDMA_channel *ch = &s->channels[channel]; 529 uint32_t status = ch->regs[DBDMA_STATUS]; 530 if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) { 531 channel_run(ch); 532 } 533 } 534 } 535 536 static void DBDMA_run_bh(void *opaque) 537 { 538 DBDMAState *s = opaque; 539 540 DBDMA_DPRINTF("DBDMA_run_bh\n"); 541 542 DBDMA_run(s); 543 } 544 545 void DBDMA_kick(DBDMAState *dbdma) 546 { 547 qemu_bh_schedule(dbdma->bh); 548 } 549 550 void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq, 551 DBDMA_rw rw, DBDMA_flush flush, 552 void *opaque) 553 { 554 DBDMAState *s = dbdma; 555 DBDMA_channel *ch = &s->channels[nchan]; 556 557 DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan); 558 559 ch->irq = irq; 560 ch->channel = nchan; 561 ch->rw = rw; 562 ch->flush = flush; 563 ch->io.opaque = opaque; 564 ch->io.channel = ch; 565 } 566 567 static void 568 dbdma_control_write(DBDMA_channel *ch) 569 { 570 uint16_t mask, value; 571 uint32_t status; 572 573 mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff; 574 value = ch->regs[DBDMA_CONTROL] & 0xffff; 575 576 value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT); 577 578 status = ch->regs[DBDMA_STATUS]; 579 580 status = (value & mask) | (status & ~mask); 581 582 if (status & WAKE) 583 status |= ACTIVE; 584 if (status & RUN) { 585 status |= ACTIVE; 586 status &= ~DEAD; 587 } 588 if (status & PAUSE) 589 status &= ~ACTIVE; 590 if ((ch->regs[DBDMA_STATUS] & RUN) && !(status & RUN)) { 591 /* RUN is cleared */ 592 status &= ~(ACTIVE|DEAD); 593 if ((status & FLUSH) && ch->flush) { 594 ch->flush(&ch->io); 595 status &= ~FLUSH; 596 } 597 } 598 599 DBDMA_DPRINTF(" status 0x%08x\n", status); 600 601 ch->regs[DBDMA_STATUS] = status; 602 603 if (status & ACTIVE) { 604 DBDMA_kick(dbdma_from_ch(ch)); 605 } 606 if ((status & FLUSH) && ch->flush) { 607 ch->flush(&ch->io); 608 } 609 } 610 611 static void dbdma_write(void *opaque, hwaddr addr, 612 uint64_t value, unsigned size) 613 { 614 int channel = addr >> DBDMA_CHANNEL_SHIFT; 615 DBDMAState *s = opaque; 616 DBDMA_channel *ch = &s->channels[channel]; 617 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; 618 619 DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n", 620 addr, value); 621 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n", 622 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); 623 624 /* cmdptr cannot be modified if channel is ACTIVE */ 625 626 if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) { 627 return; 628 } 629 630 ch->regs[reg] = value; 631 632 switch(reg) { 633 case DBDMA_CONTROL: 634 dbdma_control_write(ch); 635 break; 636 case DBDMA_CMDPTR_LO: 637 /* 16-byte aligned */ 638 ch->regs[DBDMA_CMDPTR_LO] &= ~0xf; 639 dbdma_cmdptr_load(ch); 640 break; 641 case DBDMA_STATUS: 642 case DBDMA_INTR_SEL: 643 case DBDMA_BRANCH_SEL: 644 case DBDMA_WAIT_SEL: 645 /* nothing to do */ 646 break; 647 case DBDMA_XFER_MODE: 648 case DBDMA_CMDPTR_HI: 649 case DBDMA_DATA2PTR_HI: 650 case DBDMA_DATA2PTR_LO: 651 case DBDMA_ADDRESS_HI: 652 case DBDMA_BRANCH_ADDR_HI: 653 case DBDMA_RES1: 654 case DBDMA_RES2: 655 case DBDMA_RES3: 656 case DBDMA_RES4: 657 /* unused */ 658 break; 659 } 660 } 661 662 static uint64_t dbdma_read(void *opaque, hwaddr addr, 663 unsigned size) 664 { 665 uint32_t value; 666 int channel = addr >> DBDMA_CHANNEL_SHIFT; 667 DBDMAState *s = opaque; 668 DBDMA_channel *ch = &s->channels[channel]; 669 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; 670 671 value = ch->regs[reg]; 672 673 DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value); 674 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n", 675 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); 676 677 switch(reg) { 678 case DBDMA_CONTROL: 679 value = 0; 680 break; 681 case DBDMA_STATUS: 682 case DBDMA_CMDPTR_LO: 683 case DBDMA_INTR_SEL: 684 case DBDMA_BRANCH_SEL: 685 case DBDMA_WAIT_SEL: 686 /* nothing to do */ 687 break; 688 case DBDMA_XFER_MODE: 689 case DBDMA_CMDPTR_HI: 690 case DBDMA_DATA2PTR_HI: 691 case DBDMA_DATA2PTR_LO: 692 case DBDMA_ADDRESS_HI: 693 case DBDMA_BRANCH_ADDR_HI: 694 /* unused */ 695 value = 0; 696 break; 697 case DBDMA_RES1: 698 case DBDMA_RES2: 699 case DBDMA_RES3: 700 case DBDMA_RES4: 701 /* reserved */ 702 break; 703 } 704 705 return value; 706 } 707 708 static const MemoryRegionOps dbdma_ops = { 709 .read = dbdma_read, 710 .write = dbdma_write, 711 .endianness = DEVICE_LITTLE_ENDIAN, 712 .valid = { 713 .min_access_size = 4, 714 .max_access_size = 4, 715 }, 716 }; 717 718 static const VMStateDescription vmstate_dbdma_channel = { 719 .name = "dbdma_channel", 720 .version_id = 0, 721 .minimum_version_id = 0, 722 .fields = (VMStateField[]) { 723 VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS), 724 VMSTATE_END_OF_LIST() 725 } 726 }; 727 728 static const VMStateDescription vmstate_dbdma = { 729 .name = "dbdma", 730 .version_id = 2, 731 .minimum_version_id = 2, 732 .fields = (VMStateField[]) { 733 VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1, 734 vmstate_dbdma_channel, DBDMA_channel), 735 VMSTATE_END_OF_LIST() 736 } 737 }; 738 739 static void dbdma_reset(void *opaque) 740 { 741 DBDMAState *s = opaque; 742 int i; 743 744 for (i = 0; i < DBDMA_CHANNELS; i++) 745 memset(s->channels[i].regs, 0, DBDMA_SIZE); 746 } 747 748 void* DBDMA_init (MemoryRegion **dbdma_mem) 749 { 750 DBDMAState *s; 751 int i; 752 753 s = g_malloc0(sizeof(DBDMAState)); 754 755 for (i = 0; i < DBDMA_CHANNELS; i++) { 756 DBDMA_io *io = &s->channels[i].io; 757 qemu_iovec_init(&io->iov, 1); 758 } 759 760 memory_region_init_io(&s->mem, NULL, &dbdma_ops, s, "dbdma", 0x1000); 761 *dbdma_mem = &s->mem; 762 vmstate_register(NULL, -1, &vmstate_dbdma, s); 763 qemu_register_reset(dbdma_reset, s); 764 765 s->bh = qemu_bh_new(DBDMA_run_bh, s); 766 767 return s; 768 } 769