1 /* 2 * PowerMac descriptor-based DMA emulation 3 * 4 * Copyright (c) 2005-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2009 Laurent Vivier 7 * 8 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h 9 * 10 * Definitions for using the Apple Descriptor-Based DMA controller 11 * in Power Macintosh computers. 12 * 13 * Copyright (C) 1996 Paul Mackerras. 14 * 15 * some parts from mol 0.9.71 16 * 17 * Descriptor based DMA emulation 18 * 19 * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se) 20 * 21 * Permission is hereby granted, free of charge, to any person obtaining a copy 22 * of this software and associated documentation files (the "Software"), to deal 23 * in the Software without restriction, including without limitation the rights 24 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 25 * copies of the Software, and to permit persons to whom the Software is 26 * furnished to do so, subject to the following conditions: 27 * 28 * The above copyright notice and this permission notice shall be included in 29 * all copies or substantial portions of the Software. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 32 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 33 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 34 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 35 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 36 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 37 * THE SOFTWARE. 38 */ 39 #include "qemu/osdep.h" 40 #include "hw/hw.h" 41 #include "hw/isa/isa.h" 42 #include "hw/ppc/mac_dbdma.h" 43 #include "qemu/main-loop.h" 44 45 /* debug DBDMA */ 46 //#define DEBUG_DBDMA 47 48 #ifdef DEBUG_DBDMA 49 #define DBDMA_DPRINTF(fmt, ...) \ 50 do { printf("DBDMA: " fmt , ## __VA_ARGS__); } while (0) 51 #else 52 #define DBDMA_DPRINTF(fmt, ...) 53 #endif 54 55 /* 56 */ 57 58 static DBDMAState *dbdma_from_ch(DBDMA_channel *ch) 59 { 60 return container_of(ch, DBDMAState, channels[ch->channel]); 61 } 62 63 #ifdef DEBUG_DBDMA 64 static void dump_dbdma_cmd(dbdma_cmd *cmd) 65 { 66 printf("dbdma_cmd %p\n", cmd); 67 printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count)); 68 printf(" command 0x%04x\n", le16_to_cpu(cmd->command)); 69 printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr)); 70 printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep)); 71 printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count)); 72 printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status)); 73 } 74 #else 75 static void dump_dbdma_cmd(dbdma_cmd *cmd) 76 { 77 } 78 #endif 79 static void dbdma_cmdptr_load(DBDMA_channel *ch) 80 { 81 DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n", 82 ch->regs[DBDMA_CMDPTR_LO]); 83 cpu_physical_memory_read(ch->regs[DBDMA_CMDPTR_LO], 84 &ch->current, sizeof(dbdma_cmd)); 85 } 86 87 static void dbdma_cmdptr_save(DBDMA_channel *ch) 88 { 89 DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n", 90 ch->regs[DBDMA_CMDPTR_LO]); 91 DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n", 92 le16_to_cpu(ch->current.xfer_status), 93 le16_to_cpu(ch->current.res_count)); 94 cpu_physical_memory_write(ch->regs[DBDMA_CMDPTR_LO], 95 &ch->current, sizeof(dbdma_cmd)); 96 } 97 98 static void kill_channel(DBDMA_channel *ch) 99 { 100 DBDMA_DPRINTF("kill_channel\n"); 101 102 ch->regs[DBDMA_STATUS] |= DEAD; 103 ch->regs[DBDMA_STATUS] &= ~ACTIVE; 104 105 qemu_irq_raise(ch->irq); 106 } 107 108 static void conditional_interrupt(DBDMA_channel *ch) 109 { 110 dbdma_cmd *current = &ch->current; 111 uint16_t intr; 112 uint16_t sel_mask, sel_value; 113 uint32_t status; 114 int cond; 115 116 DBDMA_DPRINTF("%s\n", __func__); 117 118 intr = le16_to_cpu(current->command) & INTR_MASK; 119 120 switch(intr) { 121 case INTR_NEVER: /* don't interrupt */ 122 return; 123 case INTR_ALWAYS: /* always interrupt */ 124 qemu_irq_raise(ch->irq); 125 DBDMA_DPRINTF("%s: raise\n", __func__); 126 return; 127 } 128 129 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 130 131 sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f; 132 sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f; 133 134 cond = (status & sel_mask) == (sel_value & sel_mask); 135 136 switch(intr) { 137 case INTR_IFSET: /* intr if condition bit is 1 */ 138 if (cond) { 139 qemu_irq_raise(ch->irq); 140 DBDMA_DPRINTF("%s: raise\n", __func__); 141 } 142 return; 143 case INTR_IFCLR: /* intr if condition bit is 0 */ 144 if (!cond) { 145 qemu_irq_raise(ch->irq); 146 DBDMA_DPRINTF("%s: raise\n", __func__); 147 } 148 return; 149 } 150 } 151 152 static int conditional_wait(DBDMA_channel *ch) 153 { 154 dbdma_cmd *current = &ch->current; 155 uint16_t wait; 156 uint16_t sel_mask, sel_value; 157 uint32_t status; 158 int cond; 159 160 DBDMA_DPRINTF("conditional_wait\n"); 161 162 wait = le16_to_cpu(current->command) & WAIT_MASK; 163 164 switch(wait) { 165 case WAIT_NEVER: /* don't wait */ 166 return 0; 167 case WAIT_ALWAYS: /* always wait */ 168 return 1; 169 } 170 171 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 172 173 sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f; 174 sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f; 175 176 cond = (status & sel_mask) == (sel_value & sel_mask); 177 178 switch(wait) { 179 case WAIT_IFSET: /* wait if condition bit is 1 */ 180 if (cond) 181 return 1; 182 return 0; 183 case WAIT_IFCLR: /* wait if condition bit is 0 */ 184 if (!cond) 185 return 1; 186 return 0; 187 } 188 return 0; 189 } 190 191 static void next(DBDMA_channel *ch) 192 { 193 uint32_t cp; 194 195 ch->regs[DBDMA_STATUS] &= ~BT; 196 197 cp = ch->regs[DBDMA_CMDPTR_LO]; 198 ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd); 199 dbdma_cmdptr_load(ch); 200 } 201 202 static void branch(DBDMA_channel *ch) 203 { 204 dbdma_cmd *current = &ch->current; 205 206 ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep; 207 ch->regs[DBDMA_STATUS] |= BT; 208 dbdma_cmdptr_load(ch); 209 } 210 211 static void conditional_branch(DBDMA_channel *ch) 212 { 213 dbdma_cmd *current = &ch->current; 214 uint16_t br; 215 uint16_t sel_mask, sel_value; 216 uint32_t status; 217 int cond; 218 219 DBDMA_DPRINTF("conditional_branch\n"); 220 221 /* check if we must branch */ 222 223 br = le16_to_cpu(current->command) & BR_MASK; 224 225 switch(br) { 226 case BR_NEVER: /* don't branch */ 227 next(ch); 228 return; 229 case BR_ALWAYS: /* always branch */ 230 branch(ch); 231 return; 232 } 233 234 status = ch->regs[DBDMA_STATUS] & DEVSTAT; 235 236 sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f; 237 sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f; 238 239 cond = (status & sel_mask) == (sel_value & sel_mask); 240 241 switch(br) { 242 case BR_IFSET: /* branch if condition bit is 1 */ 243 if (cond) 244 branch(ch); 245 else 246 next(ch); 247 return; 248 case BR_IFCLR: /* branch if condition bit is 0 */ 249 if (!cond) 250 branch(ch); 251 else 252 next(ch); 253 return; 254 } 255 } 256 257 static void channel_run(DBDMA_channel *ch); 258 259 static void dbdma_end(DBDMA_io *io) 260 { 261 DBDMA_channel *ch = io->channel; 262 dbdma_cmd *current = &ch->current; 263 264 DBDMA_DPRINTF("%s\n", __func__); 265 266 if (conditional_wait(ch)) 267 goto wait; 268 269 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 270 current->res_count = cpu_to_le16(io->len); 271 dbdma_cmdptr_save(ch); 272 if (io->is_last) 273 ch->regs[DBDMA_STATUS] &= ~FLUSH; 274 275 conditional_interrupt(ch); 276 conditional_branch(ch); 277 278 wait: 279 /* Indicate that we're ready for a new DMA round */ 280 ch->io.processing = false; 281 282 if ((ch->regs[DBDMA_STATUS] & RUN) && 283 (ch->regs[DBDMA_STATUS] & ACTIVE)) 284 channel_run(ch); 285 } 286 287 static void start_output(DBDMA_channel *ch, int key, uint32_t addr, 288 uint16_t req_count, int is_last) 289 { 290 DBDMA_DPRINTF("start_output\n"); 291 292 /* KEY_REGS, KEY_DEVICE and KEY_STREAM 293 * are not implemented in the mac-io chip 294 */ 295 296 DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key); 297 if (!addr || key > KEY_STREAM3) { 298 kill_channel(ch); 299 return; 300 } 301 302 ch->io.addr = addr; 303 ch->io.len = req_count; 304 ch->io.is_last = is_last; 305 ch->io.dma_end = dbdma_end; 306 ch->io.is_dma_out = 1; 307 ch->io.processing = true; 308 if (ch->rw) { 309 ch->rw(&ch->io); 310 } 311 } 312 313 static void start_input(DBDMA_channel *ch, int key, uint32_t addr, 314 uint16_t req_count, int is_last) 315 { 316 DBDMA_DPRINTF("start_input\n"); 317 318 /* KEY_REGS, KEY_DEVICE and KEY_STREAM 319 * are not implemented in the mac-io chip 320 */ 321 322 DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key); 323 if (!addr || key > KEY_STREAM3) { 324 kill_channel(ch); 325 return; 326 } 327 328 ch->io.addr = addr; 329 ch->io.len = req_count; 330 ch->io.is_last = is_last; 331 ch->io.dma_end = dbdma_end; 332 ch->io.is_dma_out = 0; 333 ch->io.processing = true; 334 if (ch->rw) { 335 ch->rw(&ch->io); 336 } 337 } 338 339 static void load_word(DBDMA_channel *ch, int key, uint32_t addr, 340 uint16_t len) 341 { 342 dbdma_cmd *current = &ch->current; 343 uint32_t val; 344 345 DBDMA_DPRINTF("load_word\n"); 346 347 /* only implements KEY_SYSTEM */ 348 349 if (key != KEY_SYSTEM) { 350 printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key); 351 kill_channel(ch); 352 return; 353 } 354 355 cpu_physical_memory_read(addr, &val, len); 356 357 if (len == 2) 358 val = (val << 16) | (current->cmd_dep & 0x0000ffff); 359 else if (len == 1) 360 val = (val << 24) | (current->cmd_dep & 0x00ffffff); 361 362 current->cmd_dep = val; 363 364 if (conditional_wait(ch)) 365 goto wait; 366 367 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 368 dbdma_cmdptr_save(ch); 369 ch->regs[DBDMA_STATUS] &= ~FLUSH; 370 371 conditional_interrupt(ch); 372 next(ch); 373 374 wait: 375 DBDMA_kick(dbdma_from_ch(ch)); 376 } 377 378 static void store_word(DBDMA_channel *ch, int key, uint32_t addr, 379 uint16_t len) 380 { 381 dbdma_cmd *current = &ch->current; 382 uint32_t val; 383 384 DBDMA_DPRINTF("store_word\n"); 385 386 /* only implements KEY_SYSTEM */ 387 388 if (key != KEY_SYSTEM) { 389 printf("DBDMA: STORE_WORD, unimplemented key %x\n", key); 390 kill_channel(ch); 391 return; 392 } 393 394 val = current->cmd_dep; 395 if (len == 2) 396 val >>= 16; 397 else if (len == 1) 398 val >>= 24; 399 400 cpu_physical_memory_write(addr, &val, len); 401 402 if (conditional_wait(ch)) 403 goto wait; 404 405 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 406 dbdma_cmdptr_save(ch); 407 ch->regs[DBDMA_STATUS] &= ~FLUSH; 408 409 conditional_interrupt(ch); 410 next(ch); 411 412 wait: 413 DBDMA_kick(dbdma_from_ch(ch)); 414 } 415 416 static void nop(DBDMA_channel *ch) 417 { 418 dbdma_cmd *current = &ch->current; 419 420 if (conditional_wait(ch)) 421 goto wait; 422 423 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); 424 dbdma_cmdptr_save(ch); 425 426 conditional_interrupt(ch); 427 conditional_branch(ch); 428 429 wait: 430 DBDMA_kick(dbdma_from_ch(ch)); 431 } 432 433 static void stop(DBDMA_channel *ch) 434 { 435 ch->regs[DBDMA_STATUS] &= ~(ACTIVE|DEAD|FLUSH); 436 437 /* the stop command does not increment command pointer */ 438 } 439 440 static void channel_run(DBDMA_channel *ch) 441 { 442 dbdma_cmd *current = &ch->current; 443 uint16_t cmd, key; 444 uint16_t req_count; 445 uint32_t phy_addr; 446 447 DBDMA_DPRINTF("channel_run\n"); 448 dump_dbdma_cmd(current); 449 450 /* clear WAKE flag at command fetch */ 451 452 ch->regs[DBDMA_STATUS] &= ~WAKE; 453 454 cmd = le16_to_cpu(current->command) & COMMAND_MASK; 455 456 switch (cmd) { 457 case DBDMA_NOP: 458 nop(ch); 459 return; 460 461 case DBDMA_STOP: 462 stop(ch); 463 return; 464 } 465 466 key = le16_to_cpu(current->command) & 0x0700; 467 req_count = le16_to_cpu(current->req_count); 468 phy_addr = le32_to_cpu(current->phy_addr); 469 470 if (key == KEY_STREAM4) { 471 printf("command %x, invalid key 4\n", cmd); 472 kill_channel(ch); 473 return; 474 } 475 476 switch (cmd) { 477 case OUTPUT_MORE: 478 start_output(ch, key, phy_addr, req_count, 0); 479 return; 480 481 case OUTPUT_LAST: 482 start_output(ch, key, phy_addr, req_count, 1); 483 return; 484 485 case INPUT_MORE: 486 start_input(ch, key, phy_addr, req_count, 0); 487 return; 488 489 case INPUT_LAST: 490 start_input(ch, key, phy_addr, req_count, 1); 491 return; 492 } 493 494 if (key < KEY_REGS) { 495 printf("command %x, invalid key %x\n", cmd, key); 496 key = KEY_SYSTEM; 497 } 498 499 /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits 500 * and BRANCH is invalid 501 */ 502 503 req_count = req_count & 0x0007; 504 if (req_count & 0x4) { 505 req_count = 4; 506 phy_addr &= ~3; 507 } else if (req_count & 0x2) { 508 req_count = 2; 509 phy_addr &= ~1; 510 } else 511 req_count = 1; 512 513 switch (cmd) { 514 case LOAD_WORD: 515 load_word(ch, key, phy_addr, req_count); 516 return; 517 518 case STORE_WORD: 519 store_word(ch, key, phy_addr, req_count); 520 return; 521 } 522 } 523 524 static void DBDMA_run(DBDMAState *s) 525 { 526 int channel; 527 528 for (channel = 0; channel < DBDMA_CHANNELS; channel++) { 529 DBDMA_channel *ch = &s->channels[channel]; 530 uint32_t status = ch->regs[DBDMA_STATUS]; 531 if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) { 532 channel_run(ch); 533 } 534 } 535 } 536 537 static void DBDMA_run_bh(void *opaque) 538 { 539 DBDMAState *s = opaque; 540 541 DBDMA_DPRINTF("DBDMA_run_bh\n"); 542 543 DBDMA_run(s); 544 } 545 546 void DBDMA_kick(DBDMAState *dbdma) 547 { 548 qemu_bh_schedule(dbdma->bh); 549 } 550 551 void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq, 552 DBDMA_rw rw, DBDMA_flush flush, 553 void *opaque) 554 { 555 DBDMAState *s = dbdma; 556 DBDMA_channel *ch = &s->channels[nchan]; 557 558 DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan); 559 560 ch->irq = irq; 561 ch->rw = rw; 562 ch->flush = flush; 563 ch->io.opaque = opaque; 564 ch->io.channel = ch; 565 } 566 567 static void 568 dbdma_control_write(DBDMA_channel *ch) 569 { 570 uint16_t mask, value; 571 uint32_t status; 572 573 mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff; 574 value = ch->regs[DBDMA_CONTROL] & 0xffff; 575 576 value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT); 577 578 status = ch->regs[DBDMA_STATUS]; 579 580 status = (value & mask) | (status & ~mask); 581 582 if (status & WAKE) 583 status |= ACTIVE; 584 if (status & RUN) { 585 status |= ACTIVE; 586 status &= ~DEAD; 587 } 588 if (status & PAUSE) 589 status &= ~ACTIVE; 590 if ((ch->regs[DBDMA_STATUS] & RUN) && !(status & RUN)) { 591 /* RUN is cleared */ 592 status &= ~(ACTIVE|DEAD); 593 } 594 595 if ((status & FLUSH) && ch->flush) { 596 ch->flush(&ch->io); 597 status &= ~FLUSH; 598 } 599 600 DBDMA_DPRINTF(" status 0x%08x\n", status); 601 602 ch->regs[DBDMA_STATUS] = status; 603 604 if (status & ACTIVE) { 605 DBDMA_kick(dbdma_from_ch(ch)); 606 } 607 } 608 609 static void dbdma_write(void *opaque, hwaddr addr, 610 uint64_t value, unsigned size) 611 { 612 int channel = addr >> DBDMA_CHANNEL_SHIFT; 613 DBDMAState *s = opaque; 614 DBDMA_channel *ch = &s->channels[channel]; 615 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; 616 617 DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n", 618 addr, value); 619 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n", 620 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); 621 622 /* cmdptr cannot be modified if channel is ACTIVE */ 623 624 if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) { 625 return; 626 } 627 628 ch->regs[reg] = value; 629 630 switch(reg) { 631 case DBDMA_CONTROL: 632 dbdma_control_write(ch); 633 break; 634 case DBDMA_CMDPTR_LO: 635 /* 16-byte aligned */ 636 ch->regs[DBDMA_CMDPTR_LO] &= ~0xf; 637 dbdma_cmdptr_load(ch); 638 break; 639 case DBDMA_STATUS: 640 case DBDMA_INTR_SEL: 641 case DBDMA_BRANCH_SEL: 642 case DBDMA_WAIT_SEL: 643 /* nothing to do */ 644 break; 645 case DBDMA_XFER_MODE: 646 case DBDMA_CMDPTR_HI: 647 case DBDMA_DATA2PTR_HI: 648 case DBDMA_DATA2PTR_LO: 649 case DBDMA_ADDRESS_HI: 650 case DBDMA_BRANCH_ADDR_HI: 651 case DBDMA_RES1: 652 case DBDMA_RES2: 653 case DBDMA_RES3: 654 case DBDMA_RES4: 655 /* unused */ 656 break; 657 } 658 } 659 660 static uint64_t dbdma_read(void *opaque, hwaddr addr, 661 unsigned size) 662 { 663 uint32_t value; 664 int channel = addr >> DBDMA_CHANNEL_SHIFT; 665 DBDMAState *s = opaque; 666 DBDMA_channel *ch = &s->channels[channel]; 667 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; 668 669 value = ch->regs[reg]; 670 671 DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value); 672 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n", 673 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); 674 675 switch(reg) { 676 case DBDMA_CONTROL: 677 value = 0; 678 break; 679 case DBDMA_STATUS: 680 case DBDMA_CMDPTR_LO: 681 case DBDMA_INTR_SEL: 682 case DBDMA_BRANCH_SEL: 683 case DBDMA_WAIT_SEL: 684 /* nothing to do */ 685 break; 686 case DBDMA_XFER_MODE: 687 case DBDMA_CMDPTR_HI: 688 case DBDMA_DATA2PTR_HI: 689 case DBDMA_DATA2PTR_LO: 690 case DBDMA_ADDRESS_HI: 691 case DBDMA_BRANCH_ADDR_HI: 692 /* unused */ 693 value = 0; 694 break; 695 case DBDMA_RES1: 696 case DBDMA_RES2: 697 case DBDMA_RES3: 698 case DBDMA_RES4: 699 /* reserved */ 700 break; 701 } 702 703 return value; 704 } 705 706 static const MemoryRegionOps dbdma_ops = { 707 .read = dbdma_read, 708 .write = dbdma_write, 709 .endianness = DEVICE_LITTLE_ENDIAN, 710 .valid = { 711 .min_access_size = 4, 712 .max_access_size = 4, 713 }, 714 }; 715 716 static const VMStateDescription vmstate_dbdma_channel = { 717 .name = "dbdma_channel", 718 .version_id = 0, 719 .minimum_version_id = 0, 720 .fields = (VMStateField[]) { 721 VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS), 722 VMSTATE_END_OF_LIST() 723 } 724 }; 725 726 static const VMStateDescription vmstate_dbdma = { 727 .name = "dbdma", 728 .version_id = 2, 729 .minimum_version_id = 2, 730 .fields = (VMStateField[]) { 731 VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1, 732 vmstate_dbdma_channel, DBDMA_channel), 733 VMSTATE_END_OF_LIST() 734 } 735 }; 736 737 static void dbdma_reset(void *opaque) 738 { 739 DBDMAState *s = opaque; 740 int i; 741 742 for (i = 0; i < DBDMA_CHANNELS; i++) 743 memset(s->channels[i].regs, 0, DBDMA_SIZE); 744 } 745 746 void* DBDMA_init (MemoryRegion **dbdma_mem) 747 { 748 DBDMAState *s; 749 int i; 750 751 s = g_malloc0(sizeof(DBDMAState)); 752 753 for (i = 0; i < DBDMA_CHANNELS; i++) { 754 DBDMA_io *io = &s->channels[i].io; 755 qemu_iovec_init(&io->iov, 1); 756 s->channels[i].channel = i; 757 } 758 759 memory_region_init_io(&s->mem, NULL, &dbdma_ops, s, "dbdma", 0x1000); 760 *dbdma_mem = &s->mem; 761 vmstate_register(NULL, -1, &vmstate_dbdma, s); 762 qemu_register_reset(dbdma_reset, s); 763 764 s->bh = qemu_bh_new(DBDMA_run_bh, s); 765 766 return s; 767 } 768