xref: /openbmc/qemu/hw/misc/macio/cuda.c (revision bfb27e60)
1 /*
2  * QEMU PowerMac CUDA device support
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/ppc/mac.h"
27 #include "hw/input/adb.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 
31 /* XXX: implement all timer modes */
32 
33 /* debug CUDA */
34 //#define DEBUG_CUDA
35 
36 /* debug CUDA packets */
37 //#define DEBUG_CUDA_PACKET
38 
39 #ifdef DEBUG_CUDA
40 #define CUDA_DPRINTF(fmt, ...)                                  \
41     do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
42 #else
43 #define CUDA_DPRINTF(fmt, ...)
44 #endif
45 
46 /* Bits in B data register: all active low */
47 #define TREQ		0x08		/* Transfer request (input) */
48 #define TACK		0x10		/* Transfer acknowledge (output) */
49 #define TIP		0x20		/* Transfer in progress (output) */
50 
51 /* Bits in ACR */
52 #define SR_CTRL		0x1c		/* Shift register control bits */
53 #define SR_EXT		0x0c		/* Shift on external clock */
54 #define SR_OUT		0x10		/* Shift out if 1 */
55 
56 /* Bits in IFR and IER */
57 #define IER_SET		0x80		/* set bits in IER */
58 #define IER_CLR		0		/* clear bits in IER */
59 #define SR_INT		0x04		/* Shift register full/empty */
60 #define T1_INT          0x40            /* Timer 1 interrupt */
61 #define T2_INT          0x20            /* Timer 2 interrupt */
62 
63 /* Bits in ACR */
64 #define T1MODE          0xc0            /* Timer 1 mode */
65 #define T1MODE_CONT     0x40            /*  continuous interrupts */
66 
67 /* commands (1st byte) */
68 #define ADB_PACKET	0
69 #define CUDA_PACKET	1
70 #define ERROR_PACKET	2
71 #define TIMER_PACKET	3
72 #define POWER_PACKET	4
73 #define MACIIC_PACKET	5
74 #define PMU_PACKET	6
75 
76 
77 /* CUDA commands (2nd byte) */
78 #define CUDA_WARM_START			0x0
79 #define CUDA_AUTOPOLL			0x1
80 #define CUDA_GET_6805_ADDR		0x2
81 #define CUDA_GET_TIME			0x3
82 #define CUDA_GET_PRAM			0x7
83 #define CUDA_SET_6805_ADDR		0x8
84 #define CUDA_SET_TIME			0x9
85 #define CUDA_POWERDOWN			0xa
86 #define CUDA_POWERUP_TIME		0xb
87 #define CUDA_SET_PRAM			0xc
88 #define CUDA_MS_RESET			0xd
89 #define CUDA_SEND_DFAC			0xe
90 #define CUDA_BATTERY_SWAP_SENSE		0x10
91 #define CUDA_RESET_SYSTEM		0x11
92 #define CUDA_SET_IPL			0x12
93 #define CUDA_FILE_SERVER_FLAG		0x13
94 #define CUDA_SET_AUTO_RATE		0x14
95 #define CUDA_GET_AUTO_RATE		0x16
96 #define CUDA_SET_DEVICE_LIST		0x19
97 #define CUDA_GET_DEVICE_LIST		0x1a
98 #define CUDA_SET_ONE_SECOND_MODE	0x1b
99 #define CUDA_SET_POWER_MESSAGES		0x21
100 #define CUDA_GET_SET_IIC		0x22
101 #define CUDA_WAKEUP			0x23
102 #define CUDA_TIMER_TICKLE		0x24
103 #define CUDA_COMBINED_FORMAT_IIC	0x25
104 
105 #define CUDA_TIMER_FREQ (4700000 / 6)
106 #define CUDA_ADB_POLL_FREQ 50
107 
108 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
109 #define RTC_OFFSET                      2082844800
110 
111 static void cuda_update(CUDAState *s);
112 static void cuda_receive_packet_from_host(CUDAState *s,
113                                           const uint8_t *data, int len);
114 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
115                               int64_t current_time);
116 
117 static void cuda_update_irq(CUDAState *s)
118 {
119     if (s->ifr & s->ier & (SR_INT | T1_INT)) {
120         qemu_irq_raise(s->irq);
121     } else {
122         qemu_irq_lower(s->irq);
123     }
124 }
125 
126 static uint64_t get_tb(uint64_t freq)
127 {
128     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
129                     freq, get_ticks_per_sec());
130 }
131 
132 static unsigned int get_counter(CUDATimer *s)
133 {
134     int64_t d;
135     unsigned int counter;
136     uint64_t tb_diff;
137 
138     /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
139     tb_diff = get_tb(s->frequency) - s->load_time;
140     d = (tb_diff * 0xBF401675E5DULL) / (s->frequency << 24);
141 
142     if (s->index == 0) {
143         /* the timer goes down from latch to -1 (period of latch + 2) */
144         if (d <= (s->counter_value + 1)) {
145             counter = (s->counter_value - d) & 0xffff;
146         } else {
147             counter = (d - (s->counter_value + 1)) % (s->latch + 2);
148             counter = (s->latch - counter) & 0xffff;
149         }
150     } else {
151         counter = (s->counter_value - d) & 0xffff;
152     }
153     return counter;
154 }
155 
156 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
157 {
158     CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
159     ti->load_time = get_tb(s->frequency);
160     ti->counter_value = val;
161     cuda_timer_update(s, ti, ti->load_time);
162 }
163 
164 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
165 {
166     int64_t d, next_time;
167     unsigned int counter;
168 
169     /* current counter value */
170     d = muldiv64(current_time - s->load_time,
171                  CUDA_TIMER_FREQ, get_ticks_per_sec());
172     /* the timer goes down from latch to -1 (period of latch + 2) */
173     if (d <= (s->counter_value + 1)) {
174         counter = (s->counter_value - d) & 0xffff;
175     } else {
176         counter = (d - (s->counter_value + 1)) % (s->latch + 2);
177         counter = (s->latch - counter) & 0xffff;
178     }
179 
180     /* Note: we consider the irq is raised on 0 */
181     if (counter == 0xffff) {
182         next_time = d + s->latch + 1;
183     } else if (counter == 0) {
184         next_time = d + s->latch + 2;
185     } else {
186         next_time = d + counter;
187     }
188     CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
189                  s->latch, d, next_time - d);
190     next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
191         s->load_time;
192     if (next_time <= current_time)
193         next_time = current_time + 1;
194     return next_time;
195 }
196 
197 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
198                               int64_t current_time)
199 {
200     if (!ti->timer)
201         return;
202     if ((s->acr & T1MODE) != T1MODE_CONT) {
203         timer_del(ti->timer);
204     } else {
205         ti->next_irq_time = get_next_irq_time(ti, current_time);
206         timer_mod(ti->timer, ti->next_irq_time);
207     }
208 }
209 
210 static void cuda_timer1(void *opaque)
211 {
212     CUDAState *s = opaque;
213     CUDATimer *ti = &s->timers[0];
214 
215     cuda_timer_update(s, ti, ti->next_irq_time);
216     s->ifr |= T1_INT;
217     cuda_update_irq(s);
218 }
219 
220 static uint32_t cuda_readb(void *opaque, hwaddr addr)
221 {
222     CUDAState *s = opaque;
223     uint32_t val;
224 
225     addr = (addr >> 9) & 0xf;
226     switch(addr) {
227     case 0:
228         val = s->b;
229         break;
230     case 1:
231         val = s->a;
232         break;
233     case 2:
234         val = s->dirb;
235         break;
236     case 3:
237         val = s->dira;
238         break;
239     case 4:
240         val = get_counter(&s->timers[0]) & 0xff;
241         s->ifr &= ~T1_INT;
242         cuda_update_irq(s);
243         break;
244     case 5:
245         val = get_counter(&s->timers[0]) >> 8;
246         cuda_update_irq(s);
247         break;
248     case 6:
249         val = s->timers[0].latch & 0xff;
250         break;
251     case 7:
252         /* XXX: check this */
253         val = (s->timers[0].latch >> 8) & 0xff;
254         break;
255     case 8:
256         val = get_counter(&s->timers[1]) & 0xff;
257         s->ifr &= ~T2_INT;
258         break;
259     case 9:
260         val = get_counter(&s->timers[1]) >> 8;
261         break;
262     case 10:
263         val = s->sr;
264         s->ifr &= ~SR_INT;
265         cuda_update_irq(s);
266         break;
267     case 11:
268         val = s->acr;
269         break;
270     case 12:
271         val = s->pcr;
272         break;
273     case 13:
274         val = s->ifr;
275         if (s->ifr & s->ier)
276             val |= 0x80;
277         break;
278     case 14:
279         val = s->ier | 0x80;
280         break;
281     default:
282     case 15:
283         val = s->anh;
284         break;
285     }
286     if (addr != 13 || val != 0) {
287         CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
288     }
289 
290     return val;
291 }
292 
293 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
294 {
295     CUDAState *s = opaque;
296 
297     addr = (addr >> 9) & 0xf;
298     CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
299 
300     switch(addr) {
301     case 0:
302         s->b = val;
303         cuda_update(s);
304         break;
305     case 1:
306         s->a = val;
307         break;
308     case 2:
309         s->dirb = val;
310         break;
311     case 3:
312         s->dira = val;
313         break;
314     case 4:
315         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
316         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
317         break;
318     case 5:
319         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
320         s->ifr &= ~T1_INT;
321         set_counter(s, &s->timers[0], s->timers[0].latch);
322         break;
323     case 6:
324         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
325         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
326         break;
327     case 7:
328         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
329         s->ifr &= ~T1_INT;
330         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
331         break;
332     case 8:
333         s->timers[1].latch = val;
334         set_counter(s, &s->timers[1], val);
335         break;
336     case 9:
337         set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
338         break;
339     case 10:
340         s->sr = val;
341         break;
342     case 11:
343         s->acr = val;
344         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
345         cuda_update(s);
346         break;
347     case 12:
348         s->pcr = val;
349         break;
350     case 13:
351         /* reset bits */
352         s->ifr &= ~val;
353         cuda_update_irq(s);
354         break;
355     case 14:
356         if (val & IER_SET) {
357             /* set bits */
358             s->ier |= val & 0x7f;
359         } else {
360             /* reset bits */
361             s->ier &= ~val;
362         }
363         cuda_update_irq(s);
364         break;
365     default:
366     case 15:
367         s->anh = val;
368         break;
369     }
370 }
371 
372 /* NOTE: TIP and TREQ are negated */
373 static void cuda_update(CUDAState *s)
374 {
375     int packet_received, len;
376 
377     packet_received = 0;
378     if (!(s->b & TIP)) {
379         /* transfer requested from host */
380 
381         if (s->acr & SR_OUT) {
382             /* data output */
383             if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
384                 if (s->data_out_index < sizeof(s->data_out)) {
385                     CUDA_DPRINTF("send: %02x\n", s->sr);
386                     s->data_out[s->data_out_index++] = s->sr;
387                     s->ifr |= SR_INT;
388                     cuda_update_irq(s);
389                 }
390             }
391         } else {
392             if (s->data_in_index < s->data_in_size) {
393                 /* data input */
394                 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
395                     s->sr = s->data_in[s->data_in_index++];
396                     CUDA_DPRINTF("recv: %02x\n", s->sr);
397                     /* indicate end of transfer */
398                     if (s->data_in_index >= s->data_in_size) {
399                         s->b = (s->b | TREQ);
400                     }
401                     s->ifr |= SR_INT;
402                     cuda_update_irq(s);
403                 }
404             }
405         }
406     } else {
407         /* no transfer requested: handle sync case */
408         if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
409             /* update TREQ state each time TACK change state */
410             if (s->b & TACK)
411                 s->b = (s->b | TREQ);
412             else
413                 s->b = (s->b & ~TREQ);
414             s->ifr |= SR_INT;
415             cuda_update_irq(s);
416         } else {
417             if (!(s->last_b & TIP)) {
418                 /* handle end of host to cuda transfer */
419                 packet_received = (s->data_out_index > 0);
420                 /* always an IRQ at the end of transfer */
421                 s->ifr |= SR_INT;
422                 cuda_update_irq(s);
423             }
424             /* signal if there is data to read */
425             if (s->data_in_index < s->data_in_size) {
426                 s->b = (s->b & ~TREQ);
427             }
428         }
429     }
430 
431     s->last_acr = s->acr;
432     s->last_b = s->b;
433 
434     /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
435        recursively */
436     if (packet_received) {
437         len = s->data_out_index;
438         s->data_out_index = 0;
439         cuda_receive_packet_from_host(s, s->data_out, len);
440     }
441 }
442 
443 static void cuda_send_packet_to_host(CUDAState *s,
444                                      const uint8_t *data, int len)
445 {
446 #ifdef DEBUG_CUDA_PACKET
447     {
448         int i;
449         printf("cuda_send_packet_to_host:\n");
450         for(i = 0; i < len; i++)
451             printf(" %02x", data[i]);
452         printf("\n");
453     }
454 #endif
455     memcpy(s->data_in, data, len);
456     s->data_in_size = len;
457     s->data_in_index = 0;
458     cuda_update(s);
459     s->ifr |= SR_INT;
460     cuda_update_irq(s);
461 }
462 
463 static void cuda_adb_poll(void *opaque)
464 {
465     CUDAState *s = opaque;
466     uint8_t obuf[ADB_MAX_OUT_LEN + 2];
467     int olen;
468 
469     olen = adb_poll(&s->adb_bus, obuf + 2);
470     if (olen > 0) {
471         obuf[0] = ADB_PACKET;
472         obuf[1] = 0x40; /* polled data */
473         cuda_send_packet_to_host(s, obuf, olen + 2);
474     }
475     timer_mod(s->adb_poll_timer,
476                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
477                    (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
478 }
479 
480 static void cuda_receive_packet(CUDAState *s,
481                                 const uint8_t *data, int len)
482 {
483     uint8_t obuf[16];
484     int autopoll;
485     uint32_t ti;
486 
487     switch(data[0]) {
488     case CUDA_AUTOPOLL:
489         autopoll = (data[1] != 0);
490         if (autopoll != s->autopoll) {
491             s->autopoll = autopoll;
492             if (autopoll) {
493                 timer_mod(s->adb_poll_timer,
494                                qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
495                                (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
496             } else {
497                 timer_del(s->adb_poll_timer);
498             }
499         }
500         obuf[0] = CUDA_PACKET;
501         obuf[1] = data[1];
502         cuda_send_packet_to_host(s, obuf, 2);
503         break;
504     case CUDA_SET_TIME:
505         ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
506         s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
507         obuf[0] = CUDA_PACKET;
508         obuf[1] = 0;
509         obuf[2] = 0;
510         cuda_send_packet_to_host(s, obuf, 3);
511         break;
512     case CUDA_GET_TIME:
513         ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
514         obuf[0] = CUDA_PACKET;
515         obuf[1] = 0;
516         obuf[2] = 0;
517         obuf[3] = ti >> 24;
518         obuf[4] = ti >> 16;
519         obuf[5] = ti >> 8;
520         obuf[6] = ti;
521         cuda_send_packet_to_host(s, obuf, 7);
522         break;
523     case CUDA_FILE_SERVER_FLAG:
524     case CUDA_SET_DEVICE_LIST:
525     case CUDA_SET_AUTO_RATE:
526     case CUDA_SET_POWER_MESSAGES:
527         obuf[0] = CUDA_PACKET;
528         obuf[1] = 0;
529         cuda_send_packet_to_host(s, obuf, 2);
530         break;
531     case CUDA_POWERDOWN:
532         obuf[0] = CUDA_PACKET;
533         obuf[1] = 0;
534         cuda_send_packet_to_host(s, obuf, 2);
535         qemu_system_shutdown_request();
536         break;
537     case CUDA_RESET_SYSTEM:
538         obuf[0] = CUDA_PACKET;
539         obuf[1] = 0;
540         cuda_send_packet_to_host(s, obuf, 2);
541         qemu_system_reset_request();
542         break;
543     default:
544         break;
545     }
546 }
547 
548 static void cuda_receive_packet_from_host(CUDAState *s,
549                                           const uint8_t *data, int len)
550 {
551 #ifdef DEBUG_CUDA_PACKET
552     {
553         int i;
554         printf("cuda_receive_packet_from_host:\n");
555         for(i = 0; i < len; i++)
556             printf(" %02x", data[i]);
557         printf("\n");
558     }
559 #endif
560     switch(data[0]) {
561     case ADB_PACKET:
562         {
563             uint8_t obuf[ADB_MAX_OUT_LEN + 2];
564             int olen;
565             olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
566             if (olen > 0) {
567                 obuf[0] = ADB_PACKET;
568                 obuf[1] = 0x00;
569             } else {
570                 /* error */
571                 obuf[0] = ADB_PACKET;
572                 obuf[1] = -olen;
573                 olen = 0;
574             }
575             cuda_send_packet_to_host(s, obuf, olen + 2);
576         }
577         break;
578     case CUDA_PACKET:
579         cuda_receive_packet(s, data + 1, len - 1);
580         break;
581     }
582 }
583 
584 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
585 {
586 }
587 
588 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
589 {
590 }
591 
592 static uint32_t cuda_readw (void *opaque, hwaddr addr)
593 {
594     return 0;
595 }
596 
597 static uint32_t cuda_readl (void *opaque, hwaddr addr)
598 {
599     return 0;
600 }
601 
602 static const MemoryRegionOps cuda_ops = {
603     .old_mmio = {
604         .write = {
605             cuda_writeb,
606             cuda_writew,
607             cuda_writel,
608         },
609         .read = {
610             cuda_readb,
611             cuda_readw,
612             cuda_readl,
613         },
614     },
615     .endianness = DEVICE_NATIVE_ENDIAN,
616 };
617 
618 static bool cuda_timer_exist(void *opaque, int version_id)
619 {
620     CUDATimer *s = opaque;
621 
622     return s->timer != NULL;
623 }
624 
625 static const VMStateDescription vmstate_cuda_timer = {
626     .name = "cuda_timer",
627     .version_id = 0,
628     .minimum_version_id = 0,
629     .fields = (VMStateField[]) {
630         VMSTATE_UINT16(latch, CUDATimer),
631         VMSTATE_UINT16(counter_value, CUDATimer),
632         VMSTATE_INT64(load_time, CUDATimer),
633         VMSTATE_INT64(next_irq_time, CUDATimer),
634         VMSTATE_TIMER_TEST(timer, CUDATimer, cuda_timer_exist),
635         VMSTATE_END_OF_LIST()
636     }
637 };
638 
639 static const VMStateDescription vmstate_cuda = {
640     .name = "cuda",
641     .version_id = 1,
642     .minimum_version_id = 1,
643     .fields = (VMStateField[]) {
644         VMSTATE_UINT8(a, CUDAState),
645         VMSTATE_UINT8(b, CUDAState),
646         VMSTATE_UINT8(dira, CUDAState),
647         VMSTATE_UINT8(dirb, CUDAState),
648         VMSTATE_UINT8(sr, CUDAState),
649         VMSTATE_UINT8(acr, CUDAState),
650         VMSTATE_UINT8(pcr, CUDAState),
651         VMSTATE_UINT8(ifr, CUDAState),
652         VMSTATE_UINT8(ier, CUDAState),
653         VMSTATE_UINT8(anh, CUDAState),
654         VMSTATE_INT32(data_in_size, CUDAState),
655         VMSTATE_INT32(data_in_index, CUDAState),
656         VMSTATE_INT32(data_out_index, CUDAState),
657         VMSTATE_UINT8(autopoll, CUDAState),
658         VMSTATE_BUFFER(data_in, CUDAState),
659         VMSTATE_BUFFER(data_out, CUDAState),
660         VMSTATE_UINT32(tick_offset, CUDAState),
661         VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
662                              vmstate_cuda_timer, CUDATimer),
663         VMSTATE_END_OF_LIST()
664     }
665 };
666 
667 static void cuda_reset(DeviceState *dev)
668 {
669     CUDAState *s = CUDA(dev);
670 
671     s->b = 0;
672     s->a = 0;
673     s->dirb = 0;
674     s->dira = 0;
675     s->sr = 0;
676     s->acr = 0;
677     s->pcr = 0;
678     s->ifr = 0;
679     s->ier = 0;
680     //    s->ier = T1_INT | SR_INT;
681     s->anh = 0;
682     s->data_in_size = 0;
683     s->data_in_index = 0;
684     s->data_out_index = 0;
685     s->autopoll = 0;
686 
687     s->timers[0].latch = 0xffff;
688     set_counter(s, &s->timers[0], 0xffff);
689 
690     s->timers[1].latch = 0;
691     set_counter(s, &s->timers[1], 0xffff);
692 }
693 
694 static void cuda_realizefn(DeviceState *dev, Error **errp)
695 {
696     CUDAState *s = CUDA(dev);
697     struct tm tm;
698 
699     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
700     s->timers[0].frequency = s->frequency;
701     s->timers[1].frequency = s->frequency;
702 
703     qemu_get_timedate(&tm, 0);
704     s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
705 
706     s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
707 }
708 
709 static void cuda_initfn(Object *obj)
710 {
711     SysBusDevice *d = SYS_BUS_DEVICE(obj);
712     CUDAState *s = CUDA(obj);
713     int i;
714 
715     memory_region_init_io(&s->mem, NULL, &cuda_ops, s, "cuda", 0x2000);
716     sysbus_init_mmio(d, &s->mem);
717     sysbus_init_irq(d, &s->irq);
718 
719     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
720         s->timers[i].index = i;
721     }
722 
723     qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
724                         DEVICE(obj), "adb.0");
725 }
726 
727 static Property cuda_properties[] = {
728     DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
729     DEFINE_PROP_END_OF_LIST()
730 };
731 
732 static void cuda_class_init(ObjectClass *oc, void *data)
733 {
734     DeviceClass *dc = DEVICE_CLASS(oc);
735 
736     dc->realize = cuda_realizefn;
737     dc->reset = cuda_reset;
738     dc->vmsd = &vmstate_cuda;
739     dc->props = cuda_properties;
740 }
741 
742 static const TypeInfo cuda_type_info = {
743     .name = TYPE_CUDA,
744     .parent = TYPE_SYS_BUS_DEVICE,
745     .instance_size = sizeof(CUDAState),
746     .instance_init = cuda_initfn,
747     .class_init = cuda_class_init,
748 };
749 
750 static void cuda_register_types(void)
751 {
752     type_register_static(&cuda_type_info);
753 }
754 
755 type_init(cuda_register_types)
756