xref: /openbmc/qemu/hw/misc/macio/cuda.c (revision a719a27c)
1 /*
2  * QEMU PowerMac CUDA device support
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/ppc/mac.h"
27 #include "hw/input/adb.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 
31 /* XXX: implement all timer modes */
32 
33 /* debug CUDA */
34 //#define DEBUG_CUDA
35 
36 /* debug CUDA packets */
37 //#define DEBUG_CUDA_PACKET
38 
39 #ifdef DEBUG_CUDA
40 #define CUDA_DPRINTF(fmt, ...)                                  \
41     do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
42 #else
43 #define CUDA_DPRINTF(fmt, ...)
44 #endif
45 
46 /* Bits in B data register: all active low */
47 #define TREQ		0x08		/* Transfer request (input) */
48 #define TACK		0x10		/* Transfer acknowledge (output) */
49 #define TIP		0x20		/* Transfer in progress (output) */
50 
51 /* Bits in ACR */
52 #define SR_CTRL		0x1c		/* Shift register control bits */
53 #define SR_EXT		0x0c		/* Shift on external clock */
54 #define SR_OUT		0x10		/* Shift out if 1 */
55 
56 /* Bits in IFR and IER */
57 #define IER_SET		0x80		/* set bits in IER */
58 #define IER_CLR		0		/* clear bits in IER */
59 #define SR_INT		0x04		/* Shift register full/empty */
60 #define T1_INT          0x40            /* Timer 1 interrupt */
61 #define T2_INT          0x20            /* Timer 2 interrupt */
62 
63 /* Bits in ACR */
64 #define T1MODE          0xc0            /* Timer 1 mode */
65 #define T1MODE_CONT     0x40            /*  continuous interrupts */
66 
67 /* commands (1st byte) */
68 #define ADB_PACKET	0
69 #define CUDA_PACKET	1
70 #define ERROR_PACKET	2
71 #define TIMER_PACKET	3
72 #define POWER_PACKET	4
73 #define MACIIC_PACKET	5
74 #define PMU_PACKET	6
75 
76 
77 /* CUDA commands (2nd byte) */
78 #define CUDA_WARM_START			0x0
79 #define CUDA_AUTOPOLL			0x1
80 #define CUDA_GET_6805_ADDR		0x2
81 #define CUDA_GET_TIME			0x3
82 #define CUDA_GET_PRAM			0x7
83 #define CUDA_SET_6805_ADDR		0x8
84 #define CUDA_SET_TIME			0x9
85 #define CUDA_POWERDOWN			0xa
86 #define CUDA_POWERUP_TIME		0xb
87 #define CUDA_SET_PRAM			0xc
88 #define CUDA_MS_RESET			0xd
89 #define CUDA_SEND_DFAC			0xe
90 #define CUDA_BATTERY_SWAP_SENSE		0x10
91 #define CUDA_RESET_SYSTEM		0x11
92 #define CUDA_SET_IPL			0x12
93 #define CUDA_FILE_SERVER_FLAG		0x13
94 #define CUDA_SET_AUTO_RATE		0x14
95 #define CUDA_GET_AUTO_RATE		0x16
96 #define CUDA_SET_DEVICE_LIST		0x19
97 #define CUDA_GET_DEVICE_LIST		0x1a
98 #define CUDA_SET_ONE_SECOND_MODE	0x1b
99 #define CUDA_SET_POWER_MESSAGES		0x21
100 #define CUDA_GET_SET_IIC		0x22
101 #define CUDA_WAKEUP			0x23
102 #define CUDA_TIMER_TICKLE		0x24
103 #define CUDA_COMBINED_FORMAT_IIC	0x25
104 
105 #define CUDA_TIMER_FREQ (4700000 / 6)
106 #define CUDA_ADB_POLL_FREQ 50
107 
108 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
109 #define RTC_OFFSET                      2082844800
110 
111 static void cuda_update(CUDAState *s);
112 static void cuda_receive_packet_from_host(CUDAState *s,
113                                           const uint8_t *data, int len);
114 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
115                               int64_t current_time);
116 
117 static void cuda_update_irq(CUDAState *s)
118 {
119     if (s->ifr & s->ier & (SR_INT | T1_INT)) {
120         qemu_irq_raise(s->irq);
121     } else {
122         qemu_irq_lower(s->irq);
123     }
124 }
125 
126 static unsigned int get_counter(CUDATimer *s)
127 {
128     int64_t d;
129     unsigned int counter;
130 
131     d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->load_time,
132                  CUDA_TIMER_FREQ, get_ticks_per_sec());
133     if (s->index == 0) {
134         /* the timer goes down from latch to -1 (period of latch + 2) */
135         if (d <= (s->counter_value + 1)) {
136             counter = (s->counter_value - d) & 0xffff;
137         } else {
138             counter = (d - (s->counter_value + 1)) % (s->latch + 2);
139             counter = (s->latch - counter) & 0xffff;
140         }
141     } else {
142         counter = (s->counter_value - d) & 0xffff;
143     }
144     return counter;
145 }
146 
147 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
148 {
149     CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
150     ti->load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
151     ti->counter_value = val;
152     cuda_timer_update(s, ti, ti->load_time);
153 }
154 
155 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
156 {
157     int64_t d, next_time;
158     unsigned int counter;
159 
160     /* current counter value */
161     d = muldiv64(current_time - s->load_time,
162                  CUDA_TIMER_FREQ, get_ticks_per_sec());
163     /* the timer goes down from latch to -1 (period of latch + 2) */
164     if (d <= (s->counter_value + 1)) {
165         counter = (s->counter_value - d) & 0xffff;
166     } else {
167         counter = (d - (s->counter_value + 1)) % (s->latch + 2);
168         counter = (s->latch - counter) & 0xffff;
169     }
170 
171     /* Note: we consider the irq is raised on 0 */
172     if (counter == 0xffff) {
173         next_time = d + s->latch + 1;
174     } else if (counter == 0) {
175         next_time = d + s->latch + 2;
176     } else {
177         next_time = d + counter;
178     }
179     CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
180                  s->latch, d, next_time - d);
181     next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
182         s->load_time;
183     if (next_time <= current_time)
184         next_time = current_time + 1;
185     return next_time;
186 }
187 
188 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
189                               int64_t current_time)
190 {
191     if (!ti->timer)
192         return;
193     if ((s->acr & T1MODE) != T1MODE_CONT) {
194         timer_del(ti->timer);
195     } else {
196         ti->next_irq_time = get_next_irq_time(ti, current_time);
197         timer_mod(ti->timer, ti->next_irq_time);
198     }
199 }
200 
201 static void cuda_timer1(void *opaque)
202 {
203     CUDAState *s = opaque;
204     CUDATimer *ti = &s->timers[0];
205 
206     cuda_timer_update(s, ti, ti->next_irq_time);
207     s->ifr |= T1_INT;
208     cuda_update_irq(s);
209 }
210 
211 static uint32_t cuda_readb(void *opaque, hwaddr addr)
212 {
213     CUDAState *s = opaque;
214     uint32_t val;
215 
216     addr = (addr >> 9) & 0xf;
217     switch(addr) {
218     case 0:
219         val = s->b;
220         break;
221     case 1:
222         val = s->a;
223         break;
224     case 2:
225         val = s->dirb;
226         break;
227     case 3:
228         val = s->dira;
229         break;
230     case 4:
231         val = get_counter(&s->timers[0]) & 0xff;
232         s->ifr &= ~T1_INT;
233         cuda_update_irq(s);
234         break;
235     case 5:
236         val = get_counter(&s->timers[0]) >> 8;
237         cuda_update_irq(s);
238         break;
239     case 6:
240         val = s->timers[0].latch & 0xff;
241         break;
242     case 7:
243         /* XXX: check this */
244         val = (s->timers[0].latch >> 8) & 0xff;
245         break;
246     case 8:
247         val = get_counter(&s->timers[1]) & 0xff;
248         s->ifr &= ~T2_INT;
249         break;
250     case 9:
251         val = get_counter(&s->timers[1]) >> 8;
252         break;
253     case 10:
254         val = s->sr;
255         s->ifr &= ~SR_INT;
256         cuda_update_irq(s);
257         break;
258     case 11:
259         val = s->acr;
260         break;
261     case 12:
262         val = s->pcr;
263         break;
264     case 13:
265         val = s->ifr;
266         if (s->ifr & s->ier)
267             val |= 0x80;
268         break;
269     case 14:
270         val = s->ier | 0x80;
271         break;
272     default:
273     case 15:
274         val = s->anh;
275         break;
276     }
277     if (addr != 13 || val != 0) {
278         CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
279     }
280 
281     return val;
282 }
283 
284 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
285 {
286     CUDAState *s = opaque;
287 
288     addr = (addr >> 9) & 0xf;
289     CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
290 
291     switch(addr) {
292     case 0:
293         s->b = val;
294         cuda_update(s);
295         break;
296     case 1:
297         s->a = val;
298         break;
299     case 2:
300         s->dirb = val;
301         break;
302     case 3:
303         s->dira = val;
304         break;
305     case 4:
306         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
307         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
308         break;
309     case 5:
310         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
311         s->ifr &= ~T1_INT;
312         set_counter(s, &s->timers[0], s->timers[0].latch);
313         break;
314     case 6:
315         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
316         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
317         break;
318     case 7:
319         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
320         s->ifr &= ~T1_INT;
321         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
322         break;
323     case 8:
324         s->timers[1].latch = val;
325         set_counter(s, &s->timers[1], val);
326         break;
327     case 9:
328         set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
329         break;
330     case 10:
331         s->sr = val;
332         break;
333     case 11:
334         s->acr = val;
335         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
336         cuda_update(s);
337         break;
338     case 12:
339         s->pcr = val;
340         break;
341     case 13:
342         /* reset bits */
343         s->ifr &= ~val;
344         cuda_update_irq(s);
345         break;
346     case 14:
347         if (val & IER_SET) {
348             /* set bits */
349             s->ier |= val & 0x7f;
350         } else {
351             /* reset bits */
352             s->ier &= ~val;
353         }
354         cuda_update_irq(s);
355         break;
356     default:
357     case 15:
358         s->anh = val;
359         break;
360     }
361 }
362 
363 /* NOTE: TIP and TREQ are negated */
364 static void cuda_update(CUDAState *s)
365 {
366     int packet_received, len;
367 
368     packet_received = 0;
369     if (!(s->b & TIP)) {
370         /* transfer requested from host */
371 
372         if (s->acr & SR_OUT) {
373             /* data output */
374             if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
375                 if (s->data_out_index < sizeof(s->data_out)) {
376                     CUDA_DPRINTF("send: %02x\n", s->sr);
377                     s->data_out[s->data_out_index++] = s->sr;
378                     s->ifr |= SR_INT;
379                     cuda_update_irq(s);
380                 }
381             }
382         } else {
383             if (s->data_in_index < s->data_in_size) {
384                 /* data input */
385                 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
386                     s->sr = s->data_in[s->data_in_index++];
387                     CUDA_DPRINTF("recv: %02x\n", s->sr);
388                     /* indicate end of transfer */
389                     if (s->data_in_index >= s->data_in_size) {
390                         s->b = (s->b | TREQ);
391                     }
392                     s->ifr |= SR_INT;
393                     cuda_update_irq(s);
394                 }
395             }
396         }
397     } else {
398         /* no transfer requested: handle sync case */
399         if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
400             /* update TREQ state each time TACK change state */
401             if (s->b & TACK)
402                 s->b = (s->b | TREQ);
403             else
404                 s->b = (s->b & ~TREQ);
405             s->ifr |= SR_INT;
406             cuda_update_irq(s);
407         } else {
408             if (!(s->last_b & TIP)) {
409                 /* handle end of host to cuda transfer */
410                 packet_received = (s->data_out_index > 0);
411                 /* always an IRQ at the end of transfer */
412                 s->ifr |= SR_INT;
413                 cuda_update_irq(s);
414             }
415             /* signal if there is data to read */
416             if (s->data_in_index < s->data_in_size) {
417                 s->b = (s->b & ~TREQ);
418             }
419         }
420     }
421 
422     s->last_acr = s->acr;
423     s->last_b = s->b;
424 
425     /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
426        recursively */
427     if (packet_received) {
428         len = s->data_out_index;
429         s->data_out_index = 0;
430         cuda_receive_packet_from_host(s, s->data_out, len);
431     }
432 }
433 
434 static void cuda_send_packet_to_host(CUDAState *s,
435                                      const uint8_t *data, int len)
436 {
437 #ifdef DEBUG_CUDA_PACKET
438     {
439         int i;
440         printf("cuda_send_packet_to_host:\n");
441         for(i = 0; i < len; i++)
442             printf(" %02x", data[i]);
443         printf("\n");
444     }
445 #endif
446     memcpy(s->data_in, data, len);
447     s->data_in_size = len;
448     s->data_in_index = 0;
449     cuda_update(s);
450     s->ifr |= SR_INT;
451     cuda_update_irq(s);
452 }
453 
454 static void cuda_adb_poll(void *opaque)
455 {
456     CUDAState *s = opaque;
457     uint8_t obuf[ADB_MAX_OUT_LEN + 2];
458     int olen;
459 
460     olen = adb_poll(&s->adb_bus, obuf + 2);
461     if (olen > 0) {
462         obuf[0] = ADB_PACKET;
463         obuf[1] = 0x40; /* polled data */
464         cuda_send_packet_to_host(s, obuf, olen + 2);
465     }
466     timer_mod(s->adb_poll_timer,
467                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
468                    (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
469 }
470 
471 static void cuda_receive_packet(CUDAState *s,
472                                 const uint8_t *data, int len)
473 {
474     uint8_t obuf[16];
475     int autopoll;
476     uint32_t ti;
477 
478     switch(data[0]) {
479     case CUDA_AUTOPOLL:
480         autopoll = (data[1] != 0);
481         if (autopoll != s->autopoll) {
482             s->autopoll = autopoll;
483             if (autopoll) {
484                 timer_mod(s->adb_poll_timer,
485                                qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
486                                (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
487             } else {
488                 timer_del(s->adb_poll_timer);
489             }
490         }
491         obuf[0] = CUDA_PACKET;
492         obuf[1] = data[1];
493         cuda_send_packet_to_host(s, obuf, 2);
494         break;
495     case CUDA_SET_TIME:
496         ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
497         s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
498         obuf[0] = CUDA_PACKET;
499         obuf[1] = 0;
500         obuf[2] = 0;
501         cuda_send_packet_to_host(s, obuf, 3);
502         break;
503     case CUDA_GET_TIME:
504         ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
505         obuf[0] = CUDA_PACKET;
506         obuf[1] = 0;
507         obuf[2] = 0;
508         obuf[3] = ti >> 24;
509         obuf[4] = ti >> 16;
510         obuf[5] = ti >> 8;
511         obuf[6] = ti;
512         cuda_send_packet_to_host(s, obuf, 7);
513         break;
514     case CUDA_FILE_SERVER_FLAG:
515     case CUDA_SET_DEVICE_LIST:
516     case CUDA_SET_AUTO_RATE:
517     case CUDA_SET_POWER_MESSAGES:
518         obuf[0] = CUDA_PACKET;
519         obuf[1] = 0;
520         cuda_send_packet_to_host(s, obuf, 2);
521         break;
522     case CUDA_POWERDOWN:
523         obuf[0] = CUDA_PACKET;
524         obuf[1] = 0;
525         cuda_send_packet_to_host(s, obuf, 2);
526         qemu_system_shutdown_request();
527         break;
528     case CUDA_RESET_SYSTEM:
529         obuf[0] = CUDA_PACKET;
530         obuf[1] = 0;
531         cuda_send_packet_to_host(s, obuf, 2);
532         qemu_system_reset_request();
533         break;
534     default:
535         break;
536     }
537 }
538 
539 static void cuda_receive_packet_from_host(CUDAState *s,
540                                           const uint8_t *data, int len)
541 {
542 #ifdef DEBUG_CUDA_PACKET
543     {
544         int i;
545         printf("cuda_receive_packet_from_host:\n");
546         for(i = 0; i < len; i++)
547             printf(" %02x", data[i]);
548         printf("\n");
549     }
550 #endif
551     switch(data[0]) {
552     case ADB_PACKET:
553         {
554             uint8_t obuf[ADB_MAX_OUT_LEN + 2];
555             int olen;
556             olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
557             if (olen > 0) {
558                 obuf[0] = ADB_PACKET;
559                 obuf[1] = 0x00;
560             } else {
561                 /* error */
562                 obuf[0] = ADB_PACKET;
563                 obuf[1] = -olen;
564                 olen = 0;
565             }
566             cuda_send_packet_to_host(s, obuf, olen + 2);
567         }
568         break;
569     case CUDA_PACKET:
570         cuda_receive_packet(s, data + 1, len - 1);
571         break;
572     }
573 }
574 
575 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
576 {
577 }
578 
579 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
580 {
581 }
582 
583 static uint32_t cuda_readw (void *opaque, hwaddr addr)
584 {
585     return 0;
586 }
587 
588 static uint32_t cuda_readl (void *opaque, hwaddr addr)
589 {
590     return 0;
591 }
592 
593 static const MemoryRegionOps cuda_ops = {
594     .old_mmio = {
595         .write = {
596             cuda_writeb,
597             cuda_writew,
598             cuda_writel,
599         },
600         .read = {
601             cuda_readb,
602             cuda_readw,
603             cuda_readl,
604         },
605     },
606     .endianness = DEVICE_NATIVE_ENDIAN,
607 };
608 
609 static bool cuda_timer_exist(void *opaque, int version_id)
610 {
611     CUDATimer *s = opaque;
612 
613     return s->timer != NULL;
614 }
615 
616 static const VMStateDescription vmstate_cuda_timer = {
617     .name = "cuda_timer",
618     .version_id = 0,
619     .minimum_version_id = 0,
620     .minimum_version_id_old = 0,
621     .fields      = (VMStateField[]) {
622         VMSTATE_UINT16(latch, CUDATimer),
623         VMSTATE_UINT16(counter_value, CUDATimer),
624         VMSTATE_INT64(load_time, CUDATimer),
625         VMSTATE_INT64(next_irq_time, CUDATimer),
626         VMSTATE_TIMER_TEST(timer, CUDATimer, cuda_timer_exist),
627         VMSTATE_END_OF_LIST()
628     }
629 };
630 
631 static const VMStateDescription vmstate_cuda = {
632     .name = "cuda",
633     .version_id = 1,
634     .minimum_version_id = 1,
635     .minimum_version_id_old = 1,
636     .fields      = (VMStateField[]) {
637         VMSTATE_UINT8(a, CUDAState),
638         VMSTATE_UINT8(b, CUDAState),
639         VMSTATE_UINT8(dira, CUDAState),
640         VMSTATE_UINT8(dirb, CUDAState),
641         VMSTATE_UINT8(sr, CUDAState),
642         VMSTATE_UINT8(acr, CUDAState),
643         VMSTATE_UINT8(pcr, CUDAState),
644         VMSTATE_UINT8(ifr, CUDAState),
645         VMSTATE_UINT8(ier, CUDAState),
646         VMSTATE_UINT8(anh, CUDAState),
647         VMSTATE_INT32(data_in_size, CUDAState),
648         VMSTATE_INT32(data_in_index, CUDAState),
649         VMSTATE_INT32(data_out_index, CUDAState),
650         VMSTATE_UINT8(autopoll, CUDAState),
651         VMSTATE_BUFFER(data_in, CUDAState),
652         VMSTATE_BUFFER(data_out, CUDAState),
653         VMSTATE_UINT32(tick_offset, CUDAState),
654         VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
655                              vmstate_cuda_timer, CUDATimer),
656         VMSTATE_END_OF_LIST()
657     }
658 };
659 
660 static void cuda_reset(DeviceState *dev)
661 {
662     CUDAState *s = CUDA(dev);
663 
664     s->b = 0;
665     s->a = 0;
666     s->dirb = 0;
667     s->dira = 0;
668     s->sr = 0;
669     s->acr = 0;
670     s->pcr = 0;
671     s->ifr = 0;
672     s->ier = 0;
673     //    s->ier = T1_INT | SR_INT;
674     s->anh = 0;
675     s->data_in_size = 0;
676     s->data_in_index = 0;
677     s->data_out_index = 0;
678     s->autopoll = 0;
679 
680     s->timers[0].latch = 0xffff;
681     set_counter(s, &s->timers[0], 0xffff);
682 
683     s->timers[1].latch = 0;
684     set_counter(s, &s->timers[1], 0xffff);
685 }
686 
687 static void cuda_realizefn(DeviceState *dev, Error **errp)
688 {
689     CUDAState *s = CUDA(dev);
690     struct tm tm;
691 
692     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
693 
694     qemu_get_timedate(&tm, 0);
695     s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
696 
697     s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
698 }
699 
700 static void cuda_initfn(Object *obj)
701 {
702     SysBusDevice *d = SYS_BUS_DEVICE(obj);
703     CUDAState *s = CUDA(obj);
704     int i;
705 
706     memory_region_init_io(&s->mem, NULL, &cuda_ops, s, "cuda", 0x2000);
707     sysbus_init_mmio(d, &s->mem);
708     sysbus_init_irq(d, &s->irq);
709 
710     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
711         s->timers[i].index = i;
712     }
713 
714     qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
715                         DEVICE(obj), "adb.0");
716 }
717 
718 static void cuda_class_init(ObjectClass *oc, void *data)
719 {
720     DeviceClass *dc = DEVICE_CLASS(oc);
721 
722     dc->realize = cuda_realizefn;
723     dc->reset = cuda_reset;
724     dc->vmsd = &vmstate_cuda;
725 }
726 
727 static const TypeInfo cuda_type_info = {
728     .name = TYPE_CUDA,
729     .parent = TYPE_SYS_BUS_DEVICE,
730     .instance_size = sizeof(CUDAState),
731     .instance_init = cuda_initfn,
732     .class_init = cuda_class_init,
733 };
734 
735 static void cuda_register_types(void)
736 {
737     type_register_static(&cuda_type_info);
738 }
739 
740 type_init(cuda_register_types)
741