1 /* 2 * QEMU PowerMac CUDA device support 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "hw/ppc/mac.h" 28 #include "hw/input/adb.h" 29 #include "qemu/timer.h" 30 #include "sysemu/sysemu.h" 31 32 /* XXX: implement all timer modes */ 33 34 /* debug CUDA */ 35 //#define DEBUG_CUDA 36 37 /* debug CUDA packets */ 38 //#define DEBUG_CUDA_PACKET 39 40 #ifdef DEBUG_CUDA 41 #define CUDA_DPRINTF(fmt, ...) \ 42 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0) 43 #else 44 #define CUDA_DPRINTF(fmt, ...) 45 #endif 46 47 /* Bits in B data register: all active low */ 48 #define TREQ 0x08 /* Transfer request (input) */ 49 #define TACK 0x10 /* Transfer acknowledge (output) */ 50 #define TIP 0x20 /* Transfer in progress (output) */ 51 52 /* Bits in ACR */ 53 #define SR_CTRL 0x1c /* Shift register control bits */ 54 #define SR_EXT 0x0c /* Shift on external clock */ 55 #define SR_OUT 0x10 /* Shift out if 1 */ 56 57 /* Bits in IFR and IER */ 58 #define IER_SET 0x80 /* set bits in IER */ 59 #define IER_CLR 0 /* clear bits in IER */ 60 #define SR_INT 0x04 /* Shift register full/empty */ 61 #define SR_DATA_INT 0x08 62 #define SR_CLOCK_INT 0x10 63 #define T1_INT 0x40 /* Timer 1 interrupt */ 64 #define T2_INT 0x20 /* Timer 2 interrupt */ 65 66 /* Bits in ACR */ 67 #define T1MODE 0xc0 /* Timer 1 mode */ 68 #define T1MODE_CONT 0x40 /* continuous interrupts */ 69 70 /* commands (1st byte) */ 71 #define ADB_PACKET 0 72 #define CUDA_PACKET 1 73 #define ERROR_PACKET 2 74 #define TIMER_PACKET 3 75 #define POWER_PACKET 4 76 #define MACIIC_PACKET 5 77 #define PMU_PACKET 6 78 79 80 /* CUDA commands (2nd byte) */ 81 #define CUDA_WARM_START 0x0 82 #define CUDA_AUTOPOLL 0x1 83 #define CUDA_GET_6805_ADDR 0x2 84 #define CUDA_GET_TIME 0x3 85 #define CUDA_GET_PRAM 0x7 86 #define CUDA_SET_6805_ADDR 0x8 87 #define CUDA_SET_TIME 0x9 88 #define CUDA_POWERDOWN 0xa 89 #define CUDA_POWERUP_TIME 0xb 90 #define CUDA_SET_PRAM 0xc 91 #define CUDA_MS_RESET 0xd 92 #define CUDA_SEND_DFAC 0xe 93 #define CUDA_BATTERY_SWAP_SENSE 0x10 94 #define CUDA_RESET_SYSTEM 0x11 95 #define CUDA_SET_IPL 0x12 96 #define CUDA_FILE_SERVER_FLAG 0x13 97 #define CUDA_SET_AUTO_RATE 0x14 98 #define CUDA_GET_AUTO_RATE 0x16 99 #define CUDA_SET_DEVICE_LIST 0x19 100 #define CUDA_GET_DEVICE_LIST 0x1a 101 #define CUDA_SET_ONE_SECOND_MODE 0x1b 102 #define CUDA_SET_POWER_MESSAGES 0x21 103 #define CUDA_GET_SET_IIC 0x22 104 #define CUDA_WAKEUP 0x23 105 #define CUDA_TIMER_TICKLE 0x24 106 #define CUDA_COMBINED_FORMAT_IIC 0x25 107 108 #define CUDA_TIMER_FREQ (4700000 / 6) 109 #define CUDA_ADB_POLL_FREQ 50 110 111 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */ 112 #define RTC_OFFSET 2082844800 113 114 /* CUDA registers */ 115 #define CUDA_REG_B 0x00 116 #define CUDA_REG_A 0x01 117 #define CUDA_REG_DIRB 0x02 118 #define CUDA_REG_DIRA 0x03 119 #define CUDA_REG_T1CL 0x04 120 #define CUDA_REG_T1CH 0x05 121 #define CUDA_REG_T1LL 0x06 122 #define CUDA_REG_T1LH 0x07 123 #define CUDA_REG_T2CL 0x08 124 #define CUDA_REG_T2CH 0x09 125 #define CUDA_REG_SR 0x0a 126 #define CUDA_REG_ACR 0x0b 127 #define CUDA_REG_PCR 0x0c 128 #define CUDA_REG_IFR 0x0d 129 #define CUDA_REG_IER 0x0e 130 #define CUDA_REG_ANH 0x0f 131 132 static void cuda_update(CUDAState *s); 133 static void cuda_receive_packet_from_host(CUDAState *s, 134 const uint8_t *data, int len); 135 static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 136 int64_t current_time); 137 138 static void cuda_update_irq(CUDAState *s) 139 { 140 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) { 141 qemu_irq_raise(s->irq); 142 } else { 143 qemu_irq_lower(s->irq); 144 } 145 } 146 147 static uint64_t get_tb(uint64_t time, uint64_t freq) 148 { 149 return muldiv64(time, freq, get_ticks_per_sec()); 150 } 151 152 static unsigned int get_counter(CUDATimer *ti) 153 { 154 int64_t d; 155 unsigned int counter; 156 uint64_t tb_diff; 157 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 158 159 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */ 160 tb_diff = get_tb(current_time, ti->frequency) - ti->load_time; 161 d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24); 162 163 if (ti->index == 0) { 164 /* the timer goes down from latch to -1 (period of latch + 2) */ 165 if (d <= (ti->counter_value + 1)) { 166 counter = (ti->counter_value - d) & 0xffff; 167 } else { 168 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2); 169 counter = (ti->latch - counter) & 0xffff; 170 } 171 } else { 172 counter = (ti->counter_value - d) & 0xffff; 173 } 174 return counter; 175 } 176 177 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val) 178 { 179 CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val); 180 ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 181 s->frequency); 182 ti->counter_value = val; 183 cuda_timer_update(s, ti, ti->load_time); 184 } 185 186 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time) 187 { 188 int64_t d, next_time; 189 unsigned int counter; 190 191 /* current counter value */ 192 d = muldiv64(current_time - s->load_time, 193 CUDA_TIMER_FREQ, get_ticks_per_sec()); 194 /* the timer goes down from latch to -1 (period of latch + 2) */ 195 if (d <= (s->counter_value + 1)) { 196 counter = (s->counter_value - d) & 0xffff; 197 } else { 198 counter = (d - (s->counter_value + 1)) % (s->latch + 2); 199 counter = (s->latch - counter) & 0xffff; 200 } 201 202 /* Note: we consider the irq is raised on 0 */ 203 if (counter == 0xffff) { 204 next_time = d + s->latch + 1; 205 } else if (counter == 0) { 206 next_time = d + s->latch + 2; 207 } else { 208 next_time = d + counter; 209 } 210 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n", 211 s->latch, d, next_time - d); 212 next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) + 213 s->load_time; 214 if (next_time <= current_time) 215 next_time = current_time + 1; 216 return next_time; 217 } 218 219 static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 220 int64_t current_time) 221 { 222 if (!ti->timer) 223 return; 224 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) { 225 timer_del(ti->timer); 226 } else { 227 ti->next_irq_time = get_next_irq_time(ti, current_time); 228 timer_mod(ti->timer, ti->next_irq_time); 229 } 230 } 231 232 static void cuda_timer1(void *opaque) 233 { 234 CUDAState *s = opaque; 235 CUDATimer *ti = &s->timers[0]; 236 237 cuda_timer_update(s, ti, ti->next_irq_time); 238 s->ifr |= T1_INT; 239 cuda_update_irq(s); 240 } 241 242 static void cuda_timer2(void *opaque) 243 { 244 CUDAState *s = opaque; 245 CUDATimer *ti = &s->timers[1]; 246 247 cuda_timer_update(s, ti, ti->next_irq_time); 248 s->ifr |= T2_INT; 249 cuda_update_irq(s); 250 } 251 252 static void cuda_set_sr_int(void *opaque) 253 { 254 CUDAState *s = opaque; 255 256 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__); 257 s->ifr |= SR_INT; 258 cuda_update_irq(s); 259 } 260 261 static void cuda_delay_set_sr_int(CUDAState *s) 262 { 263 int64_t expire; 264 265 if (s->dirb == 0xff) { 266 /* Not in Mac OS, fire the IRQ directly */ 267 cuda_set_sr_int(s); 268 return; 269 } 270 271 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__); 272 273 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US; 274 timer_mod(s->sr_delay_timer, expire); 275 } 276 277 static uint32_t cuda_readb(void *opaque, hwaddr addr) 278 { 279 CUDAState *s = opaque; 280 uint32_t val; 281 282 addr = (addr >> 9) & 0xf; 283 switch(addr) { 284 case CUDA_REG_B: 285 val = s->b; 286 break; 287 case CUDA_REG_A: 288 val = s->a; 289 break; 290 case CUDA_REG_DIRB: 291 val = s->dirb; 292 break; 293 case CUDA_REG_DIRA: 294 val = s->dira; 295 break; 296 case CUDA_REG_T1CL: 297 val = get_counter(&s->timers[0]) & 0xff; 298 s->ifr &= ~T1_INT; 299 cuda_update_irq(s); 300 break; 301 case CUDA_REG_T1CH: 302 val = get_counter(&s->timers[0]) >> 8; 303 cuda_update_irq(s); 304 break; 305 case CUDA_REG_T1LL: 306 val = s->timers[0].latch & 0xff; 307 break; 308 case CUDA_REG_T1LH: 309 /* XXX: check this */ 310 val = (s->timers[0].latch >> 8) & 0xff; 311 break; 312 case CUDA_REG_T2CL: 313 val = get_counter(&s->timers[1]) & 0xff; 314 s->ifr &= ~T2_INT; 315 cuda_update_irq(s); 316 break; 317 case CUDA_REG_T2CH: 318 val = get_counter(&s->timers[1]) >> 8; 319 break; 320 case CUDA_REG_SR: 321 val = s->sr; 322 s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT); 323 cuda_update_irq(s); 324 break; 325 case CUDA_REG_ACR: 326 val = s->acr; 327 break; 328 case CUDA_REG_PCR: 329 val = s->pcr; 330 break; 331 case CUDA_REG_IFR: 332 val = s->ifr; 333 if (s->ifr & s->ier) { 334 val |= 0x80; 335 } 336 break; 337 case CUDA_REG_IER: 338 val = s->ier | 0x80; 339 break; 340 default: 341 case CUDA_REG_ANH: 342 val = s->anh; 343 break; 344 } 345 if (addr != CUDA_REG_IFR || val != 0) { 346 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val); 347 } 348 349 return val; 350 } 351 352 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val) 353 { 354 CUDAState *s = opaque; 355 356 addr = (addr >> 9) & 0xf; 357 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val); 358 359 switch(addr) { 360 case CUDA_REG_B: 361 s->b = val; 362 cuda_update(s); 363 break; 364 case CUDA_REG_A: 365 s->a = val; 366 break; 367 case CUDA_REG_DIRB: 368 s->dirb = val; 369 break; 370 case CUDA_REG_DIRA: 371 s->dira = val; 372 break; 373 case CUDA_REG_T1CL: 374 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; 375 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 376 break; 377 case CUDA_REG_T1CH: 378 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); 379 s->ifr &= ~T1_INT; 380 set_counter(s, &s->timers[0], s->timers[0].latch); 381 break; 382 case CUDA_REG_T1LL: 383 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; 384 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 385 break; 386 case CUDA_REG_T1LH: 387 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); 388 s->ifr &= ~T1_INT; 389 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 390 break; 391 case CUDA_REG_T2CL: 392 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val; 393 break; 394 case CUDA_REG_T2CH: 395 /* To ensure T2 generates an interrupt on zero crossing with the 396 common timer code, write the value directly from the latch to 397 the counter */ 398 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8); 399 s->ifr &= ~T2_INT; 400 set_counter(s, &s->timers[1], s->timers[1].latch); 401 break; 402 case CUDA_REG_SR: 403 s->sr = val; 404 break; 405 case CUDA_REG_ACR: 406 s->acr = val; 407 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 408 cuda_update(s); 409 break; 410 case CUDA_REG_PCR: 411 s->pcr = val; 412 break; 413 case CUDA_REG_IFR: 414 /* reset bits */ 415 s->ifr &= ~val; 416 cuda_update_irq(s); 417 break; 418 case CUDA_REG_IER: 419 if (val & IER_SET) { 420 /* set bits */ 421 s->ier |= val & 0x7f; 422 } else { 423 /* reset bits */ 424 s->ier &= ~val; 425 } 426 cuda_update_irq(s); 427 break; 428 default: 429 case CUDA_REG_ANH: 430 s->anh = val; 431 break; 432 } 433 } 434 435 /* NOTE: TIP and TREQ are negated */ 436 static void cuda_update(CUDAState *s) 437 { 438 int packet_received, len; 439 440 packet_received = 0; 441 if (!(s->b & TIP)) { 442 /* transfer requested from host */ 443 444 if (s->acr & SR_OUT) { 445 /* data output */ 446 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { 447 if (s->data_out_index < sizeof(s->data_out)) { 448 CUDA_DPRINTF("send: %02x\n", s->sr); 449 s->data_out[s->data_out_index++] = s->sr; 450 cuda_delay_set_sr_int(s); 451 } 452 } 453 } else { 454 if (s->data_in_index < s->data_in_size) { 455 /* data input */ 456 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { 457 s->sr = s->data_in[s->data_in_index++]; 458 CUDA_DPRINTF("recv: %02x\n", s->sr); 459 /* indicate end of transfer */ 460 if (s->data_in_index >= s->data_in_size) { 461 s->b = (s->b | TREQ); 462 } 463 cuda_delay_set_sr_int(s); 464 } 465 } 466 } 467 } else { 468 /* no transfer requested: handle sync case */ 469 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) { 470 /* update TREQ state each time TACK change state */ 471 if (s->b & TACK) 472 s->b = (s->b | TREQ); 473 else 474 s->b = (s->b & ~TREQ); 475 cuda_delay_set_sr_int(s); 476 } else { 477 if (!(s->last_b & TIP)) { 478 /* handle end of host to cuda transfer */ 479 packet_received = (s->data_out_index > 0); 480 /* always an IRQ at the end of transfer */ 481 cuda_delay_set_sr_int(s); 482 } 483 /* signal if there is data to read */ 484 if (s->data_in_index < s->data_in_size) { 485 s->b = (s->b & ~TREQ); 486 } 487 } 488 } 489 490 s->last_acr = s->acr; 491 s->last_b = s->b; 492 493 /* NOTE: cuda_receive_packet_from_host() can call cuda_update() 494 recursively */ 495 if (packet_received) { 496 len = s->data_out_index; 497 s->data_out_index = 0; 498 cuda_receive_packet_from_host(s, s->data_out, len); 499 } 500 } 501 502 static void cuda_send_packet_to_host(CUDAState *s, 503 const uint8_t *data, int len) 504 { 505 #ifdef DEBUG_CUDA_PACKET 506 { 507 int i; 508 printf("cuda_send_packet_to_host:\n"); 509 for(i = 0; i < len; i++) 510 printf(" %02x", data[i]); 511 printf("\n"); 512 } 513 #endif 514 memcpy(s->data_in, data, len); 515 s->data_in_size = len; 516 s->data_in_index = 0; 517 cuda_update(s); 518 cuda_delay_set_sr_int(s); 519 } 520 521 static void cuda_adb_poll(void *opaque) 522 { 523 CUDAState *s = opaque; 524 uint8_t obuf[ADB_MAX_OUT_LEN + 2]; 525 int olen; 526 527 olen = adb_poll(&s->adb_bus, obuf + 2); 528 if (olen > 0) { 529 obuf[0] = ADB_PACKET; 530 obuf[1] = 0x40; /* polled data */ 531 cuda_send_packet_to_host(s, obuf, olen + 2); 532 } 533 timer_mod(s->adb_poll_timer, 534 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 535 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ)); 536 } 537 538 static void cuda_receive_packet(CUDAState *s, 539 const uint8_t *data, int len) 540 { 541 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] }; 542 int autopoll; 543 uint32_t ti; 544 545 switch(data[0]) { 546 case CUDA_AUTOPOLL: 547 autopoll = (data[1] != 0); 548 if (autopoll != s->autopoll) { 549 s->autopoll = autopoll; 550 if (autopoll) { 551 timer_mod(s->adb_poll_timer, 552 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 553 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ)); 554 } else { 555 timer_del(s->adb_poll_timer); 556 } 557 } 558 cuda_send_packet_to_host(s, obuf, 3); 559 break; 560 case CUDA_GET_6805_ADDR: 561 cuda_send_packet_to_host(s, obuf, 3); 562 break; 563 case CUDA_SET_TIME: 564 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4]; 565 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); 566 cuda_send_packet_to_host(s, obuf, 3); 567 break; 568 case CUDA_GET_TIME: 569 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); 570 obuf[3] = ti >> 24; 571 obuf[4] = ti >> 16; 572 obuf[5] = ti >> 8; 573 obuf[6] = ti; 574 cuda_send_packet_to_host(s, obuf, 7); 575 break; 576 case CUDA_FILE_SERVER_FLAG: 577 case CUDA_SET_DEVICE_LIST: 578 case CUDA_SET_AUTO_RATE: 579 case CUDA_SET_POWER_MESSAGES: 580 cuda_send_packet_to_host(s, obuf, 3); 581 break; 582 case CUDA_POWERDOWN: 583 cuda_send_packet_to_host(s, obuf, 3); 584 qemu_system_shutdown_request(); 585 break; 586 case CUDA_RESET_SYSTEM: 587 cuda_send_packet_to_host(s, obuf, 3); 588 qemu_system_reset_request(); 589 break; 590 case CUDA_COMBINED_FORMAT_IIC: 591 obuf[0] = ERROR_PACKET; 592 obuf[1] = 0x5; 593 obuf[2] = CUDA_PACKET; 594 obuf[3] = data[0]; 595 cuda_send_packet_to_host(s, obuf, 4); 596 break; 597 case CUDA_GET_SET_IIC: 598 if (len == 4) { 599 cuda_send_packet_to_host(s, obuf, 3); 600 } else { 601 obuf[0] = ERROR_PACKET; 602 obuf[1] = 0x2; 603 obuf[2] = CUDA_PACKET; 604 obuf[3] = data[0]; 605 cuda_send_packet_to_host(s, obuf, 4); 606 } 607 break; 608 default: 609 break; 610 } 611 } 612 613 static void cuda_receive_packet_from_host(CUDAState *s, 614 const uint8_t *data, int len) 615 { 616 #ifdef DEBUG_CUDA_PACKET 617 { 618 int i; 619 printf("cuda_receive_packet_from_host:\n"); 620 for(i = 0; i < len; i++) 621 printf(" %02x", data[i]); 622 printf("\n"); 623 } 624 #endif 625 switch(data[0]) { 626 case ADB_PACKET: 627 { 628 uint8_t obuf[ADB_MAX_OUT_LEN + 3]; 629 int olen; 630 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1); 631 if (olen > 0) { 632 obuf[0] = ADB_PACKET; 633 obuf[1] = 0x00; 634 cuda_send_packet_to_host(s, obuf, olen + 2); 635 } else { 636 /* error */ 637 obuf[0] = ADB_PACKET; 638 obuf[1] = -olen; 639 obuf[2] = data[1]; 640 olen = 0; 641 cuda_send_packet_to_host(s, obuf, olen + 3); 642 } 643 } 644 break; 645 case CUDA_PACKET: 646 cuda_receive_packet(s, data + 1, len - 1); 647 break; 648 } 649 } 650 651 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value) 652 { 653 } 654 655 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value) 656 { 657 } 658 659 static uint32_t cuda_readw (void *opaque, hwaddr addr) 660 { 661 return 0; 662 } 663 664 static uint32_t cuda_readl (void *opaque, hwaddr addr) 665 { 666 return 0; 667 } 668 669 static const MemoryRegionOps cuda_ops = { 670 .old_mmio = { 671 .write = { 672 cuda_writeb, 673 cuda_writew, 674 cuda_writel, 675 }, 676 .read = { 677 cuda_readb, 678 cuda_readw, 679 cuda_readl, 680 }, 681 }, 682 .endianness = DEVICE_NATIVE_ENDIAN, 683 }; 684 685 static bool cuda_timer_exist(void *opaque, int version_id) 686 { 687 CUDATimer *s = opaque; 688 689 return s->timer != NULL; 690 } 691 692 static const VMStateDescription vmstate_cuda_timer = { 693 .name = "cuda_timer", 694 .version_id = 0, 695 .minimum_version_id = 0, 696 .fields = (VMStateField[]) { 697 VMSTATE_UINT16(latch, CUDATimer), 698 VMSTATE_UINT16(counter_value, CUDATimer), 699 VMSTATE_INT64(load_time, CUDATimer), 700 VMSTATE_INT64(next_irq_time, CUDATimer), 701 VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist), 702 VMSTATE_END_OF_LIST() 703 } 704 }; 705 706 static const VMStateDescription vmstate_cuda = { 707 .name = "cuda", 708 .version_id = 2, 709 .minimum_version_id = 2, 710 .fields = (VMStateField[]) { 711 VMSTATE_UINT8(a, CUDAState), 712 VMSTATE_UINT8(b, CUDAState), 713 VMSTATE_UINT8(dira, CUDAState), 714 VMSTATE_UINT8(dirb, CUDAState), 715 VMSTATE_UINT8(sr, CUDAState), 716 VMSTATE_UINT8(acr, CUDAState), 717 VMSTATE_UINT8(pcr, CUDAState), 718 VMSTATE_UINT8(ifr, CUDAState), 719 VMSTATE_UINT8(ier, CUDAState), 720 VMSTATE_UINT8(anh, CUDAState), 721 VMSTATE_INT32(data_in_size, CUDAState), 722 VMSTATE_INT32(data_in_index, CUDAState), 723 VMSTATE_INT32(data_out_index, CUDAState), 724 VMSTATE_UINT8(autopoll, CUDAState), 725 VMSTATE_BUFFER(data_in, CUDAState), 726 VMSTATE_BUFFER(data_out, CUDAState), 727 VMSTATE_UINT32(tick_offset, CUDAState), 728 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1, 729 vmstate_cuda_timer, CUDATimer), 730 VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState), 731 VMSTATE_END_OF_LIST() 732 } 733 }; 734 735 static void cuda_reset(DeviceState *dev) 736 { 737 CUDAState *s = CUDA(dev); 738 739 s->b = 0; 740 s->a = 0; 741 s->dirb = 0xff; 742 s->dira = 0; 743 s->sr = 0; 744 s->acr = 0; 745 s->pcr = 0; 746 s->ifr = 0; 747 s->ier = 0; 748 // s->ier = T1_INT | SR_INT; 749 s->anh = 0; 750 s->data_in_size = 0; 751 s->data_in_index = 0; 752 s->data_out_index = 0; 753 s->autopoll = 0; 754 755 s->timers[0].latch = 0xffff; 756 set_counter(s, &s->timers[0], 0xffff); 757 758 s->timers[1].latch = 0xffff; 759 760 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s); 761 } 762 763 static void cuda_realizefn(DeviceState *dev, Error **errp) 764 { 765 CUDAState *s = CUDA(dev); 766 struct tm tm; 767 768 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s); 769 s->timers[0].frequency = s->frequency; 770 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s); 771 s->timers[1].frequency = (SCALE_US * 6000) / 4700; 772 773 qemu_get_timedate(&tm, 0); 774 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; 775 776 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s); 777 } 778 779 static void cuda_initfn(Object *obj) 780 { 781 SysBusDevice *d = SYS_BUS_DEVICE(obj); 782 CUDAState *s = CUDA(obj); 783 int i; 784 785 memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000); 786 sysbus_init_mmio(d, &s->mem); 787 sysbus_init_irq(d, &s->irq); 788 789 for (i = 0; i < ARRAY_SIZE(s->timers); i++) { 790 s->timers[i].index = i; 791 } 792 793 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS, 794 DEVICE(obj), "adb.0"); 795 } 796 797 static Property cuda_properties[] = { 798 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0), 799 DEFINE_PROP_END_OF_LIST() 800 }; 801 802 static void cuda_class_init(ObjectClass *oc, void *data) 803 { 804 DeviceClass *dc = DEVICE_CLASS(oc); 805 806 dc->realize = cuda_realizefn; 807 dc->reset = cuda_reset; 808 dc->vmsd = &vmstate_cuda; 809 dc->props = cuda_properties; 810 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 811 } 812 813 static const TypeInfo cuda_type_info = { 814 .name = TYPE_CUDA, 815 .parent = TYPE_SYS_BUS_DEVICE, 816 .instance_size = sizeof(CUDAState), 817 .instance_init = cuda_initfn, 818 .class_init = cuda_class_init, 819 }; 820 821 static void cuda_register_types(void) 822 { 823 type_register_static(&cuda_type_info); 824 } 825 826 type_init(cuda_register_types) 827