1 /* 2 * QEMU PowerMac CUDA device support 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "hw/hw.h" 26 #include "hw/ppc/mac.h" 27 #include "hw/input/adb.h" 28 #include "qemu/timer.h" 29 #include "sysemu/sysemu.h" 30 31 /* XXX: implement all timer modes */ 32 33 /* debug CUDA */ 34 //#define DEBUG_CUDA 35 36 /* debug CUDA packets */ 37 //#define DEBUG_CUDA_PACKET 38 39 #ifdef DEBUG_CUDA 40 #define CUDA_DPRINTF(fmt, ...) \ 41 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0) 42 #else 43 #define CUDA_DPRINTF(fmt, ...) 44 #endif 45 46 /* Bits in B data register: all active low */ 47 #define TREQ 0x08 /* Transfer request (input) */ 48 #define TACK 0x10 /* Transfer acknowledge (output) */ 49 #define TIP 0x20 /* Transfer in progress (output) */ 50 51 /* Bits in ACR */ 52 #define SR_CTRL 0x1c /* Shift register control bits */ 53 #define SR_EXT 0x0c /* Shift on external clock */ 54 #define SR_OUT 0x10 /* Shift out if 1 */ 55 56 /* Bits in IFR and IER */ 57 #define IER_SET 0x80 /* set bits in IER */ 58 #define IER_CLR 0 /* clear bits in IER */ 59 #define SR_INT 0x04 /* Shift register full/empty */ 60 #define T1_INT 0x40 /* Timer 1 interrupt */ 61 #define T2_INT 0x20 /* Timer 2 interrupt */ 62 63 /* Bits in ACR */ 64 #define T1MODE 0xc0 /* Timer 1 mode */ 65 #define T1MODE_CONT 0x40 /* continuous interrupts */ 66 67 /* commands (1st byte) */ 68 #define ADB_PACKET 0 69 #define CUDA_PACKET 1 70 #define ERROR_PACKET 2 71 #define TIMER_PACKET 3 72 #define POWER_PACKET 4 73 #define MACIIC_PACKET 5 74 #define PMU_PACKET 6 75 76 77 /* CUDA commands (2nd byte) */ 78 #define CUDA_WARM_START 0x0 79 #define CUDA_AUTOPOLL 0x1 80 #define CUDA_GET_6805_ADDR 0x2 81 #define CUDA_GET_TIME 0x3 82 #define CUDA_GET_PRAM 0x7 83 #define CUDA_SET_6805_ADDR 0x8 84 #define CUDA_SET_TIME 0x9 85 #define CUDA_POWERDOWN 0xa 86 #define CUDA_POWERUP_TIME 0xb 87 #define CUDA_SET_PRAM 0xc 88 #define CUDA_MS_RESET 0xd 89 #define CUDA_SEND_DFAC 0xe 90 #define CUDA_BATTERY_SWAP_SENSE 0x10 91 #define CUDA_RESET_SYSTEM 0x11 92 #define CUDA_SET_IPL 0x12 93 #define CUDA_FILE_SERVER_FLAG 0x13 94 #define CUDA_SET_AUTO_RATE 0x14 95 #define CUDA_GET_AUTO_RATE 0x16 96 #define CUDA_SET_DEVICE_LIST 0x19 97 #define CUDA_GET_DEVICE_LIST 0x1a 98 #define CUDA_SET_ONE_SECOND_MODE 0x1b 99 #define CUDA_SET_POWER_MESSAGES 0x21 100 #define CUDA_GET_SET_IIC 0x22 101 #define CUDA_WAKEUP 0x23 102 #define CUDA_TIMER_TICKLE 0x24 103 #define CUDA_COMBINED_FORMAT_IIC 0x25 104 105 #define CUDA_TIMER_FREQ (4700000 / 6) 106 #define CUDA_ADB_POLL_FREQ 50 107 108 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */ 109 #define RTC_OFFSET 2082844800 110 111 static void cuda_update(CUDAState *s); 112 static void cuda_receive_packet_from_host(CUDAState *s, 113 const uint8_t *data, int len); 114 static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 115 int64_t current_time); 116 117 static void cuda_update_irq(CUDAState *s) 118 { 119 if (s->ifr & s->ier & (SR_INT | T1_INT)) { 120 qemu_irq_raise(s->irq); 121 } else { 122 qemu_irq_lower(s->irq); 123 } 124 } 125 126 static unsigned int get_counter(CUDATimer *s) 127 { 128 int64_t d; 129 unsigned int counter; 130 131 d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->load_time, 132 CUDA_TIMER_FREQ, get_ticks_per_sec()); 133 if (s->index == 0) { 134 /* the timer goes down from latch to -1 (period of latch + 2) */ 135 if (d <= (s->counter_value + 1)) { 136 counter = (s->counter_value - d) & 0xffff; 137 } else { 138 counter = (d - (s->counter_value + 1)) % (s->latch + 2); 139 counter = (s->latch - counter) & 0xffff; 140 } 141 } else { 142 counter = (s->counter_value - d) & 0xffff; 143 } 144 return counter; 145 } 146 147 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val) 148 { 149 CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val); 150 ti->load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 151 ti->counter_value = val; 152 cuda_timer_update(s, ti, ti->load_time); 153 } 154 155 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time) 156 { 157 int64_t d, next_time; 158 unsigned int counter; 159 160 /* current counter value */ 161 d = muldiv64(current_time - s->load_time, 162 CUDA_TIMER_FREQ, get_ticks_per_sec()); 163 /* the timer goes down from latch to -1 (period of latch + 2) */ 164 if (d <= (s->counter_value + 1)) { 165 counter = (s->counter_value - d) & 0xffff; 166 } else { 167 counter = (d - (s->counter_value + 1)) % (s->latch + 2); 168 counter = (s->latch - counter) & 0xffff; 169 } 170 171 /* Note: we consider the irq is raised on 0 */ 172 if (counter == 0xffff) { 173 next_time = d + s->latch + 1; 174 } else if (counter == 0) { 175 next_time = d + s->latch + 2; 176 } else { 177 next_time = d + counter; 178 } 179 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n", 180 s->latch, d, next_time - d); 181 next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) + 182 s->load_time; 183 if (next_time <= current_time) 184 next_time = current_time + 1; 185 return next_time; 186 } 187 188 static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 189 int64_t current_time) 190 { 191 if (!ti->timer) 192 return; 193 if ((s->acr & T1MODE) != T1MODE_CONT) { 194 timer_del(ti->timer); 195 } else { 196 ti->next_irq_time = get_next_irq_time(ti, current_time); 197 timer_mod(ti->timer, ti->next_irq_time); 198 } 199 } 200 201 static void cuda_timer1(void *opaque) 202 { 203 CUDAState *s = opaque; 204 CUDATimer *ti = &s->timers[0]; 205 206 cuda_timer_update(s, ti, ti->next_irq_time); 207 s->ifr |= T1_INT; 208 cuda_update_irq(s); 209 } 210 211 static uint32_t cuda_readb(void *opaque, hwaddr addr) 212 { 213 CUDAState *s = opaque; 214 uint32_t val; 215 216 addr = (addr >> 9) & 0xf; 217 switch(addr) { 218 case 0: 219 val = s->b; 220 break; 221 case 1: 222 val = s->a; 223 break; 224 case 2: 225 val = s->dirb; 226 break; 227 case 3: 228 val = s->dira; 229 break; 230 case 4: 231 val = get_counter(&s->timers[0]) & 0xff; 232 s->ifr &= ~T1_INT; 233 cuda_update_irq(s); 234 break; 235 case 5: 236 val = get_counter(&s->timers[0]) >> 8; 237 cuda_update_irq(s); 238 break; 239 case 6: 240 val = s->timers[0].latch & 0xff; 241 break; 242 case 7: 243 /* XXX: check this */ 244 val = (s->timers[0].latch >> 8) & 0xff; 245 break; 246 case 8: 247 val = get_counter(&s->timers[1]) & 0xff; 248 s->ifr &= ~T2_INT; 249 break; 250 case 9: 251 val = get_counter(&s->timers[1]) >> 8; 252 break; 253 case 10: 254 val = s->sr; 255 s->ifr &= ~SR_INT; 256 cuda_update_irq(s); 257 break; 258 case 11: 259 val = s->acr; 260 break; 261 case 12: 262 val = s->pcr; 263 break; 264 case 13: 265 val = s->ifr; 266 if (s->ifr & s->ier) 267 val |= 0x80; 268 break; 269 case 14: 270 val = s->ier | 0x80; 271 break; 272 default: 273 case 15: 274 val = s->anh; 275 break; 276 } 277 if (addr != 13 || val != 0) { 278 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val); 279 } 280 281 return val; 282 } 283 284 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val) 285 { 286 CUDAState *s = opaque; 287 288 addr = (addr >> 9) & 0xf; 289 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val); 290 291 switch(addr) { 292 case 0: 293 s->b = val; 294 cuda_update(s); 295 break; 296 case 1: 297 s->a = val; 298 break; 299 case 2: 300 s->dirb = val; 301 break; 302 case 3: 303 s->dira = val; 304 break; 305 case 4: 306 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; 307 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 308 break; 309 case 5: 310 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); 311 s->ifr &= ~T1_INT; 312 set_counter(s, &s->timers[0], s->timers[0].latch); 313 break; 314 case 6: 315 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; 316 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 317 break; 318 case 7: 319 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); 320 s->ifr &= ~T1_INT; 321 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 322 break; 323 case 8: 324 s->timers[1].latch = val; 325 set_counter(s, &s->timers[1], val); 326 break; 327 case 9: 328 set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch); 329 break; 330 case 10: 331 s->sr = val; 332 break; 333 case 11: 334 s->acr = val; 335 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 336 cuda_update(s); 337 break; 338 case 12: 339 s->pcr = val; 340 break; 341 case 13: 342 /* reset bits */ 343 s->ifr &= ~val; 344 cuda_update_irq(s); 345 break; 346 case 14: 347 if (val & IER_SET) { 348 /* set bits */ 349 s->ier |= val & 0x7f; 350 } else { 351 /* reset bits */ 352 s->ier &= ~val; 353 } 354 cuda_update_irq(s); 355 break; 356 default: 357 case 15: 358 s->anh = val; 359 break; 360 } 361 } 362 363 /* NOTE: TIP and TREQ are negated */ 364 static void cuda_update(CUDAState *s) 365 { 366 int packet_received, len; 367 368 packet_received = 0; 369 if (!(s->b & TIP)) { 370 /* transfer requested from host */ 371 372 if (s->acr & SR_OUT) { 373 /* data output */ 374 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { 375 if (s->data_out_index < sizeof(s->data_out)) { 376 CUDA_DPRINTF("send: %02x\n", s->sr); 377 s->data_out[s->data_out_index++] = s->sr; 378 s->ifr |= SR_INT; 379 cuda_update_irq(s); 380 } 381 } 382 } else { 383 if (s->data_in_index < s->data_in_size) { 384 /* data input */ 385 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { 386 s->sr = s->data_in[s->data_in_index++]; 387 CUDA_DPRINTF("recv: %02x\n", s->sr); 388 /* indicate end of transfer */ 389 if (s->data_in_index >= s->data_in_size) { 390 s->b = (s->b | TREQ); 391 } 392 s->ifr |= SR_INT; 393 cuda_update_irq(s); 394 } 395 } 396 } 397 } else { 398 /* no transfer requested: handle sync case */ 399 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) { 400 /* update TREQ state each time TACK change state */ 401 if (s->b & TACK) 402 s->b = (s->b | TREQ); 403 else 404 s->b = (s->b & ~TREQ); 405 s->ifr |= SR_INT; 406 cuda_update_irq(s); 407 } else { 408 if (!(s->last_b & TIP)) { 409 /* handle end of host to cuda transfer */ 410 packet_received = (s->data_out_index > 0); 411 /* always an IRQ at the end of transfer */ 412 s->ifr |= SR_INT; 413 cuda_update_irq(s); 414 } 415 /* signal if there is data to read */ 416 if (s->data_in_index < s->data_in_size) { 417 s->b = (s->b & ~TREQ); 418 } 419 } 420 } 421 422 s->last_acr = s->acr; 423 s->last_b = s->b; 424 425 /* NOTE: cuda_receive_packet_from_host() can call cuda_update() 426 recursively */ 427 if (packet_received) { 428 len = s->data_out_index; 429 s->data_out_index = 0; 430 cuda_receive_packet_from_host(s, s->data_out, len); 431 } 432 } 433 434 static void cuda_send_packet_to_host(CUDAState *s, 435 const uint8_t *data, int len) 436 { 437 #ifdef DEBUG_CUDA_PACKET 438 { 439 int i; 440 printf("cuda_send_packet_to_host:\n"); 441 for(i = 0; i < len; i++) 442 printf(" %02x", data[i]); 443 printf("\n"); 444 } 445 #endif 446 memcpy(s->data_in, data, len); 447 s->data_in_size = len; 448 s->data_in_index = 0; 449 cuda_update(s); 450 s->ifr |= SR_INT; 451 cuda_update_irq(s); 452 } 453 454 static void cuda_adb_poll(void *opaque) 455 { 456 CUDAState *s = opaque; 457 uint8_t obuf[ADB_MAX_OUT_LEN + 2]; 458 int olen; 459 460 olen = adb_poll(&s->adb_bus, obuf + 2); 461 if (olen > 0) { 462 obuf[0] = ADB_PACKET; 463 obuf[1] = 0x40; /* polled data */ 464 cuda_send_packet_to_host(s, obuf, olen + 2); 465 } 466 timer_mod(s->adb_poll_timer, 467 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 468 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ)); 469 } 470 471 static void cuda_receive_packet(CUDAState *s, 472 const uint8_t *data, int len) 473 { 474 uint8_t obuf[16]; 475 int autopoll; 476 uint32_t ti; 477 478 switch(data[0]) { 479 case CUDA_AUTOPOLL: 480 autopoll = (data[1] != 0); 481 if (autopoll != s->autopoll) { 482 s->autopoll = autopoll; 483 if (autopoll) { 484 timer_mod(s->adb_poll_timer, 485 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 486 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ)); 487 } else { 488 timer_del(s->adb_poll_timer); 489 } 490 } 491 obuf[0] = CUDA_PACKET; 492 obuf[1] = data[1]; 493 cuda_send_packet_to_host(s, obuf, 2); 494 break; 495 case CUDA_SET_TIME: 496 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4]; 497 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); 498 obuf[0] = CUDA_PACKET; 499 obuf[1] = 0; 500 obuf[2] = 0; 501 cuda_send_packet_to_host(s, obuf, 3); 502 break; 503 case CUDA_GET_TIME: 504 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); 505 obuf[0] = CUDA_PACKET; 506 obuf[1] = 0; 507 obuf[2] = 0; 508 obuf[3] = ti >> 24; 509 obuf[4] = ti >> 16; 510 obuf[5] = ti >> 8; 511 obuf[6] = ti; 512 cuda_send_packet_to_host(s, obuf, 7); 513 break; 514 case CUDA_FILE_SERVER_FLAG: 515 case CUDA_SET_DEVICE_LIST: 516 case CUDA_SET_AUTO_RATE: 517 case CUDA_SET_POWER_MESSAGES: 518 obuf[0] = CUDA_PACKET; 519 obuf[1] = 0; 520 cuda_send_packet_to_host(s, obuf, 2); 521 break; 522 case CUDA_POWERDOWN: 523 obuf[0] = CUDA_PACKET; 524 obuf[1] = 0; 525 cuda_send_packet_to_host(s, obuf, 2); 526 qemu_system_shutdown_request(); 527 break; 528 case CUDA_RESET_SYSTEM: 529 obuf[0] = CUDA_PACKET; 530 obuf[1] = 0; 531 cuda_send_packet_to_host(s, obuf, 2); 532 qemu_system_reset_request(); 533 break; 534 default: 535 break; 536 } 537 } 538 539 static void cuda_receive_packet_from_host(CUDAState *s, 540 const uint8_t *data, int len) 541 { 542 #ifdef DEBUG_CUDA_PACKET 543 { 544 int i; 545 printf("cuda_receive_packet_from_host:\n"); 546 for(i = 0; i < len; i++) 547 printf(" %02x", data[i]); 548 printf("\n"); 549 } 550 #endif 551 switch(data[0]) { 552 case ADB_PACKET: 553 { 554 uint8_t obuf[ADB_MAX_OUT_LEN + 2]; 555 int olen; 556 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1); 557 if (olen > 0) { 558 obuf[0] = ADB_PACKET; 559 obuf[1] = 0x00; 560 } else { 561 /* error */ 562 obuf[0] = ADB_PACKET; 563 obuf[1] = -olen; 564 olen = 0; 565 } 566 cuda_send_packet_to_host(s, obuf, olen + 2); 567 } 568 break; 569 case CUDA_PACKET: 570 cuda_receive_packet(s, data + 1, len - 1); 571 break; 572 } 573 } 574 575 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value) 576 { 577 } 578 579 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value) 580 { 581 } 582 583 static uint32_t cuda_readw (void *opaque, hwaddr addr) 584 { 585 return 0; 586 } 587 588 static uint32_t cuda_readl (void *opaque, hwaddr addr) 589 { 590 return 0; 591 } 592 593 static const MemoryRegionOps cuda_ops = { 594 .old_mmio = { 595 .write = { 596 cuda_writeb, 597 cuda_writew, 598 cuda_writel, 599 }, 600 .read = { 601 cuda_readb, 602 cuda_readw, 603 cuda_readl, 604 }, 605 }, 606 .endianness = DEVICE_NATIVE_ENDIAN, 607 }; 608 609 static bool cuda_timer_exist(void *opaque, int version_id) 610 { 611 CUDATimer *s = opaque; 612 613 return s->timer != NULL; 614 } 615 616 static const VMStateDescription vmstate_cuda_timer = { 617 .name = "cuda_timer", 618 .version_id = 0, 619 .minimum_version_id = 0, 620 .minimum_version_id_old = 0, 621 .fields = (VMStateField[]) { 622 VMSTATE_UINT16(latch, CUDATimer), 623 VMSTATE_UINT16(counter_value, CUDATimer), 624 VMSTATE_INT64(load_time, CUDATimer), 625 VMSTATE_INT64(next_irq_time, CUDATimer), 626 VMSTATE_TIMER_TEST(timer, CUDATimer, cuda_timer_exist), 627 VMSTATE_END_OF_LIST() 628 } 629 }; 630 631 static const VMStateDescription vmstate_cuda = { 632 .name = "cuda", 633 .version_id = 1, 634 .minimum_version_id = 1, 635 .minimum_version_id_old = 1, 636 .fields = (VMStateField[]) { 637 VMSTATE_UINT8(a, CUDAState), 638 VMSTATE_UINT8(b, CUDAState), 639 VMSTATE_UINT8(dira, CUDAState), 640 VMSTATE_UINT8(dirb, CUDAState), 641 VMSTATE_UINT8(sr, CUDAState), 642 VMSTATE_UINT8(acr, CUDAState), 643 VMSTATE_UINT8(pcr, CUDAState), 644 VMSTATE_UINT8(ifr, CUDAState), 645 VMSTATE_UINT8(ier, CUDAState), 646 VMSTATE_UINT8(anh, CUDAState), 647 VMSTATE_INT32(data_in_size, CUDAState), 648 VMSTATE_INT32(data_in_index, CUDAState), 649 VMSTATE_INT32(data_out_index, CUDAState), 650 VMSTATE_UINT8(autopoll, CUDAState), 651 VMSTATE_BUFFER(data_in, CUDAState), 652 VMSTATE_BUFFER(data_out, CUDAState), 653 VMSTATE_UINT32(tick_offset, CUDAState), 654 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1, 655 vmstate_cuda_timer, CUDATimer), 656 VMSTATE_END_OF_LIST() 657 } 658 }; 659 660 static void cuda_reset(DeviceState *dev) 661 { 662 CUDAState *s = CUDA(dev); 663 664 s->b = 0; 665 s->a = 0; 666 s->dirb = 0; 667 s->dira = 0; 668 s->sr = 0; 669 s->acr = 0; 670 s->pcr = 0; 671 s->ifr = 0; 672 s->ier = 0; 673 // s->ier = T1_INT | SR_INT; 674 s->anh = 0; 675 s->data_in_size = 0; 676 s->data_in_index = 0; 677 s->data_out_index = 0; 678 s->autopoll = 0; 679 680 s->timers[0].latch = 0xffff; 681 set_counter(s, &s->timers[0], 0xffff); 682 683 s->timers[1].latch = 0; 684 set_counter(s, &s->timers[1], 0xffff); 685 } 686 687 static void cuda_realizefn(DeviceState *dev, Error **errp) 688 { 689 CUDAState *s = CUDA(dev); 690 struct tm tm; 691 692 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s); 693 694 qemu_get_timedate(&tm, 0); 695 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; 696 697 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s); 698 } 699 700 static void cuda_initfn(Object *obj) 701 { 702 SysBusDevice *d = SYS_BUS_DEVICE(obj); 703 CUDAState *s = CUDA(obj); 704 int i; 705 706 memory_region_init_io(&s->mem, NULL, &cuda_ops, s, "cuda", 0x2000); 707 sysbus_init_mmio(d, &s->mem); 708 sysbus_init_irq(d, &s->irq); 709 710 for (i = 0; i < ARRAY_SIZE(s->timers); i++) { 711 s->timers[i].index = i; 712 } 713 714 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS, 715 DEVICE(obj), "adb.0"); 716 } 717 718 static void cuda_class_init(ObjectClass *oc, void *data) 719 { 720 DeviceClass *dc = DEVICE_CLASS(oc); 721 722 dc->realize = cuda_realizefn; 723 dc->reset = cuda_reset; 724 dc->vmsd = &vmstate_cuda; 725 } 726 727 static const TypeInfo cuda_type_info = { 728 .name = TYPE_CUDA, 729 .parent = TYPE_SYS_BUS_DEVICE, 730 .instance_size = sizeof(CUDAState), 731 .instance_init = cuda_initfn, 732 .class_init = cuda_class_init, 733 }; 734 735 static void cuda_register_types(void) 736 { 737 type_register_static(&cuda_type_info); 738 } 739 740 type_init(cuda_register_types) 741