1 /* 2 * QEMU m68k Macintosh VIA device support 3 * 4 * Copyright (c) 2011-2018 Laurent Vivier 5 * Copyright (c) 2018 Mark Cave-Ayland 6 * 7 * Some parts from hw/misc/macio/cuda.c 8 * 9 * Copyright (c) 2004-2007 Fabrice Bellard 10 * Copyright (c) 2007 Jocelyn Mayer 11 * 12 * some parts from linux-2.6.29, arch/m68k/include/asm/mac_via.h 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2 or later. 15 * See the COPYING file in the top-level directory. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "migration/vmstate.h" 20 #include "hw/sysbus.h" 21 #include "hw/irq.h" 22 #include "qemu/timer.h" 23 #include "hw/misc/mac_via.h" 24 #include "hw/misc/mos6522.h" 25 #include "hw/input/adb.h" 26 #include "sysemu/runstate.h" 27 #include "qapi/error.h" 28 #include "qemu/cutils.h" 29 #include "hw/qdev-properties.h" 30 #include "hw/qdev-properties-system.h" 31 #include "sysemu/block-backend.h" 32 #include "sysemu/rtc.h" 33 #include "trace.h" 34 #include "qemu/log.h" 35 36 /* 37 * VIAs: There are two in every machine 38 */ 39 40 /* 41 * Not all of these are true post MacII I think. 42 * CSA: probably the ones CHRP marks as 'unused' change purposes 43 * when the IWM becomes the SWIM. 44 * http://www.rs6000.ibm.com/resource/technology/chrpio/via5.mak.html 45 * ftp://ftp.austin.ibm.com/pub/technology/spec/chrp/inwork/CHRP_IORef_1.0.pdf 46 * 47 * also, http://developer.apple.com/technotes/hw/hw_09.html claims the 48 * following changes for IIfx: 49 * VIA1A_vSccWrReq not available and that VIA1A_vSync has moved to an IOP. 50 * Also, "All of the functionality of VIA2 has been moved to other chips". 51 */ 52 53 #define VIA1A_vSccWrReq 0x80 /* 54 * SCC write. (input) 55 * [CHRP] SCC WREQ: Reflects the state of the 56 * Wait/Request pins from the SCC. 57 * [Macintosh Family Hardware] 58 * as CHRP on SE/30,II,IIx,IIcx,IIci. 59 * on IIfx, "0 means an active request" 60 */ 61 #define VIA1A_vRev8 0x40 /* 62 * Revision 8 board ??? 63 * [CHRP] En WaitReqB: Lets the WaitReq_L 64 * signal from port B of the SCC appear on 65 * the PA7 input pin. Output. 66 * [Macintosh Family] On the SE/30, this 67 * is the bit to flip screen buffers. 68 * 0=alternate, 1=main. 69 * on II,IIx,IIcx,IIci,IIfx this is a bit 70 * for Rev ID. 0=II,IIx, 1=IIcx,IIci,IIfx 71 */ 72 #define VIA1A_vHeadSel 0x20 /* 73 * Head select for IWM. 74 * [CHRP] unused. 75 * [Macintosh Family] "Floppy disk 76 * state-control line SEL" on all but IIfx 77 */ 78 #define VIA1A_vOverlay 0x10 /* 79 * [Macintosh Family] On SE/30,II,IIx,IIcx 80 * this bit enables the "Overlay" address 81 * map in the address decoders as it is on 82 * reset for mapping the ROM over the reset 83 * vector. 1=use overlay map. 84 * On the IIci,IIfx it is another bit of the 85 * CPU ID: 0=normal IIci, 1=IIci with parity 86 * feature or IIfx. 87 * [CHRP] En WaitReqA: Lets the WaitReq_L 88 * signal from port A of the SCC appear 89 * on the PA7 input pin (CHRP). Output. 90 * [MkLinux] "Drive Select" 91 * (with 0x20 being 'disk head select') 92 */ 93 #define VIA1A_vSync 0x08 /* 94 * [CHRP] Sync Modem: modem clock select: 95 * 1: select the external serial clock to 96 * drive the SCC's /RTxCA pin. 97 * 0: Select the 3.6864MHz clock to drive 98 * the SCC cell. 99 * [Macintosh Family] Correct on all but IIfx 100 */ 101 102 /* 103 * Macintosh Family Hardware sez: bits 0-2 of VIA1A are volume control 104 * on Macs which had the PWM sound hardware. Reserved on newer models. 105 * On IIci,IIfx, bits 1-2 are the rest of the CPU ID: 106 * bit 2: 1=IIci, 0=IIfx 107 * bit 1: 1 on both IIci and IIfx. 108 * MkLinux sez bit 0 is 'burnin flag' in this case. 109 * CHRP sez: VIA1A bits 0-2 and 5 are 'unused': if programmed as 110 * inputs, these bits will read 0. 111 */ 112 #define VIA1A_vVolume 0x07 /* Audio volume mask for PWM */ 113 #define VIA1A_CPUID0 0x02 /* CPU id bit 0 on RBV, others */ 114 #define VIA1A_CPUID1 0x04 /* CPU id bit 0 on RBV, others */ 115 #define VIA1A_CPUID2 0x10 /* CPU id bit 0 on RBV, others */ 116 #define VIA1A_CPUID3 0x40 /* CPU id bit 0 on RBV, others */ 117 118 /* 119 * Info on VIA1B is from Macintosh Family Hardware & MkLinux. 120 * CHRP offers no info. 121 */ 122 #define VIA1B_vSound 0x80 /* 123 * Sound enable (for compatibility with 124 * PWM hardware) 0=enabled. 125 * Also, on IIci w/parity, shows parity error 126 * 0=error, 1=OK. 127 */ 128 #define VIA1B_vMystery 0x40 /* 129 * On IIci, parity enable. 0=enabled,1=disabled 130 * On SE/30, vertical sync interrupt enable. 131 * 0=enabled. This vSync interrupt shows up 132 * as a slot $E interrupt. 133 * On Quadra 800 this bit toggles A/UX mode which 134 * configures the glue logic to deliver some IRQs 135 * at different levels compared to a classic 136 * Mac. 137 */ 138 #define VIA1B_vADBS2 0x20 /* ADB state input bit 1 (unused on IIfx) */ 139 #define VIA1B_vADBS1 0x10 /* ADB state input bit 0 (unused on IIfx) */ 140 #define VIA1B_vADBInt 0x08 /* ADB interrupt 0=interrupt (unused on IIfx)*/ 141 #define VIA1B_vRTCEnb 0x04 /* Enable Real time clock. 0=enabled. */ 142 #define VIA1B_vRTCClk 0x02 /* Real time clock serial-clock line. */ 143 #define VIA1B_vRTCData 0x01 /* Real time clock serial-data line. */ 144 145 /* 146 * VIA2 A register is the interrupt lines raised off the nubus 147 * slots. 148 * The below info is from 'Macintosh Family Hardware.' 149 * MkLinux calls the 'IIci internal video IRQ' below the 'RBV slot 0 irq.' 150 * It also notes that the slot $9 IRQ is the 'Ethernet IRQ' and 151 * defines the 'Video IRQ' as 0x40 for the 'EVR' VIA work-alike. 152 * Perhaps OSS uses vRAM1 and vRAM2 for ADB. 153 */ 154 155 #define VIA2A_vRAM1 0x80 /* RAM size bit 1 (IIci: reserved) */ 156 #define VIA2A_vRAM0 0x40 /* RAM size bit 0 (IIci: internal video IRQ) */ 157 #define VIA2A_vIRQE 0x20 /* IRQ from slot $E */ 158 #define VIA2A_vIRQD 0x10 /* IRQ from slot $D */ 159 #define VIA2A_vIRQC 0x08 /* IRQ from slot $C */ 160 #define VIA2A_vIRQB 0x04 /* IRQ from slot $B */ 161 #define VIA2A_vIRQA 0x02 /* IRQ from slot $A */ 162 #define VIA2A_vIRQ9 0x01 /* IRQ from slot $9 */ 163 164 /* 165 * RAM size bits decoded as follows: 166 * bit1 bit0 size of ICs in bank A 167 * 0 0 256 kbit 168 * 0 1 1 Mbit 169 * 1 0 4 Mbit 170 * 1 1 16 Mbit 171 */ 172 173 /* 174 * Register B has the fun stuff in it 175 */ 176 177 #define VIA2B_vVBL 0x80 /* 178 * VBL output to VIA1 (60.15Hz) driven by 179 * timer T1. 180 * on IIci, parity test: 0=test mode. 181 * [MkLinux] RBV_PARODD: 1=odd,0=even. 182 */ 183 #define VIA2B_vSndJck 0x40 /* 184 * External sound jack status. 185 * 0=plug is inserted. On SE/30, always 0 186 */ 187 #define VIA2B_vTfr0 0x20 /* Transfer mode bit 0 ack from NuBus */ 188 #define VIA2B_vTfr1 0x10 /* Transfer mode bit 1 ack from NuBus */ 189 #define VIA2B_vMode32 0x08 /* 190 * 24/32bit switch - doubles as cache flush 191 * on II, AMU/PMMU control. 192 * if AMU, 0=24bit to 32bit translation 193 * if PMMU, 1=PMMU is accessing page table. 194 * on SE/30 tied low. 195 * on IIx,IIcx,IIfx, unused. 196 * on IIci/RBV, cache control. 0=flush cache. 197 */ 198 #define VIA2B_vPower 0x04 /* 199 * Power off, 0=shut off power. 200 * on SE/30 this signal sent to PDS card. 201 */ 202 #define VIA2B_vBusLk 0x02 /* 203 * Lock NuBus transactions, 0=locked. 204 * on SE/30 sent to PDS card. 205 */ 206 #define VIA2B_vCDis 0x01 /* 207 * Cache control. On IIci, 1=disable cache card 208 * on others, 0=disable processor's instruction 209 * and data caches. 210 */ 211 212 /* interrupt flags */ 213 214 #define IRQ_SET 0x80 215 216 /* common */ 217 218 #define VIA_IRQ_TIMER1 0x40 219 #define VIA_IRQ_TIMER2 0x20 220 221 /* 222 * Apple sez: http://developer.apple.com/technotes/ov/ov_04.html 223 * Another example of a valid function that has no ROM support is the use 224 * of the alternate video page for page-flipping animation. Since there 225 * is no ROM call to flip pages, it is necessary to go play with the 226 * right bit in the VIA chip (6522 Versatile Interface Adapter). 227 * [CSA: don't know which one this is, but it's one of 'em!] 228 */ 229 230 /* 231 * 6522 registers - see databook. 232 * CSA: Assignments for VIA1 confirmed from CHRP spec. 233 */ 234 235 /* partial address decode. 0xYYXX : XX part for RBV, YY part for VIA */ 236 /* Note: 15 VIA regs, 8 RBV regs */ 237 238 #define vBufB 0x0000 /* [VIA/RBV] Register B */ 239 #define vBufAH 0x0200 /* [VIA only] Buffer A, with handshake. DON'T USE! */ 240 #define vDirB 0x0400 /* [VIA only] Data Direction Register B. */ 241 #define vDirA 0x0600 /* [VIA only] Data Direction Register A. */ 242 #define vT1CL 0x0800 /* [VIA only] Timer one counter low. */ 243 #define vT1CH 0x0a00 /* [VIA only] Timer one counter high. */ 244 #define vT1LL 0x0c00 /* [VIA only] Timer one latches low. */ 245 #define vT1LH 0x0e00 /* [VIA only] Timer one latches high. */ 246 #define vT2CL 0x1000 /* [VIA only] Timer two counter low. */ 247 #define vT2CH 0x1200 /* [VIA only] Timer two counter high. */ 248 #define vSR 0x1400 /* [VIA only] Shift register. */ 249 #define vACR 0x1600 /* [VIA only] Auxiliary control register. */ 250 #define vPCR 0x1800 /* [VIA only] Peripheral control register. */ 251 /* 252 * CHRP sez never ever to *write* this. 253 * Mac family says never to *change* this. 254 * In fact we need to initialize it once at start. 255 */ 256 #define vIFR 0x1a00 /* [VIA/RBV] Interrupt flag register. */ 257 #define vIER 0x1c00 /* [VIA/RBV] Interrupt enable register. */ 258 #define vBufA 0x1e00 /* [VIA/RBV] register A (no handshake) */ 259 260 /* from linux 2.6 drivers/macintosh/via-macii.c */ 261 262 /* Bits in ACR */ 263 264 #define VIA1ACR_vShiftCtrl 0x1c /* Shift register control bits */ 265 #define VIA1ACR_vShiftExtClk 0x0c /* Shift on external clock */ 266 #define VIA1ACR_vShiftOut 0x10 /* Shift out if 1 */ 267 268 /* 269 * Apple Macintosh Family Hardware Refenece 270 * Table 19-10 ADB transaction states 271 */ 272 273 #define ADB_STATE_NEW 0 274 #define ADB_STATE_EVEN 1 275 #define ADB_STATE_ODD 2 276 #define ADB_STATE_IDLE 3 277 278 #define VIA1B_vADB_StateMask (VIA1B_vADBS1 | VIA1B_vADBS2) 279 #define VIA1B_vADB_StateShift 4 280 281 #define VIA_TIMER_FREQ (783360) 282 #define VIA_ADB_POLL_FREQ 50 /* XXX: not real */ 283 284 /* 285 * Guide to the Macintosh Family Hardware ch. 12 "Displays" p. 401 gives the 286 * precise 60Hz interrupt frequency as ~60.15Hz with a period of 16625.8 us 287 */ 288 #define VIA_60HZ_TIMER_PERIOD_NS 16625800 289 290 /* VIA returns time offset from Jan 1, 1904, not 1970 */ 291 #define RTC_OFFSET 2082844800 292 293 enum { 294 REG_0, 295 REG_1, 296 REG_2, 297 REG_3, 298 REG_TEST, 299 REG_WPROTECT, 300 REG_PRAM_ADDR, 301 REG_PRAM_ADDR_LAST = REG_PRAM_ADDR + 19, 302 REG_PRAM_SECT, 303 REG_PRAM_SECT_LAST = REG_PRAM_SECT + 7, 304 REG_INVALID, 305 REG_EMPTY = 0xff, 306 }; 307 308 static void via1_sixty_hz_update(MOS6522Q800VIA1State *v1s) 309 { 310 /* 60 Hz irq */ 311 v1s->next_sixty_hz = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 312 VIA_60HZ_TIMER_PERIOD_NS) / 313 VIA_60HZ_TIMER_PERIOD_NS * VIA_60HZ_TIMER_PERIOD_NS; 314 timer_mod(v1s->sixty_hz_timer, v1s->next_sixty_hz); 315 } 316 317 static void via1_one_second_update(MOS6522Q800VIA1State *v1s) 318 { 319 v1s->next_second = (qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000) / 320 1000 * 1000; 321 timer_mod(v1s->one_second_timer, v1s->next_second); 322 } 323 324 static void via1_sixty_hz(void *opaque) 325 { 326 MOS6522Q800VIA1State *v1s = opaque; 327 MOS6522State *s = MOS6522(v1s); 328 qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_60HZ_BIT); 329 330 /* Negative edge trigger */ 331 qemu_irq_lower(irq); 332 qemu_irq_raise(irq); 333 334 via1_sixty_hz_update(v1s); 335 } 336 337 static void via1_one_second(void *opaque) 338 { 339 MOS6522Q800VIA1State *v1s = opaque; 340 MOS6522State *s = MOS6522(v1s); 341 qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_ONE_SECOND_BIT); 342 343 /* Negative edge trigger */ 344 qemu_irq_lower(irq); 345 qemu_irq_raise(irq); 346 347 via1_one_second_update(v1s); 348 } 349 350 351 static void pram_update(MOS6522Q800VIA1State *v1s) 352 { 353 if (v1s->blk) { 354 if (blk_pwrite(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0) < 0) { 355 qemu_log("pram_update: cannot write to file\n"); 356 } 357 } 358 } 359 360 /* 361 * RTC Commands 362 * 363 * Command byte Register addressed by the command 364 * 365 * z00x0001 Seconds register 0 (lowest-order byte) 366 * z00x0101 Seconds register 1 367 * z00x1001 Seconds register 2 368 * z00x1101 Seconds register 3 (highest-order byte) 369 * 00110001 Test register (write-only) 370 * 00110101 Write-Protect Register (write-only) 371 * z010aa01 RAM address 100aa ($10-$13) (first 20 bytes only) 372 * z1aaaa01 RAM address 0aaaa ($00-$0F) (first 20 bytes only) 373 * z0111aaa Extended memory designator and sector number 374 * 375 * For a read request, z=1, for a write z=0 376 * The letter x indicates don't care 377 * The letter a indicates bits whose value depend on what parameter 378 * RAM byte you want to address 379 */ 380 static int via1_rtc_compact_cmd(uint8_t value) 381 { 382 uint8_t read = value & 0x80; 383 384 value &= 0x7f; 385 386 /* the last 2 bits of a command byte must always be 0b01 ... */ 387 if ((value & 0x78) == 0x38) { 388 /* except for the extended memory designator */ 389 return read | (REG_PRAM_SECT + (value & 0x07)); 390 } 391 if ((value & 0x03) == 0x01) { 392 value >>= 2; 393 if ((value & 0x18) == 0) { 394 /* seconds registers */ 395 return read | (REG_0 + (value & 0x03)); 396 } else if ((value == 0x0c) && !read) { 397 return REG_TEST; 398 } else if ((value == 0x0d) && !read) { 399 return REG_WPROTECT; 400 } else if ((value & 0x1c) == 0x08) { 401 /* RAM address 0x10 to 0x13 */ 402 return read | (REG_PRAM_ADDR + 0x10 + (value & 0x03)); 403 } else if ((value & 0x10) == 0x10) { 404 /* RAM address 0x00 to 0x0f */ 405 return read | (REG_PRAM_ADDR + (value & 0x0f)); 406 } 407 } 408 return REG_INVALID; 409 } 410 411 static void via1_rtc_update(MOS6522Q800VIA1State *v1s) 412 { 413 MOS6522State *s = MOS6522(v1s); 414 int cmd, sector, addr; 415 uint32_t time; 416 417 if (s->b & VIA1B_vRTCEnb) { 418 return; 419 } 420 421 if (s->dirb & VIA1B_vRTCData) { 422 /* send bits to the RTC */ 423 if (!(v1s->last_b & VIA1B_vRTCClk) && (s->b & VIA1B_vRTCClk)) { 424 v1s->data_out <<= 1; 425 v1s->data_out |= s->b & VIA1B_vRTCData; 426 v1s->data_out_cnt++; 427 } 428 trace_via1_rtc_update_data_out(v1s->data_out_cnt, v1s->data_out); 429 } else { 430 trace_via1_rtc_update_data_in(v1s->data_in_cnt, v1s->data_in); 431 /* receive bits from the RTC */ 432 if ((v1s->last_b & VIA1B_vRTCClk) && 433 !(s->b & VIA1B_vRTCClk) && 434 v1s->data_in_cnt) { 435 s->b = (s->b & ~VIA1B_vRTCData) | 436 ((v1s->data_in >> 7) & VIA1B_vRTCData); 437 v1s->data_in <<= 1; 438 v1s->data_in_cnt--; 439 } 440 return; 441 } 442 443 if (v1s->data_out_cnt != 8) { 444 return; 445 } 446 447 v1s->data_out_cnt = 0; 448 449 trace_via1_rtc_internal_status(v1s->cmd, v1s->alt, v1s->data_out); 450 /* first byte: it's a command */ 451 if (v1s->cmd == REG_EMPTY) { 452 453 cmd = via1_rtc_compact_cmd(v1s->data_out); 454 trace_via1_rtc_internal_cmd(cmd); 455 456 if (cmd == REG_INVALID) { 457 trace_via1_rtc_cmd_invalid(v1s->data_out); 458 return; 459 } 460 461 if (cmd & 0x80) { /* this is a read command */ 462 switch (cmd & 0x7f) { 463 case REG_0...REG_3: /* seconds registers */ 464 /* 465 * register 0 is lowest-order byte 466 * register 3 is highest-order byte 467 */ 468 469 time = v1s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) 470 / NANOSECONDS_PER_SECOND); 471 trace_via1_rtc_internal_time(time); 472 v1s->data_in = (time >> ((cmd & 0x03) << 3)) & 0xff; 473 v1s->data_in_cnt = 8; 474 trace_via1_rtc_cmd_seconds_read((cmd & 0x7f) - REG_0, 475 v1s->data_in); 476 break; 477 case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: 478 /* PRAM address 0x00 -> 0x13 */ 479 v1s->data_in = v1s->PRAM[(cmd & 0x7f) - REG_PRAM_ADDR]; 480 v1s->data_in_cnt = 8; 481 trace_via1_rtc_cmd_pram_read((cmd & 0x7f) - REG_PRAM_ADDR, 482 v1s->data_in); 483 break; 484 case REG_PRAM_SECT...REG_PRAM_SECT_LAST: 485 /* 486 * extended memory designator and sector number 487 * the only two-byte read command 488 */ 489 trace_via1_rtc_internal_set_cmd(cmd); 490 v1s->cmd = cmd; 491 break; 492 default: 493 g_assert_not_reached(); 494 break; 495 } 496 return; 497 } 498 499 /* this is a write command, needs a parameter */ 500 if (cmd == REG_WPROTECT || !v1s->wprotect) { 501 trace_via1_rtc_internal_set_cmd(cmd); 502 v1s->cmd = cmd; 503 } else { 504 trace_via1_rtc_internal_ignore_cmd(cmd); 505 } 506 return; 507 } 508 509 /* second byte: it's a parameter */ 510 if (v1s->alt == REG_EMPTY) { 511 switch (v1s->cmd & 0x7f) { 512 case REG_0...REG_3: /* seconds register */ 513 /* FIXME */ 514 trace_via1_rtc_cmd_seconds_write(v1s->cmd - REG_0, v1s->data_out); 515 v1s->cmd = REG_EMPTY; 516 break; 517 case REG_TEST: 518 /* device control: nothing to do */ 519 trace_via1_rtc_cmd_test_write(v1s->data_out); 520 v1s->cmd = REG_EMPTY; 521 break; 522 case REG_WPROTECT: 523 /* Write Protect register */ 524 trace_via1_rtc_cmd_wprotect_write(v1s->data_out); 525 v1s->wprotect = !!(v1s->data_out & 0x80); 526 v1s->cmd = REG_EMPTY; 527 break; 528 case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: 529 /* PRAM address 0x00 -> 0x13 */ 530 trace_via1_rtc_cmd_pram_write(v1s->cmd - REG_PRAM_ADDR, 531 v1s->data_out); 532 v1s->PRAM[v1s->cmd - REG_PRAM_ADDR] = v1s->data_out; 533 pram_update(v1s); 534 v1s->cmd = REG_EMPTY; 535 break; 536 case REG_PRAM_SECT...REG_PRAM_SECT_LAST: 537 addr = (v1s->data_out >> 2) & 0x1f; 538 sector = (v1s->cmd & 0x7f) - REG_PRAM_SECT; 539 if (v1s->cmd & 0x80) { 540 /* it's a read */ 541 v1s->data_in = v1s->PRAM[sector * 32 + addr]; 542 v1s->data_in_cnt = 8; 543 trace_via1_rtc_cmd_pram_sect_read(sector, addr, 544 sector * 32 + addr, 545 v1s->data_in); 546 v1s->cmd = REG_EMPTY; 547 } else { 548 /* it's a write, we need one more parameter */ 549 trace_via1_rtc_internal_set_alt(addr, sector, addr); 550 v1s->alt = addr; 551 } 552 break; 553 default: 554 g_assert_not_reached(); 555 break; 556 } 557 return; 558 } 559 560 /* third byte: it's the data of a REG_PRAM_SECT write */ 561 g_assert(REG_PRAM_SECT <= v1s->cmd && v1s->cmd <= REG_PRAM_SECT_LAST); 562 sector = v1s->cmd - REG_PRAM_SECT; 563 v1s->PRAM[sector * 32 + v1s->alt] = v1s->data_out; 564 pram_update(v1s); 565 trace_via1_rtc_cmd_pram_sect_write(sector, v1s->alt, sector * 32 + v1s->alt, 566 v1s->data_out); 567 v1s->alt = REG_EMPTY; 568 v1s->cmd = REG_EMPTY; 569 } 570 571 static void adb_via_poll(void *opaque) 572 { 573 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); 574 MOS6522State *s = MOS6522(v1s); 575 ADBBusState *adb_bus = &v1s->adb_bus; 576 uint8_t obuf[9]; 577 uint8_t *data = &s->sr; 578 int olen; 579 580 /* 581 * Setting vADBInt below indicates that an autopoll reply has been 582 * received, however we must block autopoll until the point where 583 * the entire reply has been read back to the host 584 */ 585 adb_autopoll_block(adb_bus); 586 587 if (v1s->adb_data_in_size > 0 && v1s->adb_data_in_index == 0) { 588 /* 589 * For older Linux kernels that switch to IDLE mode after sending the 590 * ADB command, detect if there is an existing response and return that 591 * as a "fake" autopoll reply or bus timeout accordingly 592 */ 593 *data = v1s->adb_data_out[0]; 594 olen = v1s->adb_data_in_size; 595 596 s->b &= ~VIA1B_vADBInt; 597 qemu_irq_raise(v1s->adb_data_ready); 598 } else { 599 /* 600 * Otherwise poll as normal 601 */ 602 v1s->adb_data_in_index = 0; 603 v1s->adb_data_out_index = 0; 604 olen = adb_poll(adb_bus, obuf, adb_bus->autopoll_mask); 605 606 if (olen > 0) { 607 /* Autopoll response */ 608 *data = obuf[0]; 609 olen--; 610 memcpy(v1s->adb_data_in, &obuf[1], olen); 611 v1s->adb_data_in_size = olen; 612 613 s->b &= ~VIA1B_vADBInt; 614 qemu_irq_raise(v1s->adb_data_ready); 615 } else { 616 *data = v1s->adb_autopoll_cmd; 617 obuf[0] = 0xff; 618 obuf[1] = 0xff; 619 olen = 2; 620 621 memcpy(v1s->adb_data_in, obuf, olen); 622 v1s->adb_data_in_size = olen; 623 624 s->b &= ~VIA1B_vADBInt; 625 qemu_irq_raise(v1s->adb_data_ready); 626 } 627 } 628 629 trace_via1_adb_poll(*data, (s->b & VIA1B_vADBInt) ? "+" : "-", 630 adb_bus->status, v1s->adb_data_in_index, olen); 631 } 632 633 static int adb_via_send_len(uint8_t data) 634 { 635 /* Determine the send length from the given ADB command */ 636 uint8_t cmd = data & 0xc; 637 uint8_t reg = data & 0x3; 638 639 switch (cmd) { 640 case 0x8: 641 /* Listen command */ 642 switch (reg) { 643 case 2: 644 /* Register 2 is only used for the keyboard */ 645 return 3; 646 case 3: 647 /* 648 * Fortunately our devices only implement writes 649 * to register 3 which is fixed at 2 bytes 650 */ 651 return 3; 652 default: 653 qemu_log_mask(LOG_UNIMP, "ADB unknown length for register %d\n", 654 reg); 655 return 1; 656 } 657 default: 658 /* Talk, BusReset */ 659 return 1; 660 } 661 } 662 663 static void adb_via_send(MOS6522Q800VIA1State *v1s, int state, uint8_t data) 664 { 665 MOS6522State *ms = MOS6522(v1s); 666 ADBBusState *adb_bus = &v1s->adb_bus; 667 uint16_t autopoll_mask; 668 669 switch (state) { 670 case ADB_STATE_NEW: 671 /* 672 * Command byte: vADBInt tells host autopoll data already present 673 * in VIA shift register and ADB transceiver 674 */ 675 adb_autopoll_block(adb_bus); 676 677 if (adb_bus->status & ADB_STATUS_POLLREPLY) { 678 /* Tell the host the existing data is from autopoll */ 679 ms->b &= ~VIA1B_vADBInt; 680 } else { 681 ms->b |= VIA1B_vADBInt; 682 v1s->adb_data_out_index = 0; 683 v1s->adb_data_out[v1s->adb_data_out_index++] = data; 684 } 685 686 trace_via1_adb_send(" NEW", data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); 687 qemu_irq_raise(v1s->adb_data_ready); 688 break; 689 690 case ADB_STATE_EVEN: 691 case ADB_STATE_ODD: 692 ms->b |= VIA1B_vADBInt; 693 v1s->adb_data_out[v1s->adb_data_out_index++] = data; 694 695 trace_via1_adb_send(state == ADB_STATE_EVEN ? "EVEN" : " ODD", 696 data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); 697 qemu_irq_raise(v1s->adb_data_ready); 698 break; 699 700 case ADB_STATE_IDLE: 701 return; 702 } 703 704 /* If the command is complete, execute it */ 705 if (v1s->adb_data_out_index == adb_via_send_len(v1s->adb_data_out[0])) { 706 v1s->adb_data_in_size = adb_request(adb_bus, v1s->adb_data_in, 707 v1s->adb_data_out, 708 v1s->adb_data_out_index); 709 v1s->adb_data_in_index = 0; 710 711 if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { 712 /* 713 * Bus timeout (but allow first EVEN and ODD byte to indicate 714 * timeout via vADBInt and SRQ status) 715 */ 716 v1s->adb_data_in[0] = 0xff; 717 v1s->adb_data_in[1] = 0xff; 718 v1s->adb_data_in_size = 2; 719 } 720 721 /* 722 * If last command is TALK, store it for use by autopoll and adjust 723 * the autopoll mask accordingly 724 */ 725 if ((v1s->adb_data_out[0] & 0xc) == 0xc) { 726 v1s->adb_autopoll_cmd = v1s->adb_data_out[0]; 727 728 autopoll_mask = 1 << (v1s->adb_autopoll_cmd >> 4); 729 adb_set_autopoll_mask(adb_bus, autopoll_mask); 730 } 731 } 732 } 733 734 static void adb_via_receive(MOS6522Q800VIA1State *v1s, int state, uint8_t *data) 735 { 736 MOS6522State *ms = MOS6522(v1s); 737 ADBBusState *adb_bus = &v1s->adb_bus; 738 uint16_t pending; 739 740 switch (state) { 741 case ADB_STATE_NEW: 742 ms->b |= VIA1B_vADBInt; 743 return; 744 745 case ADB_STATE_IDLE: 746 ms->b |= VIA1B_vADBInt; 747 adb_autopoll_unblock(adb_bus); 748 749 trace_via1_adb_receive("IDLE", *data, 750 (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, 751 v1s->adb_data_in_index, v1s->adb_data_in_size); 752 753 break; 754 755 case ADB_STATE_EVEN: 756 case ADB_STATE_ODD: 757 switch (v1s->adb_data_in_index) { 758 case 0: 759 /* First EVEN byte: vADBInt indicates bus timeout */ 760 *data = v1s->adb_data_in[v1s->adb_data_in_index]; 761 if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { 762 ms->b &= ~VIA1B_vADBInt; 763 } else { 764 ms->b |= VIA1B_vADBInt; 765 } 766 767 trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", 768 *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", 769 adb_bus->status, v1s->adb_data_in_index, 770 v1s->adb_data_in_size); 771 772 v1s->adb_data_in_index++; 773 break; 774 775 case 1: 776 /* First ODD byte: vADBInt indicates SRQ */ 777 *data = v1s->adb_data_in[v1s->adb_data_in_index]; 778 pending = adb_bus->pending & ~(1 << (v1s->adb_autopoll_cmd >> 4)); 779 if (pending) { 780 ms->b &= ~VIA1B_vADBInt; 781 } else { 782 ms->b |= VIA1B_vADBInt; 783 } 784 785 trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", 786 *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", 787 adb_bus->status, v1s->adb_data_in_index, 788 v1s->adb_data_in_size); 789 790 v1s->adb_data_in_index++; 791 break; 792 793 default: 794 /* 795 * Otherwise vADBInt indicates end of data. Note that Linux 796 * specifically checks for the sequence 0x0 0xff to confirm the 797 * end of the poll reply, so provide these extra bytes below to 798 * keep it happy 799 */ 800 if (v1s->adb_data_in_index < v1s->adb_data_in_size) { 801 /* Next data byte */ 802 *data = v1s->adb_data_in[v1s->adb_data_in_index]; 803 ms->b |= VIA1B_vADBInt; 804 } else if (v1s->adb_data_in_index == v1s->adb_data_in_size) { 805 if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { 806 /* Bus timeout (no more data) */ 807 *data = 0xff; 808 } else { 809 /* Return 0x0 after reply */ 810 *data = 0; 811 } 812 ms->b &= ~VIA1B_vADBInt; 813 } else { 814 /* Bus timeout (no more data) */ 815 *data = 0xff; 816 ms->b &= ~VIA1B_vADBInt; 817 adb_bus->status = 0; 818 adb_autopoll_unblock(adb_bus); 819 } 820 821 trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", 822 *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", 823 adb_bus->status, v1s->adb_data_in_index, 824 v1s->adb_data_in_size); 825 826 if (v1s->adb_data_in_index <= v1s->adb_data_in_size) { 827 v1s->adb_data_in_index++; 828 } 829 break; 830 } 831 832 qemu_irq_raise(v1s->adb_data_ready); 833 break; 834 } 835 } 836 837 static void via1_adb_update(MOS6522Q800VIA1State *v1s) 838 { 839 MOS6522State *s = MOS6522(v1s); 840 int oldstate, state; 841 842 oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; 843 state = (s->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; 844 845 if (state != oldstate) { 846 if (s->acr & VIA1ACR_vShiftOut) { 847 /* output mode */ 848 adb_via_send(v1s, state, s->sr); 849 } else { 850 /* input mode */ 851 adb_via_receive(v1s, state, &s->sr); 852 } 853 } 854 } 855 856 static void via1_auxmode_update(MOS6522Q800VIA1State *v1s) 857 { 858 MOS6522State *s = MOS6522(v1s); 859 int oldirq, irq; 860 861 oldirq = (v1s->last_b & VIA1B_vMystery) ? 1 : 0; 862 irq = (s->b & VIA1B_vMystery) ? 1 : 0; 863 864 /* Check to see if the A/UX mode bit has changed */ 865 if (irq != oldirq) { 866 trace_via1_auxmode(irq); 867 qemu_set_irq(v1s->auxmode_irq, irq); 868 } 869 } 870 871 static uint64_t mos6522_q800_via1_read(void *opaque, hwaddr addr, unsigned size) 872 { 873 MOS6522Q800VIA1State *s = MOS6522_Q800_VIA1(opaque); 874 MOS6522State *ms = MOS6522(s); 875 876 addr = (addr >> 9) & 0xf; 877 return mos6522_read(ms, addr, size); 878 } 879 880 static void mos6522_q800_via1_write(void *opaque, hwaddr addr, uint64_t val, 881 unsigned size) 882 { 883 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); 884 MOS6522State *ms = MOS6522(v1s); 885 886 addr = (addr >> 9) & 0xf; 887 mos6522_write(ms, addr, val, size); 888 889 switch (addr) { 890 case VIA_REG_B: 891 via1_rtc_update(v1s); 892 via1_adb_update(v1s); 893 via1_auxmode_update(v1s); 894 895 v1s->last_b = ms->b; 896 break; 897 } 898 } 899 900 static const MemoryRegionOps mos6522_q800_via1_ops = { 901 .read = mos6522_q800_via1_read, 902 .write = mos6522_q800_via1_write, 903 .endianness = DEVICE_BIG_ENDIAN, 904 .valid = { 905 .min_access_size = 1, 906 .max_access_size = 4, 907 }, 908 }; 909 910 static uint64_t mos6522_q800_via2_read(void *opaque, hwaddr addr, unsigned size) 911 { 912 MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); 913 MOS6522State *ms = MOS6522(s); 914 uint64_t val; 915 916 addr = (addr >> 9) & 0xf; 917 val = mos6522_read(ms, addr, size); 918 919 switch (addr) { 920 case VIA_REG_IFR: 921 /* 922 * On a Q800 an emulated VIA2 is integrated into the onboard logic. The 923 * expectation of most OSs is that the DRQ bit is live, rather than 924 * latched as it would be on a real VIA so do the same here. 925 * 926 * Note: DRQ is negative edge triggered 927 */ 928 val &= ~VIA2_IRQ_SCSI_DATA; 929 val |= (~ms->last_irq_levels & VIA2_IRQ_SCSI_DATA); 930 break; 931 } 932 933 return val; 934 } 935 936 static void mos6522_q800_via2_write(void *opaque, hwaddr addr, uint64_t val, 937 unsigned size) 938 { 939 MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); 940 MOS6522State *ms = MOS6522(s); 941 942 addr = (addr >> 9) & 0xf; 943 mos6522_write(ms, addr, val, size); 944 } 945 946 static const MemoryRegionOps mos6522_q800_via2_ops = { 947 .read = mos6522_q800_via2_read, 948 .write = mos6522_q800_via2_write, 949 .endianness = DEVICE_BIG_ENDIAN, 950 .valid = { 951 .min_access_size = 1, 952 .max_access_size = 4, 953 }, 954 }; 955 956 static void via1_postload_update_cb(void *opaque, bool running, RunState state) 957 { 958 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); 959 960 qemu_del_vm_change_state_handler(v1s->vmstate); 961 v1s->vmstate = NULL; 962 963 pram_update(v1s); 964 } 965 966 static int via1_post_load(void *opaque, int version_id) 967 { 968 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); 969 970 if (v1s->blk) { 971 v1s->vmstate = qemu_add_vm_change_state_handler( 972 via1_postload_update_cb, v1s); 973 } 974 975 return 0; 976 } 977 978 /* VIA 1 */ 979 static void mos6522_q800_via1_reset_hold(Object *obj) 980 { 981 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); 982 MOS6522State *ms = MOS6522(v1s); 983 MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); 984 ADBBusState *adb_bus = &v1s->adb_bus; 985 986 if (mdc->parent_phases.hold) { 987 mdc->parent_phases.hold(obj); 988 } 989 990 ms->timers[0].frequency = VIA_TIMER_FREQ; 991 ms->timers[1].frequency = VIA_TIMER_FREQ; 992 993 ms->b = VIA1B_vADB_StateMask | VIA1B_vADBInt | VIA1B_vRTCEnb; 994 995 /* ADB/RTC */ 996 adb_set_autopoll_enabled(adb_bus, true); 997 v1s->cmd = REG_EMPTY; 998 v1s->alt = REG_EMPTY; 999 } 1000 1001 static void mos6522_q800_via1_realize(DeviceState *dev, Error **errp) 1002 { 1003 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(dev); 1004 ADBBusState *adb_bus = &v1s->adb_bus; 1005 struct tm tm; 1006 int ret; 1007 1008 v1s->one_second_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, via1_one_second, 1009 v1s); 1010 via1_one_second_update(v1s); 1011 v1s->sixty_hz_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, via1_sixty_hz, 1012 v1s); 1013 via1_sixty_hz_update(v1s); 1014 1015 qemu_get_timedate(&tm, 0); 1016 v1s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; 1017 1018 adb_register_autopoll_callback(adb_bus, adb_via_poll, v1s); 1019 v1s->adb_data_ready = qdev_get_gpio_in(dev, VIA1_IRQ_ADB_READY_BIT); 1020 1021 if (v1s->blk) { 1022 int64_t len = blk_getlength(v1s->blk); 1023 if (len < 0) { 1024 error_setg_errno(errp, -len, 1025 "could not get length of backing image"); 1026 return; 1027 } 1028 ret = blk_set_perm(v1s->blk, 1029 BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, 1030 BLK_PERM_ALL, errp); 1031 if (ret < 0) { 1032 return; 1033 } 1034 1035 ret = blk_pread(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0); 1036 if (ret < 0) { 1037 error_setg(errp, "can't read PRAM contents"); 1038 return; 1039 } 1040 } 1041 } 1042 1043 static void mos6522_q800_via1_init(Object *obj) 1044 { 1045 MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); 1046 SysBusDevice *sbd = SYS_BUS_DEVICE(v1s); 1047 1048 memory_region_init_io(&v1s->via_mem, obj, &mos6522_q800_via1_ops, v1s, 1049 "via1", VIA_SIZE); 1050 sysbus_init_mmio(sbd, &v1s->via_mem); 1051 1052 /* ADB */ 1053 qbus_init((BusState *)&v1s->adb_bus, sizeof(v1s->adb_bus), 1054 TYPE_ADB_BUS, DEVICE(v1s), "adb.0"); 1055 1056 /* A/UX mode */ 1057 qdev_init_gpio_out(DEVICE(obj), &v1s->auxmode_irq, 1); 1058 } 1059 1060 static const VMStateDescription vmstate_q800_via1 = { 1061 .name = "q800-via1", 1062 .version_id = 0, 1063 .minimum_version_id = 0, 1064 .post_load = via1_post_load, 1065 .fields = (VMStateField[]) { 1066 VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA1State, 0, vmstate_mos6522, 1067 MOS6522State), 1068 VMSTATE_UINT8(last_b, MOS6522Q800VIA1State), 1069 /* RTC */ 1070 VMSTATE_BUFFER(PRAM, MOS6522Q800VIA1State), 1071 VMSTATE_UINT32(tick_offset, MOS6522Q800VIA1State), 1072 VMSTATE_UINT8(data_out, MOS6522Q800VIA1State), 1073 VMSTATE_INT32(data_out_cnt, MOS6522Q800VIA1State), 1074 VMSTATE_UINT8(data_in, MOS6522Q800VIA1State), 1075 VMSTATE_UINT8(data_in_cnt, MOS6522Q800VIA1State), 1076 VMSTATE_UINT8(cmd, MOS6522Q800VIA1State), 1077 VMSTATE_INT32(wprotect, MOS6522Q800VIA1State), 1078 VMSTATE_INT32(alt, MOS6522Q800VIA1State), 1079 /* ADB */ 1080 VMSTATE_INT32(adb_data_in_size, MOS6522Q800VIA1State), 1081 VMSTATE_INT32(adb_data_in_index, MOS6522Q800VIA1State), 1082 VMSTATE_INT32(adb_data_out_index, MOS6522Q800VIA1State), 1083 VMSTATE_BUFFER(adb_data_in, MOS6522Q800VIA1State), 1084 VMSTATE_BUFFER(adb_data_out, MOS6522Q800VIA1State), 1085 VMSTATE_UINT8(adb_autopoll_cmd, MOS6522Q800VIA1State), 1086 /* Timers */ 1087 VMSTATE_TIMER_PTR(one_second_timer, MOS6522Q800VIA1State), 1088 VMSTATE_INT64(next_second, MOS6522Q800VIA1State), 1089 VMSTATE_TIMER_PTR(sixty_hz_timer, MOS6522Q800VIA1State), 1090 VMSTATE_INT64(next_sixty_hz, MOS6522Q800VIA1State), 1091 VMSTATE_END_OF_LIST() 1092 } 1093 }; 1094 1095 static Property mos6522_q800_via1_properties[] = { 1096 DEFINE_PROP_DRIVE("drive", MOS6522Q800VIA1State, blk), 1097 DEFINE_PROP_END_OF_LIST(), 1098 }; 1099 1100 static void mos6522_q800_via1_class_init(ObjectClass *oc, void *data) 1101 { 1102 DeviceClass *dc = DEVICE_CLASS(oc); 1103 ResettableClass *rc = RESETTABLE_CLASS(oc); 1104 MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); 1105 1106 dc->realize = mos6522_q800_via1_realize; 1107 resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via1_reset_hold, 1108 NULL, &mdc->parent_phases); 1109 dc->vmsd = &vmstate_q800_via1; 1110 device_class_set_props(dc, mos6522_q800_via1_properties); 1111 } 1112 1113 static const TypeInfo mos6522_q800_via1_type_info = { 1114 .name = TYPE_MOS6522_Q800_VIA1, 1115 .parent = TYPE_MOS6522, 1116 .instance_size = sizeof(MOS6522Q800VIA1State), 1117 .instance_init = mos6522_q800_via1_init, 1118 .class_init = mos6522_q800_via1_class_init, 1119 }; 1120 1121 /* VIA 2 */ 1122 static void mos6522_q800_via2_portB_write(MOS6522State *s) 1123 { 1124 if (s->dirb & VIA2B_vPower && (s->b & VIA2B_vPower) == 0) { 1125 /* shutdown */ 1126 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1127 } 1128 } 1129 1130 static void mos6522_q800_via2_reset_hold(Object *obj) 1131 { 1132 MOS6522State *ms = MOS6522(obj); 1133 MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); 1134 1135 if (mdc->parent_phases.hold) { 1136 mdc->parent_phases.hold(obj); 1137 } 1138 1139 ms->timers[0].frequency = VIA_TIMER_FREQ; 1140 ms->timers[1].frequency = VIA_TIMER_FREQ; 1141 1142 ms->dirb = 0; 1143 ms->b = 0; 1144 ms->dira = 0; 1145 ms->a = 0x7f; 1146 } 1147 1148 static void via2_nubus_irq_request(void *opaque, int n, int level) 1149 { 1150 MOS6522Q800VIA2State *v2s = opaque; 1151 MOS6522State *s = MOS6522(v2s); 1152 qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA2_IRQ_NUBUS_BIT); 1153 1154 if (level) { 1155 /* Port A nubus IRQ inputs are active LOW */ 1156 s->a &= ~(1 << n); 1157 } else { 1158 s->a |= (1 << n); 1159 } 1160 1161 /* Negative edge trigger */ 1162 qemu_set_irq(irq, !level); 1163 } 1164 1165 static void mos6522_q800_via2_init(Object *obj) 1166 { 1167 MOS6522Q800VIA2State *v2s = MOS6522_Q800_VIA2(obj); 1168 SysBusDevice *sbd = SYS_BUS_DEVICE(v2s); 1169 1170 memory_region_init_io(&v2s->via_mem, obj, &mos6522_q800_via2_ops, v2s, 1171 "via2", VIA_SIZE); 1172 sysbus_init_mmio(sbd, &v2s->via_mem); 1173 1174 qdev_init_gpio_in_named(DEVICE(obj), via2_nubus_irq_request, "nubus-irq", 1175 VIA2_NUBUS_IRQ_NB); 1176 } 1177 1178 static const VMStateDescription vmstate_q800_via2 = { 1179 .name = "q800-via2", 1180 .version_id = 0, 1181 .minimum_version_id = 0, 1182 .fields = (VMStateField[]) { 1183 VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA2State, 0, vmstate_mos6522, 1184 MOS6522State), 1185 VMSTATE_END_OF_LIST() 1186 } 1187 }; 1188 1189 static void mos6522_q800_via2_class_init(ObjectClass *oc, void *data) 1190 { 1191 DeviceClass *dc = DEVICE_CLASS(oc); 1192 ResettableClass *rc = RESETTABLE_CLASS(oc); 1193 MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); 1194 1195 resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via2_reset_hold, 1196 NULL, &mdc->parent_phases); 1197 dc->vmsd = &vmstate_q800_via2; 1198 mdc->portB_write = mos6522_q800_via2_portB_write; 1199 } 1200 1201 static const TypeInfo mos6522_q800_via2_type_info = { 1202 .name = TYPE_MOS6522_Q800_VIA2, 1203 .parent = TYPE_MOS6522, 1204 .instance_size = sizeof(MOS6522Q800VIA2State), 1205 .instance_init = mos6522_q800_via2_init, 1206 .class_init = mos6522_q800_via2_class_init, 1207 }; 1208 1209 static void mac_via_register_types(void) 1210 { 1211 type_register_static(&mos6522_q800_via1_type_info); 1212 type_register_static(&mos6522_q800_via2_type_info); 1213 } 1214 1215 type_init(mac_via_register_types); 1216