xref: /openbmc/qemu/hw/misc/imx6_src.c (revision 500eb6db)
1 /*
2  * IMX6 System Reset Controller
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 #include "arm-powerctl.h"
18 #include "qom/cpu.h"
19 
20 #ifndef DEBUG_IMX6_SRC
21 #define DEBUG_IMX6_SRC 0
22 #endif
23 
24 #define DPRINTF(fmt, args...) \
25     do { \
26         if (DEBUG_IMX6_SRC) { \
27             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
28                                              __func__, ##args); \
29         } \
30     } while (0)
31 
32 static const char *imx6_src_reg_name(uint32_t reg)
33 {
34     static char unknown[20];
35 
36     switch (reg) {
37     case SRC_SCR:
38         return "SRC_SCR";
39     case SRC_SBMR1:
40         return "SRC_SBMR1";
41     case SRC_SRSR:
42         return "SRC_SRSR";
43     case SRC_SISR:
44         return "SRC_SISR";
45     case SRC_SIMR:
46         return "SRC_SIMR";
47     case SRC_SBMR2:
48         return "SRC_SBMR2";
49     case SRC_GPR1:
50         return "SRC_GPR1";
51     case SRC_GPR2:
52         return "SRC_GPR2";
53     case SRC_GPR3:
54         return "SRC_GPR3";
55     case SRC_GPR4:
56         return "SRC_GPR4";
57     case SRC_GPR5:
58         return "SRC_GPR5";
59     case SRC_GPR6:
60         return "SRC_GPR6";
61     case SRC_GPR7:
62         return "SRC_GPR7";
63     case SRC_GPR8:
64         return "SRC_GPR8";
65     case SRC_GPR9:
66         return "SRC_GPR9";
67     case SRC_GPR10:
68         return "SRC_GPR10";
69     default:
70         sprintf(unknown, "%d ?", reg);
71         return unknown;
72     }
73 }
74 
75 static const VMStateDescription vmstate_imx6_src = {
76     .name = TYPE_IMX6_SRC,
77     .version_id = 1,
78     .minimum_version_id = 1,
79     .fields = (VMStateField[]) {
80         VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
81         VMSTATE_END_OF_LIST()
82     },
83 };
84 
85 static void imx6_src_reset(DeviceState *dev)
86 {
87     IMX6SRCState *s = IMX6_SRC(dev);
88 
89     DPRINTF("\n");
90 
91     memset(s->regs, 0, sizeof(s->regs));
92 
93     /* Set reset values */
94     s->regs[SRC_SCR] = 0x521;
95     s->regs[SRC_SRSR] = 0x1;
96     s->regs[SRC_SIMR] = 0x1F;
97 }
98 
99 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
100 {
101     uint32_t value = 0;
102     IMX6SRCState *s = (IMX6SRCState *)opaque;
103     uint32_t index = offset >> 2;
104 
105     if (index < SRC_MAX) {
106         value = s->regs[index];
107     } else {
108         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
109                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
110 
111     }
112 
113     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
114 
115     return value;
116 }
117 
118 
119 /* The reset is asynchronous so we need to defer clearing the reset
120  * bit until the work is completed.
121  */
122 
123 struct SRCSCRResetInfo {
124     IMX6SRCState *s;
125     int reset_bit;
126 };
127 
128 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
129 {
130     struct SRCSCRResetInfo *ri = data.host_ptr;
131     IMX6SRCState *s = ri->s;
132 
133     assert(qemu_mutex_iothread_locked());
134 
135     s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
136     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
137             imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
138 
139     g_free(ri);
140 }
141 
142 static void imx6_defer_clear_reset_bit(int cpuid,
143                                        IMX6SRCState *s,
144                                        unsigned long reset_shift)
145 {
146     struct SRCSCRResetInfo *ri;
147     CPUState *cpu = arm_get_cpu_by_id(cpuid);
148 
149     if (!cpu) {
150         return;
151     }
152 
153     ri = g_malloc(sizeof(struct SRCSCRResetInfo));
154     ri->s = s;
155     ri->reset_bit = reset_shift;
156 
157     async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
158 }
159 
160 
161 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
162                            unsigned size)
163 {
164     IMX6SRCState *s = (IMX6SRCState *)opaque;
165     uint32_t index = offset >> 2;
166     unsigned long change_mask;
167     unsigned long current_value = value;
168 
169     if (index >=  SRC_MAX) {
170         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
171                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
172         return;
173     }
174 
175     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
176             (uint32_t)current_value);
177 
178     change_mask = s->regs[index] ^ (uint32_t)current_value;
179 
180     switch (index) {
181     case SRC_SCR:
182         /*
183          * On real hardware when the system reset controller starts a
184          * secondary CPU it runs through some boot ROM code which reads
185          * the SRC_GPRX registers controlling the start address and branches
186          * to it.
187          * Here we are taking a short cut and branching directly to the
188          * requested address (we don't want to run the boot ROM code inside
189          * QEMU)
190          */
191         if (EXTRACT(change_mask, CORE3_ENABLE)) {
192             if (EXTRACT(current_value, CORE3_ENABLE)) {
193                 /* CORE 3 is brought up */
194                 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
195                                3, false);
196             } else {
197                 /* CORE 3 is shut down */
198                 arm_set_cpu_off(3);
199             }
200             /* We clear the reset bits as the processor changed state */
201             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
202             clear_bit(CORE3_RST_SHIFT, &change_mask);
203         }
204         if (EXTRACT(change_mask, CORE2_ENABLE)) {
205             if (EXTRACT(current_value, CORE2_ENABLE)) {
206                 /* CORE 2 is brought up */
207                 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
208                                3, false);
209             } else {
210                 /* CORE 2 is shut down */
211                 arm_set_cpu_off(2);
212             }
213             /* We clear the reset bits as the processor changed state */
214             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
215             clear_bit(CORE2_RST_SHIFT, &change_mask);
216         }
217         if (EXTRACT(change_mask, CORE1_ENABLE)) {
218             if (EXTRACT(current_value, CORE1_ENABLE)) {
219                 /* CORE 1 is brought up */
220                 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
221                                3, false);
222             } else {
223                 /* CORE 1 is shut down */
224                 arm_set_cpu_off(1);
225             }
226             /* We clear the reset bits as the processor changed state */
227             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
228             clear_bit(CORE1_RST_SHIFT, &change_mask);
229         }
230         if (EXTRACT(change_mask, CORE0_RST)) {
231             arm_reset_cpu(0);
232             imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
233         }
234         if (EXTRACT(change_mask, CORE1_RST)) {
235             arm_reset_cpu(1);
236             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
237         }
238         if (EXTRACT(change_mask, CORE2_RST)) {
239             arm_reset_cpu(2);
240             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
241         }
242         if (EXTRACT(change_mask, CORE3_RST)) {
243             arm_reset_cpu(3);
244             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
245         }
246         if (EXTRACT(change_mask, SW_IPU2_RST)) {
247             /* We pretend the IPU2 is reset */
248             clear_bit(SW_IPU2_RST_SHIFT, &current_value);
249         }
250         if (EXTRACT(change_mask, SW_IPU1_RST)) {
251             /* We pretend the IPU1 is reset */
252             clear_bit(SW_IPU1_RST_SHIFT, &current_value);
253         }
254         s->regs[index] = current_value;
255         break;
256     default:
257         s->regs[index] = current_value;
258         break;
259     }
260 }
261 
262 static const struct MemoryRegionOps imx6_src_ops = {
263     .read = imx6_src_read,
264     .write = imx6_src_write,
265     .endianness = DEVICE_NATIVE_ENDIAN,
266     .valid = {
267         /*
268          * Our device would not work correctly if the guest was doing
269          * unaligned access. This might not be a limitation on the real
270          * device but in practice there is no reason for a guest to access
271          * this device unaligned.
272          */
273         .min_access_size = 4,
274         .max_access_size = 4,
275         .unaligned = false,
276     },
277 };
278 
279 static void imx6_src_realize(DeviceState *dev, Error **errp)
280 {
281     IMX6SRCState *s = IMX6_SRC(dev);
282 
283     memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
284                           TYPE_IMX6_SRC, 0x1000);
285     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
286 }
287 
288 static void imx6_src_class_init(ObjectClass *klass, void *data)
289 {
290     DeviceClass *dc = DEVICE_CLASS(klass);
291 
292     dc->realize = imx6_src_realize;
293     dc->reset = imx6_src_reset;
294     dc->vmsd = &vmstate_imx6_src;
295     dc->desc = "i.MX6 System Reset Controller";
296 }
297 
298 static const TypeInfo imx6_src_info = {
299     .name          = TYPE_IMX6_SRC,
300     .parent        = TYPE_SYS_BUS_DEVICE,
301     .instance_size = sizeof(IMX6SRCState),
302     .class_init    = imx6_src_class_init,
303 };
304 
305 static void imx6_src_register_types(void)
306 {
307     type_register_static(&imx6_src_info);
308 }
309 
310 type_init(imx6_src_register_types)
311