xref: /openbmc/qemu/hw/misc/imx6_src.c (revision 3ae8a100)
1 /*
2  * IMX6 System Reset Controller
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "arm-powerctl.h"
17 #include "qom/cpu.h"
18 
19 #ifndef DEBUG_IMX6_SRC
20 #define DEBUG_IMX6_SRC 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_IMX6_SRC) { \
26             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
27                                              __func__, ##args); \
28         } \
29     } while (0)
30 
31 static const char *imx6_src_reg_name(uint32_t reg)
32 {
33     static char unknown[20];
34 
35     switch (reg) {
36     case SRC_SCR:
37         return "SRC_SCR";
38     case SRC_SBMR1:
39         return "SRC_SBMR1";
40     case SRC_SRSR:
41         return "SRC_SRSR";
42     case SRC_SISR:
43         return "SRC_SISR";
44     case SRC_SIMR:
45         return "SRC_SIMR";
46     case SRC_SBMR2:
47         return "SRC_SBMR2";
48     case SRC_GPR1:
49         return "SRC_GPR1";
50     case SRC_GPR2:
51         return "SRC_GPR2";
52     case SRC_GPR3:
53         return "SRC_GPR3";
54     case SRC_GPR4:
55         return "SRC_GPR4";
56     case SRC_GPR5:
57         return "SRC_GPR5";
58     case SRC_GPR6:
59         return "SRC_GPR6";
60     case SRC_GPR7:
61         return "SRC_GPR7";
62     case SRC_GPR8:
63         return "SRC_GPR8";
64     case SRC_GPR9:
65         return "SRC_GPR9";
66     case SRC_GPR10:
67         return "SRC_GPR10";
68     default:
69         sprintf(unknown, "%d ?", reg);
70         return unknown;
71     }
72 }
73 
74 static const VMStateDescription vmstate_imx6_src = {
75     .name = TYPE_IMX6_SRC,
76     .version_id = 1,
77     .minimum_version_id = 1,
78     .fields = (VMStateField[]) {
79         VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
80         VMSTATE_END_OF_LIST()
81     },
82 };
83 
84 static void imx6_src_reset(DeviceState *dev)
85 {
86     IMX6SRCState *s = IMX6_SRC(dev);
87 
88     DPRINTF("\n");
89 
90     memset(s->regs, 0, sizeof(s->regs));
91 
92     /* Set reset values */
93     s->regs[SRC_SCR] = 0x521;
94     s->regs[SRC_SRSR] = 0x1;
95     s->regs[SRC_SIMR] = 0x1F;
96 }
97 
98 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
99 {
100     uint32_t value = 0;
101     IMX6SRCState *s = (IMX6SRCState *)opaque;
102     uint32_t index = offset >> 2;
103 
104     if (index < SRC_MAX) {
105         value = s->regs[index];
106     } else {
107         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
108                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
109 
110     }
111 
112     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
113 
114     return value;
115 }
116 
117 
118 /* The reset is asynchronous so we need to defer clearing the reset
119  * bit until the work is completed.
120  */
121 
122 struct SRCSCRResetInfo {
123     IMX6SRCState *s;
124     int reset_bit;
125 };
126 
127 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
128 {
129     struct SRCSCRResetInfo *ri = data.host_ptr;
130     IMX6SRCState *s = ri->s;
131 
132     assert(qemu_mutex_iothread_locked());
133 
134     s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
135     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
136             imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
137 
138     g_free(ri);
139 }
140 
141 static void imx6_defer_clear_reset_bit(int cpuid,
142                                        IMX6SRCState *s,
143                                        unsigned long reset_shift)
144 {
145     struct SRCSCRResetInfo *ri;
146     CPUState *cpu = arm_get_cpu_by_id(cpuid);
147 
148     if (!cpu) {
149         return;
150     }
151 
152     ri = g_malloc(sizeof(struct SRCSCRResetInfo));
153     ri->s = s;
154     ri->reset_bit = reset_shift;
155 
156     async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
157 }
158 
159 
160 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
161                            unsigned size)
162 {
163     IMX6SRCState *s = (IMX6SRCState *)opaque;
164     uint32_t index = offset >> 2;
165     unsigned long change_mask;
166     unsigned long current_value = value;
167 
168     if (index >=  SRC_MAX) {
169         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
170                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
171         return;
172     }
173 
174     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
175             (uint32_t)current_value);
176 
177     change_mask = s->regs[index] ^ (uint32_t)current_value;
178 
179     switch (index) {
180     case SRC_SCR:
181         /*
182          * On real hardware when the system reset controller starts a
183          * secondary CPU it runs through some boot ROM code which reads
184          * the SRC_GPRX registers controlling the start address and branches
185          * to it.
186          * Here we are taking a short cut and branching directly to the
187          * requested address (we don't want to run the boot ROM code inside
188          * QEMU)
189          */
190         if (EXTRACT(change_mask, CORE3_ENABLE)) {
191             if (EXTRACT(current_value, CORE3_ENABLE)) {
192                 /* CORE 3 is brought up */
193                 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
194                                3, false);
195             } else {
196                 /* CORE 3 is shut down */
197                 arm_set_cpu_off(3);
198             }
199             /* We clear the reset bits as the processor changed state */
200             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
201             clear_bit(CORE3_RST_SHIFT, &change_mask);
202         }
203         if (EXTRACT(change_mask, CORE2_ENABLE)) {
204             if (EXTRACT(current_value, CORE2_ENABLE)) {
205                 /* CORE 2 is brought up */
206                 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
207                                3, false);
208             } else {
209                 /* CORE 2 is shut down */
210                 arm_set_cpu_off(2);
211             }
212             /* We clear the reset bits as the processor changed state */
213             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
214             clear_bit(CORE2_RST_SHIFT, &change_mask);
215         }
216         if (EXTRACT(change_mask, CORE1_ENABLE)) {
217             if (EXTRACT(current_value, CORE1_ENABLE)) {
218                 /* CORE 1 is brought up */
219                 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
220                                3, false);
221             } else {
222                 /* CORE 1 is shut down */
223                 arm_set_cpu_off(1);
224             }
225             /* We clear the reset bits as the processor changed state */
226             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
227             clear_bit(CORE1_RST_SHIFT, &change_mask);
228         }
229         if (EXTRACT(change_mask, CORE0_RST)) {
230             arm_reset_cpu(0);
231             imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
232         }
233         if (EXTRACT(change_mask, CORE1_RST)) {
234             arm_reset_cpu(1);
235             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
236         }
237         if (EXTRACT(change_mask, CORE2_RST)) {
238             arm_reset_cpu(2);
239             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
240         }
241         if (EXTRACT(change_mask, CORE3_RST)) {
242             arm_reset_cpu(3);
243             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
244         }
245         if (EXTRACT(change_mask, SW_IPU2_RST)) {
246             /* We pretend the IPU2 is reset */
247             clear_bit(SW_IPU2_RST_SHIFT, &current_value);
248         }
249         if (EXTRACT(change_mask, SW_IPU1_RST)) {
250             /* We pretend the IPU1 is reset */
251             clear_bit(SW_IPU1_RST_SHIFT, &current_value);
252         }
253         s->regs[index] = current_value;
254         break;
255     default:
256         s->regs[index] = current_value;
257         break;
258     }
259 }
260 
261 static const struct MemoryRegionOps imx6_src_ops = {
262     .read = imx6_src_read,
263     .write = imx6_src_write,
264     .endianness = DEVICE_NATIVE_ENDIAN,
265     .valid = {
266         /*
267          * Our device would not work correctly if the guest was doing
268          * unaligned access. This might not be a limitation on the real
269          * device but in practice there is no reason for a guest to access
270          * this device unaligned.
271          */
272         .min_access_size = 4,
273         .max_access_size = 4,
274         .unaligned = false,
275     },
276 };
277 
278 static void imx6_src_realize(DeviceState *dev, Error **errp)
279 {
280     IMX6SRCState *s = IMX6_SRC(dev);
281 
282     memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
283                           TYPE_IMX6_SRC, 0x1000);
284     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
285 }
286 
287 static void imx6_src_class_init(ObjectClass *klass, void *data)
288 {
289     DeviceClass *dc = DEVICE_CLASS(klass);
290 
291     dc->realize = imx6_src_realize;
292     dc->reset = imx6_src_reset;
293     dc->vmsd = &vmstate_imx6_src;
294     dc->desc = "i.MX6 System Reset Controller";
295 }
296 
297 static const TypeInfo imx6_src_info = {
298     .name          = TYPE_IMX6_SRC,
299     .parent        = TYPE_SYS_BUS_DEVICE,
300     .instance_size = sizeof(IMX6SRCState),
301     .class_init    = imx6_src_class_init,
302 };
303 
304 static void imx6_src_register_types(void)
305 {
306     type_register_static(&imx6_src_info);
307 }
308 
309 type_init(imx6_src_register_types)
310