1 /* 2 * IMX6 System Reset Controller 3 * 4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include "hw/misc/imx6_src.h" 13 #include "sysemu/sysemu.h" 14 #include "qemu/bitops.h" 15 #include "qemu/log.h" 16 #include "arm-powerctl.h" 17 18 #ifndef DEBUG_IMX6_SRC 19 #define DEBUG_IMX6_SRC 0 20 #endif 21 22 #define DPRINTF(fmt, args...) \ 23 do { \ 24 if (DEBUG_IMX6_SRC) { \ 25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \ 26 __func__, ##args); \ 27 } \ 28 } while (0) 29 30 static char const *imx6_src_reg_name(uint32_t reg) 31 { 32 static char unknown[20]; 33 34 switch (reg) { 35 case SRC_SCR: 36 return "SRC_SCR"; 37 case SRC_SBMR1: 38 return "SRC_SBMR1"; 39 case SRC_SRSR: 40 return "SRC_SRSR"; 41 case SRC_SISR: 42 return "SRC_SISR"; 43 case SRC_SIMR: 44 return "SRC_SIMR"; 45 case SRC_SBMR2: 46 return "SRC_SBMR2"; 47 case SRC_GPR1: 48 return "SRC_GPR1"; 49 case SRC_GPR2: 50 return "SRC_GPR2"; 51 case SRC_GPR3: 52 return "SRC_GPR3"; 53 case SRC_GPR4: 54 return "SRC_GPR4"; 55 case SRC_GPR5: 56 return "SRC_GPR5"; 57 case SRC_GPR6: 58 return "SRC_GPR6"; 59 case SRC_GPR7: 60 return "SRC_GPR7"; 61 case SRC_GPR8: 62 return "SRC_GPR8"; 63 case SRC_GPR9: 64 return "SRC_GPR9"; 65 case SRC_GPR10: 66 return "SRC_GPR10"; 67 default: 68 sprintf(unknown, "%d ?", reg); 69 return unknown; 70 } 71 } 72 73 static const VMStateDescription vmstate_imx6_src = { 74 .name = TYPE_IMX6_SRC, 75 .version_id = 1, 76 .minimum_version_id = 1, 77 .fields = (VMStateField[]) { 78 VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX), 79 VMSTATE_END_OF_LIST() 80 }, 81 }; 82 83 static void imx6_src_reset(DeviceState *dev) 84 { 85 IMX6SRCState *s = IMX6_SRC(dev); 86 87 DPRINTF("\n"); 88 89 memset(s->regs, 0, sizeof(s->regs)); 90 91 /* Set reset values */ 92 s->regs[SRC_SCR] = 0x521; 93 s->regs[SRC_SRSR] = 0x1; 94 s->regs[SRC_SIMR] = 0x1F; 95 } 96 97 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size) 98 { 99 uint32_t value = 0; 100 IMX6SRCState *s = (IMX6SRCState *)opaque; 101 uint32_t index = offset >> 2; 102 103 if (index < SRC_MAX) { 104 value = s->regs[index]; 105 } else { 106 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 107 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset); 108 109 } 110 111 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value); 112 113 return value; 114 } 115 116 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value, 117 unsigned size) 118 { 119 IMX6SRCState *s = (IMX6SRCState *)opaque; 120 uint32_t index = offset >> 2; 121 unsigned long change_mask; 122 unsigned long current_value = value; 123 124 if (index >= SRC_MAX) { 125 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 126 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset); 127 return; 128 } 129 130 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index), 131 (uint32_t)current_value); 132 133 change_mask = s->regs[index] ^ (uint32_t)current_value; 134 135 switch (index) { 136 case SRC_SCR: 137 /* 138 * On real hardware when the system reset controller starts a 139 * secondary CPU it runs through some boot ROM code which reads 140 * the SRC_GPRX registers controlling the start address and branches 141 * to it. 142 * Here we are taking a short cut and branching directly to the 143 * requested address (we don't want to run the boot ROM code inside 144 * QEMU) 145 */ 146 if (EXTRACT(change_mask, CORE3_ENABLE)) { 147 if (EXTRACT(current_value, CORE3_ENABLE)) { 148 /* CORE 3 is brought up */ 149 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8], 150 3, false); 151 } else { 152 /* CORE 3 is shut down */ 153 arm_set_cpu_off(3); 154 } 155 /* We clear the reset bits as the processor changed state */ 156 clear_bit(CORE3_RST_SHIFT, ¤t_value); 157 clear_bit(CORE3_RST_SHIFT, &change_mask); 158 } 159 if (EXTRACT(change_mask, CORE2_ENABLE)) { 160 if (EXTRACT(current_value, CORE2_ENABLE)) { 161 /* CORE 2 is brought up */ 162 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6], 163 3, false); 164 } else { 165 /* CORE 3 is shut down */ 166 arm_set_cpu_off(2); 167 } 168 /* We clear the reset bits as the processor changed state */ 169 clear_bit(CORE2_RST_SHIFT, ¤t_value); 170 clear_bit(CORE2_RST_SHIFT, &change_mask); 171 } 172 if (EXTRACT(change_mask, CORE1_ENABLE)) { 173 if (EXTRACT(current_value, CORE1_ENABLE)) { 174 /* CORE 1 is brought up */ 175 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4], 176 3, false); 177 } else { 178 /* CORE 3 is shut down */ 179 arm_set_cpu_off(1); 180 } 181 /* We clear the reset bits as the processor changed state */ 182 clear_bit(CORE1_RST_SHIFT, ¤t_value); 183 clear_bit(CORE1_RST_SHIFT, &change_mask); 184 } 185 if (EXTRACT(change_mask, CORE0_RST)) { 186 arm_reset_cpu(0); 187 clear_bit(CORE0_RST_SHIFT, ¤t_value); 188 } 189 if (EXTRACT(change_mask, CORE1_RST)) { 190 arm_reset_cpu(1); 191 clear_bit(CORE1_RST_SHIFT, ¤t_value); 192 } 193 if (EXTRACT(change_mask, CORE2_RST)) { 194 arm_reset_cpu(2); 195 clear_bit(CORE2_RST_SHIFT, ¤t_value); 196 } 197 if (EXTRACT(change_mask, CORE3_RST)) { 198 arm_reset_cpu(3); 199 clear_bit(CORE3_RST_SHIFT, ¤t_value); 200 } 201 if (EXTRACT(change_mask, SW_IPU2_RST)) { 202 /* We pretend the IPU2 is reset */ 203 clear_bit(SW_IPU2_RST_SHIFT, ¤t_value); 204 } 205 if (EXTRACT(change_mask, SW_IPU1_RST)) { 206 /* We pretend the IPU1 is reset */ 207 clear_bit(SW_IPU1_RST_SHIFT, ¤t_value); 208 } 209 s->regs[index] = current_value; 210 break; 211 default: 212 s->regs[index] = current_value; 213 break; 214 } 215 } 216 217 static const struct MemoryRegionOps imx6_src_ops = { 218 .read = imx6_src_read, 219 .write = imx6_src_write, 220 .endianness = DEVICE_NATIVE_ENDIAN, 221 .valid = { 222 /* 223 * Our device would not work correctly if the guest was doing 224 * unaligned access. This might not be a limitation on the real 225 * device but in practice there is no reason for a guest to access 226 * this device unaligned. 227 */ 228 .min_access_size = 4, 229 .max_access_size = 4, 230 .unaligned = false, 231 }, 232 }; 233 234 static void imx6_src_realize(DeviceState *dev, Error **errp) 235 { 236 IMX6SRCState *s = IMX6_SRC(dev); 237 238 memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s, 239 TYPE_IMX6_SRC, 0x1000); 240 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); 241 } 242 243 static void imx6_src_class_init(ObjectClass *klass, void *data) 244 { 245 DeviceClass *dc = DEVICE_CLASS(klass); 246 247 dc->realize = imx6_src_realize; 248 dc->reset = imx6_src_reset; 249 dc->vmsd = &vmstate_imx6_src; 250 dc->desc = "i.MX6 System Reset Controller"; 251 } 252 253 static const TypeInfo imx6_src_info = { 254 .name = TYPE_IMX6_SRC, 255 .parent = TYPE_SYS_BUS_DEVICE, 256 .instance_size = sizeof(IMX6SRCState), 257 .class_init = imx6_src_class_init, 258 }; 259 260 static void imx6_src_register_types(void) 261 { 262 type_register_static(&imx6_src_info); 263 } 264 265 type_init(imx6_src_register_types) 266