xref: /openbmc/qemu/hw/misc/imx6_ccm.c (revision f7160f32)
1 /*
2  * IMX6 Clock Control Module
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  * To get the timer frequencies right, we need to emulate at least part of
10  * the CCM.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "migration/vmstate.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
18 
19 #ifndef DEBUG_IMX6_CCM
20 #define DEBUG_IMX6_CCM 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_IMX6_CCM) { \
26             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
27                                              __func__, ##args); \
28         } \
29     } while (0)
30 
31 static const char *imx6_ccm_reg_name(uint32_t reg)
32 {
33     static char unknown[20];
34 
35     switch (reg) {
36     case CCM_CCR:
37         return "CCR";
38     case CCM_CCDR:
39         return "CCDR";
40     case CCM_CSR:
41         return "CSR";
42     case CCM_CCSR:
43         return "CCSR";
44     case CCM_CACRR:
45         return "CACRR";
46     case CCM_CBCDR:
47         return "CBCDR";
48     case CCM_CBCMR:
49         return "CBCMR";
50     case CCM_CSCMR1:
51         return "CSCMR1";
52     case CCM_CSCMR2:
53         return "CSCMR2";
54     case CCM_CSCDR1:
55         return "CSCDR1";
56     case CCM_CS1CDR:
57         return "CS1CDR";
58     case CCM_CS2CDR:
59         return "CS2CDR";
60     case CCM_CDCDR:
61         return "CDCDR";
62     case CCM_CHSCCDR:
63         return "CHSCCDR";
64     case CCM_CSCDR2:
65         return "CSCDR2";
66     case CCM_CSCDR3:
67         return "CSCDR3";
68     case CCM_CDHIPR:
69         return "CDHIPR";
70     case CCM_CTOR:
71         return "CTOR";
72     case CCM_CLPCR:
73         return "CLPCR";
74     case CCM_CISR:
75         return "CISR";
76     case CCM_CIMR:
77         return "CIMR";
78     case CCM_CCOSR:
79         return "CCOSR";
80     case CCM_CGPR:
81         return "CGPR";
82     case CCM_CCGR0:
83         return "CCGR0";
84     case CCM_CCGR1:
85         return "CCGR1";
86     case CCM_CCGR2:
87         return "CCGR2";
88     case CCM_CCGR3:
89         return "CCGR3";
90     case CCM_CCGR4:
91         return "CCGR4";
92     case CCM_CCGR5:
93         return "CCGR5";
94     case CCM_CCGR6:
95         return "CCGR6";
96     case CCM_CMEOR:
97         return "CMEOR";
98     default:
99         sprintf(unknown, "%d ?", reg);
100         return unknown;
101     }
102 }
103 
104 static const char *imx6_analog_reg_name(uint32_t reg)
105 {
106     static char unknown[20];
107 
108     switch (reg) {
109     case CCM_ANALOG_PLL_ARM:
110         return "PLL_ARM";
111     case CCM_ANALOG_PLL_ARM_SET:
112         return "PLL_ARM_SET";
113     case CCM_ANALOG_PLL_ARM_CLR:
114         return "PLL_ARM_CLR";
115     case CCM_ANALOG_PLL_ARM_TOG:
116         return "PLL_ARM_TOG";
117     case CCM_ANALOG_PLL_USB1:
118         return "PLL_USB1";
119     case CCM_ANALOG_PLL_USB1_SET:
120         return "PLL_USB1_SET";
121     case CCM_ANALOG_PLL_USB1_CLR:
122         return "PLL_USB1_CLR";
123     case CCM_ANALOG_PLL_USB1_TOG:
124         return "PLL_USB1_TOG";
125     case CCM_ANALOG_PLL_USB2:
126         return "PLL_USB2";
127     case CCM_ANALOG_PLL_USB2_SET:
128         return "PLL_USB2_SET";
129     case CCM_ANALOG_PLL_USB2_CLR:
130         return "PLL_USB2_CLR";
131     case CCM_ANALOG_PLL_USB2_TOG:
132         return "PLL_USB2_TOG";
133     case CCM_ANALOG_PLL_SYS:
134         return "PLL_SYS";
135     case CCM_ANALOG_PLL_SYS_SET:
136         return "PLL_SYS_SET";
137     case CCM_ANALOG_PLL_SYS_CLR:
138         return "PLL_SYS_CLR";
139     case CCM_ANALOG_PLL_SYS_TOG:
140         return "PLL_SYS_TOG";
141     case CCM_ANALOG_PLL_SYS_SS:
142         return "PLL_SYS_SS";
143     case CCM_ANALOG_PLL_SYS_NUM:
144         return "PLL_SYS_NUM";
145     case CCM_ANALOG_PLL_SYS_DENOM:
146         return "PLL_SYS_DENOM";
147     case CCM_ANALOG_PLL_AUDIO:
148         return "PLL_AUDIO";
149     case CCM_ANALOG_PLL_AUDIO_SET:
150         return "PLL_AUDIO_SET";
151     case CCM_ANALOG_PLL_AUDIO_CLR:
152         return "PLL_AUDIO_CLR";
153     case CCM_ANALOG_PLL_AUDIO_TOG:
154         return "PLL_AUDIO_TOG";
155     case CCM_ANALOG_PLL_AUDIO_NUM:
156         return "PLL_AUDIO_NUM";
157     case CCM_ANALOG_PLL_AUDIO_DENOM:
158         return "PLL_AUDIO_DENOM";
159     case CCM_ANALOG_PLL_VIDEO:
160         return "PLL_VIDEO";
161     case CCM_ANALOG_PLL_VIDEO_SET:
162         return "PLL_VIDEO_SET";
163     case CCM_ANALOG_PLL_VIDEO_CLR:
164         return "PLL_VIDEO_CLR";
165     case CCM_ANALOG_PLL_VIDEO_TOG:
166         return "PLL_VIDEO_TOG";
167     case CCM_ANALOG_PLL_VIDEO_NUM:
168         return "PLL_VIDEO_NUM";
169     case CCM_ANALOG_PLL_VIDEO_DENOM:
170         return "PLL_VIDEO_DENOM";
171     case CCM_ANALOG_PLL_MLB:
172         return "PLL_MLB";
173     case CCM_ANALOG_PLL_MLB_SET:
174         return "PLL_MLB_SET";
175     case CCM_ANALOG_PLL_MLB_CLR:
176         return "PLL_MLB_CLR";
177     case CCM_ANALOG_PLL_MLB_TOG:
178         return "PLL_MLB_TOG";
179     case CCM_ANALOG_PLL_ENET:
180         return "PLL_ENET";
181     case CCM_ANALOG_PLL_ENET_SET:
182         return "PLL_ENET_SET";
183     case CCM_ANALOG_PLL_ENET_CLR:
184         return "PLL_ENET_CLR";
185     case CCM_ANALOG_PLL_ENET_TOG:
186         return "PLL_ENET_TOG";
187     case CCM_ANALOG_PFD_480:
188         return "PFD_480";
189     case CCM_ANALOG_PFD_480_SET:
190         return "PFD_480_SET";
191     case CCM_ANALOG_PFD_480_CLR:
192         return "PFD_480_CLR";
193     case CCM_ANALOG_PFD_480_TOG:
194         return "PFD_480_TOG";
195     case CCM_ANALOG_PFD_528:
196         return "PFD_528";
197     case CCM_ANALOG_PFD_528_SET:
198         return "PFD_528_SET";
199     case CCM_ANALOG_PFD_528_CLR:
200         return "PFD_528_CLR";
201     case CCM_ANALOG_PFD_528_TOG:
202         return "PFD_528_TOG";
203     case CCM_ANALOG_MISC0:
204         return "MISC0";
205     case CCM_ANALOG_MISC0_SET:
206         return "MISC0_SET";
207     case CCM_ANALOG_MISC0_CLR:
208         return "MISC0_CLR";
209     case CCM_ANALOG_MISC0_TOG:
210         return "MISC0_TOG";
211     case CCM_ANALOG_MISC2:
212         return "MISC2";
213     case CCM_ANALOG_MISC2_SET:
214         return "MISC2_SET";
215     case CCM_ANALOG_MISC2_CLR:
216         return "MISC2_CLR";
217     case CCM_ANALOG_MISC2_TOG:
218         return "MISC2_TOG";
219     case PMU_REG_1P1:
220         return "PMU_REG_1P1";
221     case PMU_REG_3P0:
222         return "PMU_REG_3P0";
223     case PMU_REG_2P5:
224         return "PMU_REG_2P5";
225     case PMU_REG_CORE:
226         return "PMU_REG_CORE";
227     case PMU_MISC1:
228         return "PMU_MISC1";
229     case PMU_MISC1_SET:
230         return "PMU_MISC1_SET";
231     case PMU_MISC1_CLR:
232         return "PMU_MISC1_CLR";
233     case PMU_MISC1_TOG:
234         return "PMU_MISC1_TOG";
235     case USB_ANALOG_DIGPROG:
236         return "USB_ANALOG_DIGPROG";
237     default:
238         sprintf(unknown, "%d ?", reg);
239         return unknown;
240     }
241 }
242 
243 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
244 
245 static const VMStateDescription vmstate_imx6_ccm = {
246     .name = TYPE_IMX6_CCM,
247     .version_id = 1,
248     .minimum_version_id = 1,
249     .fields = (VMStateField[]) {
250         VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
251         VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
252         VMSTATE_END_OF_LIST()
253     },
254 };
255 
256 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
257 {
258     uint64_t freq = 24000000;
259 
260     if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
261         freq *= 22;
262     } else {
263         freq *= 20;
264     }
265 
266     DPRINTF("freq = %d\n", (uint32_t)freq);
267 
268     return freq;
269 }
270 
271 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
272 {
273     uint64_t freq = 0;
274 
275     freq = imx6_analog_get_pll2_clk(dev) * 18
276            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
277 
278     DPRINTF("freq = %d\n", (uint32_t)freq);
279 
280     return freq;
281 }
282 
283 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
284 {
285     uint64_t freq = 0;
286 
287     freq = imx6_analog_get_pll2_clk(dev) * 18
288            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
289 
290     DPRINTF("freq = %d\n", (uint32_t)freq);
291 
292     return freq;
293 }
294 
295 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
296 {
297     uint64_t freq = 0;
298 
299     switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
300     case 0:
301         freq = imx6_analog_get_pll2_clk(dev);
302         break;
303     case 1:
304         freq = imx6_analog_get_pll2_pfd2_clk(dev);
305         break;
306     case 2:
307         freq = imx6_analog_get_pll2_pfd0_clk(dev);
308         break;
309     case 3:
310         freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
311         break;
312     default:
313         /* We should never get there */
314         g_assert_not_reached();
315         break;
316     }
317 
318     DPRINTF("freq = %d\n", (uint32_t)freq);
319 
320     return freq;
321 }
322 
323 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
324 {
325     uint64_t freq = 0;
326 
327     freq = imx6_analog_get_periph_clk(dev)
328            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
329 
330     DPRINTF("freq = %d\n", (uint32_t)freq);
331 
332     return freq;
333 }
334 
335 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
336 {
337     uint64_t freq = 0;
338 
339     freq = imx6_ccm_get_ahb_clk(dev)
340            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
341 
342     DPRINTF("freq = %d\n", (uint32_t)freq);
343 
344     return freq;
345 }
346 
347 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
348 {
349     uint64_t freq = 0;
350 
351     freq = imx6_ccm_get_ipg_clk(dev)
352            / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
353 
354     DPRINTF("freq = %d\n", (uint32_t)freq);
355 
356     return freq;
357 }
358 
359 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
360 {
361     uint32_t freq = 0;
362     IMX6CCMState *s = IMX6_CCM(dev);
363 
364     switch (clock) {
365     case CLK_NONE:
366         break;
367     case CLK_IPG:
368         freq = imx6_ccm_get_ipg_clk(s);
369         break;
370     case CLK_IPG_HIGH:
371         freq = imx6_ccm_get_per_clk(s);
372         break;
373     case CLK_32k:
374         freq = CKIL_FREQ;
375         break;
376     case CLK_HIGH:
377         freq = 24000000;
378         break;
379     case CLK_HIGH_DIV:
380         freq = 24000000 / 8;
381         break;
382     default:
383         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
384                       TYPE_IMX6_CCM, __func__, clock);
385         break;
386     }
387 
388     DPRINTF("Clock = %d) = %d\n", clock, freq);
389 
390     return freq;
391 }
392 
393 static void imx6_ccm_reset(DeviceState *dev)
394 {
395     IMX6CCMState *s = IMX6_CCM(dev);
396 
397     DPRINTF("\n");
398 
399     s->ccm[CCM_CCR] = 0x040116FF;
400     s->ccm[CCM_CCDR] = 0x00000000;
401     s->ccm[CCM_CSR] = 0x00000010;
402     s->ccm[CCM_CCSR] = 0x00000100;
403     s->ccm[CCM_CACRR] = 0x00000000;
404     s->ccm[CCM_CBCDR] = 0x00018D40;
405     s->ccm[CCM_CBCMR] = 0x00022324;
406     s->ccm[CCM_CSCMR1] = 0x00F00000;
407     s->ccm[CCM_CSCMR2] = 0x02B92F06;
408     s->ccm[CCM_CSCDR1] = 0x00490B00;
409     s->ccm[CCM_CS1CDR] = 0x0EC102C1;
410     s->ccm[CCM_CS2CDR] = 0x000736C1;
411     s->ccm[CCM_CDCDR] = 0x33F71F92;
412     s->ccm[CCM_CHSCCDR] = 0x0002A150;
413     s->ccm[CCM_CSCDR2] = 0x0002A150;
414     s->ccm[CCM_CSCDR3] = 0x00014841;
415     s->ccm[CCM_CDHIPR] = 0x00000000;
416     s->ccm[CCM_CTOR] = 0x00000000;
417     s->ccm[CCM_CLPCR] = 0x00000079;
418     s->ccm[CCM_CISR] = 0x00000000;
419     s->ccm[CCM_CIMR] = 0xFFFFFFFF;
420     s->ccm[CCM_CCOSR] = 0x000A0001;
421     s->ccm[CCM_CGPR] = 0x0000FE62;
422     s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
423     s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
424     s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
425     s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
426     s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
427     s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
428     s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
429     s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
430 
431     s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
432     s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
433     s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
434     s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
435     s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
436     s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
437     s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
438     s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
439     s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
440     s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
441     s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
442     s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
443     s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
444     s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
445     s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
446     s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
447     s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
448 
449     s->analog[PMU_REG_1P1] = 0x00001073;
450     s->analog[PMU_REG_3P0] = 0x00000F74;
451     s->analog[PMU_REG_2P5] = 0x00005071;
452     s->analog[PMU_REG_CORE] = 0x00402010;
453     s->analog[PMU_MISC0] = 0x04000000;
454     s->analog[PMU_MISC1] = 0x00000000;
455     s->analog[PMU_MISC2] = 0x00272727;
456 
457     s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
458     s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
459     s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
460     s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
461     s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
462     s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
463     s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
464     s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
465     s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
466 
467     /* all PLLs need to be locked */
468     s->analog[CCM_ANALOG_PLL_ARM]   |= CCM_ANALOG_PLL_LOCK;
469     s->analog[CCM_ANALOG_PLL_USB1]  |= CCM_ANALOG_PLL_LOCK;
470     s->analog[CCM_ANALOG_PLL_USB2]  |= CCM_ANALOG_PLL_LOCK;
471     s->analog[CCM_ANALOG_PLL_SYS]   |= CCM_ANALOG_PLL_LOCK;
472     s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
473     s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
474     s->analog[CCM_ANALOG_PLL_MLB]   |= CCM_ANALOG_PLL_LOCK;
475     s->analog[CCM_ANALOG_PLL_ENET]  |= CCM_ANALOG_PLL_LOCK;
476 }
477 
478 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
479 {
480     uint32_t value = 0;
481     uint32_t index = offset >> 2;
482     IMX6CCMState *s = (IMX6CCMState *)opaque;
483 
484     value = s->ccm[index];
485 
486     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
487 
488     return (uint64_t)value;
489 }
490 
491 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
492                            unsigned size)
493 {
494     uint32_t index = offset >> 2;
495     IMX6CCMState *s = (IMX6CCMState *)opaque;
496 
497     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
498             (uint32_t)value);
499 
500     /*
501      * We will do a better implementation later. In particular some bits
502      * cannot be written to.
503      */
504     s->ccm[index] = (uint32_t)value;
505 }
506 
507 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
508 {
509     uint32_t value;
510     uint32_t index = offset >> 2;
511     IMX6CCMState *s = (IMX6CCMState *)opaque;
512 
513     switch (index) {
514     case CCM_ANALOG_PLL_ARM_SET:
515     case CCM_ANALOG_PLL_USB1_SET:
516     case CCM_ANALOG_PLL_USB2_SET:
517     case CCM_ANALOG_PLL_SYS_SET:
518     case CCM_ANALOG_PLL_AUDIO_SET:
519     case CCM_ANALOG_PLL_VIDEO_SET:
520     case CCM_ANALOG_PLL_MLB_SET:
521     case CCM_ANALOG_PLL_ENET_SET:
522     case CCM_ANALOG_PFD_480_SET:
523     case CCM_ANALOG_PFD_528_SET:
524     case CCM_ANALOG_MISC0_SET:
525     case PMU_MISC1_SET:
526     case CCM_ANALOG_MISC2_SET:
527     case USB_ANALOG_USB1_VBUS_DETECT_SET:
528     case USB_ANALOG_USB1_CHRG_DETECT_SET:
529     case USB_ANALOG_USB1_MISC_SET:
530     case USB_ANALOG_USB2_VBUS_DETECT_SET:
531     case USB_ANALOG_USB2_CHRG_DETECT_SET:
532     case USB_ANALOG_USB2_MISC_SET:
533         /*
534          * All REG_NAME_SET register access are in fact targeting the
535          * the REG_NAME register.
536          */
537         value = s->analog[index - 1];
538         break;
539     case CCM_ANALOG_PLL_ARM_CLR:
540     case CCM_ANALOG_PLL_USB1_CLR:
541     case CCM_ANALOG_PLL_USB2_CLR:
542     case CCM_ANALOG_PLL_SYS_CLR:
543     case CCM_ANALOG_PLL_AUDIO_CLR:
544     case CCM_ANALOG_PLL_VIDEO_CLR:
545     case CCM_ANALOG_PLL_MLB_CLR:
546     case CCM_ANALOG_PLL_ENET_CLR:
547     case CCM_ANALOG_PFD_480_CLR:
548     case CCM_ANALOG_PFD_528_CLR:
549     case CCM_ANALOG_MISC0_CLR:
550     case PMU_MISC1_CLR:
551     case CCM_ANALOG_MISC2_CLR:
552     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
553     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
554     case USB_ANALOG_USB1_MISC_CLR:
555     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
556     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
557     case USB_ANALOG_USB2_MISC_CLR:
558         /*
559          * All REG_NAME_CLR register access are in fact targeting the
560          * the REG_NAME register.
561          */
562         value = s->analog[index - 2];
563         break;
564     case CCM_ANALOG_PLL_ARM_TOG:
565     case CCM_ANALOG_PLL_USB1_TOG:
566     case CCM_ANALOG_PLL_USB2_TOG:
567     case CCM_ANALOG_PLL_SYS_TOG:
568     case CCM_ANALOG_PLL_AUDIO_TOG:
569     case CCM_ANALOG_PLL_VIDEO_TOG:
570     case CCM_ANALOG_PLL_MLB_TOG:
571     case CCM_ANALOG_PLL_ENET_TOG:
572     case CCM_ANALOG_PFD_480_TOG:
573     case CCM_ANALOG_PFD_528_TOG:
574     case CCM_ANALOG_MISC0_TOG:
575     case PMU_MISC1_TOG:
576     case CCM_ANALOG_MISC2_TOG:
577     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
578     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
579     case USB_ANALOG_USB1_MISC_TOG:
580     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
581     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
582     case USB_ANALOG_USB2_MISC_TOG:
583         /*
584          * All REG_NAME_TOG register access are in fact targeting the
585          * the REG_NAME register.
586          */
587         value = s->analog[index - 3];
588         break;
589     default:
590         value = s->analog[index];
591         break;
592     }
593 
594     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
595 
596     return (uint64_t)value;
597 }
598 
599 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
600                               unsigned size)
601 {
602     uint32_t index = offset >> 2;
603     IMX6CCMState *s = (IMX6CCMState *)opaque;
604 
605     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
606             (uint32_t)value);
607 
608     switch (index) {
609     case CCM_ANALOG_PLL_ARM_SET:
610     case CCM_ANALOG_PLL_USB1_SET:
611     case CCM_ANALOG_PLL_USB2_SET:
612     case CCM_ANALOG_PLL_SYS_SET:
613     case CCM_ANALOG_PLL_AUDIO_SET:
614     case CCM_ANALOG_PLL_VIDEO_SET:
615     case CCM_ANALOG_PLL_MLB_SET:
616     case CCM_ANALOG_PLL_ENET_SET:
617     case CCM_ANALOG_PFD_480_SET:
618     case CCM_ANALOG_PFD_528_SET:
619     case CCM_ANALOG_MISC0_SET:
620     case PMU_MISC1_SET:
621     case CCM_ANALOG_MISC2_SET:
622     case USB_ANALOG_USB1_VBUS_DETECT_SET:
623     case USB_ANALOG_USB1_CHRG_DETECT_SET:
624     case USB_ANALOG_USB1_MISC_SET:
625     case USB_ANALOG_USB2_VBUS_DETECT_SET:
626     case USB_ANALOG_USB2_CHRG_DETECT_SET:
627     case USB_ANALOG_USB2_MISC_SET:
628         /*
629          * All REG_NAME_SET register access are in fact targeting the
630          * the REG_NAME register. So we change the value of the
631          * REG_NAME register, setting bits passed in the value.
632          */
633         s->analog[index - 1] |= value;
634         break;
635     case CCM_ANALOG_PLL_ARM_CLR:
636     case CCM_ANALOG_PLL_USB1_CLR:
637     case CCM_ANALOG_PLL_USB2_CLR:
638     case CCM_ANALOG_PLL_SYS_CLR:
639     case CCM_ANALOG_PLL_AUDIO_CLR:
640     case CCM_ANALOG_PLL_VIDEO_CLR:
641     case CCM_ANALOG_PLL_MLB_CLR:
642     case CCM_ANALOG_PLL_ENET_CLR:
643     case CCM_ANALOG_PFD_480_CLR:
644     case CCM_ANALOG_PFD_528_CLR:
645     case CCM_ANALOG_MISC0_CLR:
646     case PMU_MISC1_CLR:
647     case CCM_ANALOG_MISC2_CLR:
648     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
649     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
650     case USB_ANALOG_USB1_MISC_CLR:
651     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
652     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
653     case USB_ANALOG_USB2_MISC_CLR:
654         /*
655          * All REG_NAME_CLR register access are in fact targeting the
656          * the REG_NAME register. So we change the value of the
657          * REG_NAME register, unsetting bits passed in the value.
658          */
659         s->analog[index - 2] &= ~value;
660         break;
661     case CCM_ANALOG_PLL_ARM_TOG:
662     case CCM_ANALOG_PLL_USB1_TOG:
663     case CCM_ANALOG_PLL_USB2_TOG:
664     case CCM_ANALOG_PLL_SYS_TOG:
665     case CCM_ANALOG_PLL_AUDIO_TOG:
666     case CCM_ANALOG_PLL_VIDEO_TOG:
667     case CCM_ANALOG_PLL_MLB_TOG:
668     case CCM_ANALOG_PLL_ENET_TOG:
669     case CCM_ANALOG_PFD_480_TOG:
670     case CCM_ANALOG_PFD_528_TOG:
671     case CCM_ANALOG_MISC0_TOG:
672     case PMU_MISC1_TOG:
673     case CCM_ANALOG_MISC2_TOG:
674     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
675     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
676     case USB_ANALOG_USB1_MISC_TOG:
677     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
678     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
679     case USB_ANALOG_USB2_MISC_TOG:
680         /*
681          * All REG_NAME_TOG register access are in fact targeting the
682          * the REG_NAME register. So we change the value of the
683          * REG_NAME register, toggling bits passed in the value.
684          */
685         s->analog[index - 3] ^= value;
686         break;
687     default:
688         /*
689          * We will do a better implementation later. In particular some bits
690          * cannot be written to.
691          */
692         s->analog[index] = value;
693         break;
694     }
695 }
696 
697 static const struct MemoryRegionOps imx6_ccm_ops = {
698     .read = imx6_ccm_read,
699     .write = imx6_ccm_write,
700     .endianness = DEVICE_NATIVE_ENDIAN,
701     .valid = {
702         /*
703          * Our device would not work correctly if the guest was doing
704          * unaligned access. This might not be a limitation on the real
705          * device but in practice there is no reason for a guest to access
706          * this device unaligned.
707          */
708         .min_access_size = 4,
709         .max_access_size = 4,
710         .unaligned = false,
711     },
712 };
713 
714 static const struct MemoryRegionOps imx6_analog_ops = {
715     .read = imx6_analog_read,
716     .write = imx6_analog_write,
717     .endianness = DEVICE_NATIVE_ENDIAN,
718     .valid = {
719         /*
720          * Our device would not work correctly if the guest was doing
721          * unaligned access. This might not be a limitation on the real
722          * device but in practice there is no reason for a guest to access
723          * this device unaligned.
724          */
725         .min_access_size = 4,
726         .max_access_size = 4,
727         .unaligned = false,
728     },
729 };
730 
731 static void imx6_ccm_init(Object *obj)
732 {
733     DeviceState *dev = DEVICE(obj);
734     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
735     IMX6CCMState *s = IMX6_CCM(obj);
736 
737     /* initialize a container for the all memory range */
738     memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
739 
740     /* We initialize an IO memory region for the CCM part */
741     memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
742                           TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
743 
744     /* Add the CCM as a subregion at offset 0 */
745     memory_region_add_subregion(&s->container, 0, &s->ioccm);
746 
747     /* We initialize an IO memory region for the ANALOG part */
748     memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
749                           TYPE_IMX6_CCM ".analog",
750                           CCM_ANALOG_MAX * sizeof(uint32_t));
751 
752     /* Add the ANALOG as a subregion at offset 0x4000 */
753     memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
754 
755     sysbus_init_mmio(sd, &s->container);
756 }
757 
758 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
759 {
760     DeviceClass *dc = DEVICE_CLASS(klass);
761     IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
762 
763     dc->reset = imx6_ccm_reset;
764     dc->vmsd = &vmstate_imx6_ccm;
765     dc->desc = "i.MX6 Clock Control Module";
766 
767     ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
768 }
769 
770 static const TypeInfo imx6_ccm_info = {
771     .name          = TYPE_IMX6_CCM,
772     .parent        = TYPE_IMX_CCM,
773     .instance_size = sizeof(IMX6CCMState),
774     .instance_init = imx6_ccm_init,
775     .class_init    = imx6_ccm_class_init,
776 };
777 
778 static void imx6_ccm_register_types(void)
779 {
780     type_register_static(&imx6_ccm_info);
781 }
782 
783 type_init(imx6_ccm_register_types)
784