xref: /openbmc/qemu/hw/misc/imx6_ccm.c (revision bfce9288)
1 /*
2  * IMX6 Clock Control Module
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  * To get the timer frequencies right, we need to emulate at least part of
10  * the CCM.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "migration/vmstate.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
18 #include "trace.h"
19 
20 static const char *imx6_ccm_reg_name(uint32_t reg)
21 {
22     static char unknown[20];
23 
24     switch (reg) {
25     case CCM_CCR:
26         return "CCR";
27     case CCM_CCDR:
28         return "CCDR";
29     case CCM_CSR:
30         return "CSR";
31     case CCM_CCSR:
32         return "CCSR";
33     case CCM_CACRR:
34         return "CACRR";
35     case CCM_CBCDR:
36         return "CBCDR";
37     case CCM_CBCMR:
38         return "CBCMR";
39     case CCM_CSCMR1:
40         return "CSCMR1";
41     case CCM_CSCMR2:
42         return "CSCMR2";
43     case CCM_CSCDR1:
44         return "CSCDR1";
45     case CCM_CS1CDR:
46         return "CS1CDR";
47     case CCM_CS2CDR:
48         return "CS2CDR";
49     case CCM_CDCDR:
50         return "CDCDR";
51     case CCM_CHSCCDR:
52         return "CHSCCDR";
53     case CCM_CSCDR2:
54         return "CSCDR2";
55     case CCM_CSCDR3:
56         return "CSCDR3";
57     case CCM_CDHIPR:
58         return "CDHIPR";
59     case CCM_CTOR:
60         return "CTOR";
61     case CCM_CLPCR:
62         return "CLPCR";
63     case CCM_CISR:
64         return "CISR";
65     case CCM_CIMR:
66         return "CIMR";
67     case CCM_CCOSR:
68         return "CCOSR";
69     case CCM_CGPR:
70         return "CGPR";
71     case CCM_CCGR0:
72         return "CCGR0";
73     case CCM_CCGR1:
74         return "CCGR1";
75     case CCM_CCGR2:
76         return "CCGR2";
77     case CCM_CCGR3:
78         return "CCGR3";
79     case CCM_CCGR4:
80         return "CCGR4";
81     case CCM_CCGR5:
82         return "CCGR5";
83     case CCM_CCGR6:
84         return "CCGR6";
85     case CCM_CMEOR:
86         return "CMEOR";
87     default:
88         snprintf(unknown, sizeof(unknown), "%u ?", reg);
89         return unknown;
90     }
91 }
92 
93 static const char *imx6_analog_reg_name(uint32_t reg)
94 {
95     static char unknown[20];
96 
97     switch (reg) {
98     case CCM_ANALOG_PLL_ARM:
99         return "PLL_ARM";
100     case CCM_ANALOG_PLL_ARM_SET:
101         return "PLL_ARM_SET";
102     case CCM_ANALOG_PLL_ARM_CLR:
103         return "PLL_ARM_CLR";
104     case CCM_ANALOG_PLL_ARM_TOG:
105         return "PLL_ARM_TOG";
106     case CCM_ANALOG_PLL_USB1:
107         return "PLL_USB1";
108     case CCM_ANALOG_PLL_USB1_SET:
109         return "PLL_USB1_SET";
110     case CCM_ANALOG_PLL_USB1_CLR:
111         return "PLL_USB1_CLR";
112     case CCM_ANALOG_PLL_USB1_TOG:
113         return "PLL_USB1_TOG";
114     case CCM_ANALOG_PLL_USB2:
115         return "PLL_USB2";
116     case CCM_ANALOG_PLL_USB2_SET:
117         return "PLL_USB2_SET";
118     case CCM_ANALOG_PLL_USB2_CLR:
119         return "PLL_USB2_CLR";
120     case CCM_ANALOG_PLL_USB2_TOG:
121         return "PLL_USB2_TOG";
122     case CCM_ANALOG_PLL_SYS:
123         return "PLL_SYS";
124     case CCM_ANALOG_PLL_SYS_SET:
125         return "PLL_SYS_SET";
126     case CCM_ANALOG_PLL_SYS_CLR:
127         return "PLL_SYS_CLR";
128     case CCM_ANALOG_PLL_SYS_TOG:
129         return "PLL_SYS_TOG";
130     case CCM_ANALOG_PLL_SYS_SS:
131         return "PLL_SYS_SS";
132     case CCM_ANALOG_PLL_SYS_NUM:
133         return "PLL_SYS_NUM";
134     case CCM_ANALOG_PLL_SYS_DENOM:
135         return "PLL_SYS_DENOM";
136     case CCM_ANALOG_PLL_AUDIO:
137         return "PLL_AUDIO";
138     case CCM_ANALOG_PLL_AUDIO_SET:
139         return "PLL_AUDIO_SET";
140     case CCM_ANALOG_PLL_AUDIO_CLR:
141         return "PLL_AUDIO_CLR";
142     case CCM_ANALOG_PLL_AUDIO_TOG:
143         return "PLL_AUDIO_TOG";
144     case CCM_ANALOG_PLL_AUDIO_NUM:
145         return "PLL_AUDIO_NUM";
146     case CCM_ANALOG_PLL_AUDIO_DENOM:
147         return "PLL_AUDIO_DENOM";
148     case CCM_ANALOG_PLL_VIDEO:
149         return "PLL_VIDEO";
150     case CCM_ANALOG_PLL_VIDEO_SET:
151         return "PLL_VIDEO_SET";
152     case CCM_ANALOG_PLL_VIDEO_CLR:
153         return "PLL_VIDEO_CLR";
154     case CCM_ANALOG_PLL_VIDEO_TOG:
155         return "PLL_VIDEO_TOG";
156     case CCM_ANALOG_PLL_VIDEO_NUM:
157         return "PLL_VIDEO_NUM";
158     case CCM_ANALOG_PLL_VIDEO_DENOM:
159         return "PLL_VIDEO_DENOM";
160     case CCM_ANALOG_PLL_MLB:
161         return "PLL_MLB";
162     case CCM_ANALOG_PLL_MLB_SET:
163         return "PLL_MLB_SET";
164     case CCM_ANALOG_PLL_MLB_CLR:
165         return "PLL_MLB_CLR";
166     case CCM_ANALOG_PLL_MLB_TOG:
167         return "PLL_MLB_TOG";
168     case CCM_ANALOG_PLL_ENET:
169         return "PLL_ENET";
170     case CCM_ANALOG_PLL_ENET_SET:
171         return "PLL_ENET_SET";
172     case CCM_ANALOG_PLL_ENET_CLR:
173         return "PLL_ENET_CLR";
174     case CCM_ANALOG_PLL_ENET_TOG:
175         return "PLL_ENET_TOG";
176     case CCM_ANALOG_PFD_480:
177         return "PFD_480";
178     case CCM_ANALOG_PFD_480_SET:
179         return "PFD_480_SET";
180     case CCM_ANALOG_PFD_480_CLR:
181         return "PFD_480_CLR";
182     case CCM_ANALOG_PFD_480_TOG:
183         return "PFD_480_TOG";
184     case CCM_ANALOG_PFD_528:
185         return "PFD_528";
186     case CCM_ANALOG_PFD_528_SET:
187         return "PFD_528_SET";
188     case CCM_ANALOG_PFD_528_CLR:
189         return "PFD_528_CLR";
190     case CCM_ANALOG_PFD_528_TOG:
191         return "PFD_528_TOG";
192     case CCM_ANALOG_MISC0:
193         return "MISC0";
194     case CCM_ANALOG_MISC0_SET:
195         return "MISC0_SET";
196     case CCM_ANALOG_MISC0_CLR:
197         return "MISC0_CLR";
198     case CCM_ANALOG_MISC0_TOG:
199         return "MISC0_TOG";
200     case CCM_ANALOG_MISC2:
201         return "MISC2";
202     case CCM_ANALOG_MISC2_SET:
203         return "MISC2_SET";
204     case CCM_ANALOG_MISC2_CLR:
205         return "MISC2_CLR";
206     case CCM_ANALOG_MISC2_TOG:
207         return "MISC2_TOG";
208     case PMU_REG_1P1:
209         return "PMU_REG_1P1";
210     case PMU_REG_3P0:
211         return "PMU_REG_3P0";
212     case PMU_REG_2P5:
213         return "PMU_REG_2P5";
214     case PMU_REG_CORE:
215         return "PMU_REG_CORE";
216     case PMU_MISC1:
217         return "PMU_MISC1";
218     case PMU_MISC1_SET:
219         return "PMU_MISC1_SET";
220     case PMU_MISC1_CLR:
221         return "PMU_MISC1_CLR";
222     case PMU_MISC1_TOG:
223         return "PMU_MISC1_TOG";
224     case USB_ANALOG_DIGPROG:
225         return "USB_ANALOG_DIGPROG";
226     default:
227         snprintf(unknown, sizeof(unknown), "%u ?", reg);
228         return unknown;
229     }
230 }
231 
232 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
233 
234 static const VMStateDescription vmstate_imx6_ccm = {
235     .name = TYPE_IMX6_CCM,
236     .version_id = 1,
237     .minimum_version_id = 1,
238     .fields = (const VMStateField[]) {
239         VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
240         VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
241         VMSTATE_END_OF_LIST()
242     },
243 };
244 
245 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
246 {
247     uint64_t freq = 24000000;
248 
249     if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
250         freq *= 22;
251     } else {
252         freq *= 20;
253     }
254 
255     trace_imx6_analog_get_pll2_clk(freq);
256 
257     return freq;
258 }
259 
260 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
261 {
262     uint64_t freq = 0;
263 
264     freq = imx6_analog_get_pll2_clk(dev) * 18
265            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
266 
267     trace_imx6_analog_get_pll2_pfd0_clk(freq);
268 
269     return freq;
270 }
271 
272 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
273 {
274     uint64_t freq = 0;
275 
276     freq = imx6_analog_get_pll2_clk(dev) * 18
277            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
278 
279     trace_imx6_analog_get_pll2_pfd2_clk(freq);
280 
281     return freq;
282 }
283 
284 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
285 {
286     uint64_t freq = 0;
287 
288     switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
289     case 0:
290         freq = imx6_analog_get_pll2_clk(dev);
291         break;
292     case 1:
293         freq = imx6_analog_get_pll2_pfd2_clk(dev);
294         break;
295     case 2:
296         freq = imx6_analog_get_pll2_pfd0_clk(dev);
297         break;
298     case 3:
299         freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
300         break;
301     default:
302         /* We should never get there */
303         g_assert_not_reached();
304     }
305 
306     trace_imx6_analog_get_periph_clk(freq);
307 
308     return freq;
309 }
310 
311 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
312 {
313     uint64_t freq = 0;
314 
315     freq = imx6_analog_get_periph_clk(dev)
316            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
317 
318     trace_imx6_ccm_get_ahb_clk(freq);
319 
320     return freq;
321 }
322 
323 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
324 {
325     uint64_t freq = 0;
326 
327     freq = imx6_ccm_get_ahb_clk(dev)
328            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
329 
330     trace_imx6_ccm_get_ipg_clk(freq);
331 
332     return freq;
333 }
334 
335 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
336 {
337     uint64_t freq = 0;
338 
339     freq = imx6_ccm_get_ipg_clk(dev)
340            / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
341 
342     trace_imx6_ccm_get_per_clk(freq);
343 
344     return freq;
345 }
346 
347 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
348 {
349     uint32_t freq = 0;
350     IMX6CCMState *s = IMX6_CCM(dev);
351 
352     switch (clock) {
353     case CLK_NONE:
354         break;
355     case CLK_IPG:
356         freq = imx6_ccm_get_ipg_clk(s);
357         break;
358     case CLK_IPG_HIGH:
359         freq = imx6_ccm_get_per_clk(s);
360         break;
361     case CLK_32k:
362         freq = CKIL_FREQ;
363         break;
364     case CLK_HIGH:
365         freq = 24000000;
366         break;
367     case CLK_HIGH_DIV:
368         freq = 24000000 / 8;
369         break;
370     default:
371         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
372                       TYPE_IMX6_CCM, __func__, clock);
373         break;
374     }
375 
376     trace_imx6_ccm_get_clock_frequency(clock, freq);
377 
378     return freq;
379 }
380 
381 static void imx6_ccm_reset(DeviceState *dev)
382 {
383     IMX6CCMState *s = IMX6_CCM(dev);
384 
385     trace_imx6_ccm_reset();
386 
387     s->ccm[CCM_CCR] = 0x040116FF;
388     s->ccm[CCM_CCDR] = 0x00000000;
389     s->ccm[CCM_CSR] = 0x00000010;
390     s->ccm[CCM_CCSR] = 0x00000100;
391     s->ccm[CCM_CACRR] = 0x00000000;
392     s->ccm[CCM_CBCDR] = 0x00018D40;
393     s->ccm[CCM_CBCMR] = 0x00022324;
394     s->ccm[CCM_CSCMR1] = 0x00F00000;
395     s->ccm[CCM_CSCMR2] = 0x02B92F06;
396     s->ccm[CCM_CSCDR1] = 0x00490B00;
397     s->ccm[CCM_CS1CDR] = 0x0EC102C1;
398     s->ccm[CCM_CS2CDR] = 0x000736C1;
399     s->ccm[CCM_CDCDR] = 0x33F71F92;
400     s->ccm[CCM_CHSCCDR] = 0x0002A150;
401     s->ccm[CCM_CSCDR2] = 0x0002A150;
402     s->ccm[CCM_CSCDR3] = 0x00014841;
403     s->ccm[CCM_CDHIPR] = 0x00000000;
404     s->ccm[CCM_CTOR] = 0x00000000;
405     s->ccm[CCM_CLPCR] = 0x00000079;
406     s->ccm[CCM_CISR] = 0x00000000;
407     s->ccm[CCM_CIMR] = 0xFFFFFFFF;
408     s->ccm[CCM_CCOSR] = 0x000A0001;
409     s->ccm[CCM_CGPR] = 0x0000FE62;
410     s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
411     s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
412     s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
413     s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
414     s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
415     s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
416     s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
417     s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
418 
419     s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
420     s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
421     s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
422     s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
423     s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
424     s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
425     s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
426     s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
427     s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
428     s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
429     s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
430     s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
431     s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
432     s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
433     s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
434     s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
435     s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
436 
437     s->analog[PMU_REG_1P1] = 0x00001073;
438     s->analog[PMU_REG_3P0] = 0x00000F74;
439     s->analog[PMU_REG_2P5] = 0x00005071;
440     s->analog[PMU_REG_CORE] = 0x00402010;
441     s->analog[PMU_MISC0] = 0x04000080;
442     s->analog[PMU_MISC1] = 0x00000000;
443     s->analog[PMU_MISC2] = 0x00272727;
444 
445     s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
446     s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
447     s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
448     s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
449     s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
450     s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
451     s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
452     s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
453     s->analog[USB_ANALOG_DIGPROG] = 0x00630000;
454 
455     /* all PLLs need to be locked */
456     s->analog[CCM_ANALOG_PLL_ARM]   |= CCM_ANALOG_PLL_LOCK;
457     s->analog[CCM_ANALOG_PLL_USB1]  |= CCM_ANALOG_PLL_LOCK;
458     s->analog[CCM_ANALOG_PLL_USB2]  |= CCM_ANALOG_PLL_LOCK;
459     s->analog[CCM_ANALOG_PLL_SYS]   |= CCM_ANALOG_PLL_LOCK;
460     s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
461     s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
462     s->analog[CCM_ANALOG_PLL_MLB]   |= CCM_ANALOG_PLL_LOCK;
463     s->analog[CCM_ANALOG_PLL_ENET]  |= CCM_ANALOG_PLL_LOCK;
464 }
465 
466 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
467 {
468     uint32_t value = 0;
469     uint32_t index = offset >> 2;
470     IMX6CCMState *s = (IMX6CCMState *)opaque;
471 
472     value = s->ccm[index];
473 
474     trace_imx6_ccm_read(imx6_ccm_reg_name(index), value);
475 
476     return (uint64_t)value;
477 }
478 
479 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
480                            unsigned size)
481 {
482     uint32_t index = offset >> 2;
483     IMX6CCMState *s = (IMX6CCMState *)opaque;
484 
485     trace_imx6_ccm_write(imx6_ccm_reg_name(index), (uint32_t)value);
486 
487     /*
488      * We will do a better implementation later. In particular some bits
489      * cannot be written to.
490      */
491     s->ccm[index] = (uint32_t)value;
492 }
493 
494 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
495 {
496     uint32_t value;
497     uint32_t index = offset >> 2;
498     IMX6CCMState *s = (IMX6CCMState *)opaque;
499 
500     switch (index) {
501     case CCM_ANALOG_PLL_ARM_SET:
502     case CCM_ANALOG_PLL_USB1_SET:
503     case CCM_ANALOG_PLL_USB2_SET:
504     case CCM_ANALOG_PLL_SYS_SET:
505     case CCM_ANALOG_PLL_AUDIO_SET:
506     case CCM_ANALOG_PLL_VIDEO_SET:
507     case CCM_ANALOG_PLL_MLB_SET:
508     case CCM_ANALOG_PLL_ENET_SET:
509     case CCM_ANALOG_PFD_480_SET:
510     case CCM_ANALOG_PFD_528_SET:
511     case CCM_ANALOG_MISC0_SET:
512     case PMU_MISC1_SET:
513     case CCM_ANALOG_MISC2_SET:
514     case USB_ANALOG_USB1_VBUS_DETECT_SET:
515     case USB_ANALOG_USB1_CHRG_DETECT_SET:
516     case USB_ANALOG_USB1_MISC_SET:
517     case USB_ANALOG_USB2_VBUS_DETECT_SET:
518     case USB_ANALOG_USB2_CHRG_DETECT_SET:
519     case USB_ANALOG_USB2_MISC_SET:
520         /*
521          * All REG_NAME_SET register access are in fact targeting the
522          * the REG_NAME register.
523          */
524         value = s->analog[index - 1];
525         break;
526     case CCM_ANALOG_PLL_ARM_CLR:
527     case CCM_ANALOG_PLL_USB1_CLR:
528     case CCM_ANALOG_PLL_USB2_CLR:
529     case CCM_ANALOG_PLL_SYS_CLR:
530     case CCM_ANALOG_PLL_AUDIO_CLR:
531     case CCM_ANALOG_PLL_VIDEO_CLR:
532     case CCM_ANALOG_PLL_MLB_CLR:
533     case CCM_ANALOG_PLL_ENET_CLR:
534     case CCM_ANALOG_PFD_480_CLR:
535     case CCM_ANALOG_PFD_528_CLR:
536     case CCM_ANALOG_MISC0_CLR:
537     case PMU_MISC1_CLR:
538     case CCM_ANALOG_MISC2_CLR:
539     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
540     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
541     case USB_ANALOG_USB1_MISC_CLR:
542     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
543     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
544     case USB_ANALOG_USB2_MISC_CLR:
545         /*
546          * All REG_NAME_CLR register access are in fact targeting the
547          * the REG_NAME register.
548          */
549         value = s->analog[index - 2];
550         break;
551     case CCM_ANALOG_PLL_ARM_TOG:
552     case CCM_ANALOG_PLL_USB1_TOG:
553     case CCM_ANALOG_PLL_USB2_TOG:
554     case CCM_ANALOG_PLL_SYS_TOG:
555     case CCM_ANALOG_PLL_AUDIO_TOG:
556     case CCM_ANALOG_PLL_VIDEO_TOG:
557     case CCM_ANALOG_PLL_MLB_TOG:
558     case CCM_ANALOG_PLL_ENET_TOG:
559     case CCM_ANALOG_PFD_480_TOG:
560     case CCM_ANALOG_PFD_528_TOG:
561     case CCM_ANALOG_MISC0_TOG:
562     case PMU_MISC1_TOG:
563     case CCM_ANALOG_MISC2_TOG:
564     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
565     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
566     case USB_ANALOG_USB1_MISC_TOG:
567     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
568     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
569     case USB_ANALOG_USB2_MISC_TOG:
570         /*
571          * All REG_NAME_TOG register access are in fact targeting the
572          * the REG_NAME register.
573          */
574         value = s->analog[index - 3];
575         break;
576     default:
577         value = s->analog[index];
578         break;
579     }
580 
581     trace_imx6_analog_read(imx6_analog_reg_name(index), value);
582 
583     return (uint64_t)value;
584 }
585 
586 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
587                               unsigned size)
588 {
589     uint32_t index = offset >> 2;
590     IMX6CCMState *s = (IMX6CCMState *)opaque;
591 
592     trace_imx6_analog_write(imx6_analog_reg_name(index), (uint32_t)value);
593 
594     switch (index) {
595     case CCM_ANALOG_PLL_ARM_SET:
596     case CCM_ANALOG_PLL_USB1_SET:
597     case CCM_ANALOG_PLL_USB2_SET:
598     case CCM_ANALOG_PLL_SYS_SET:
599     case CCM_ANALOG_PLL_AUDIO_SET:
600     case CCM_ANALOG_PLL_VIDEO_SET:
601     case CCM_ANALOG_PLL_MLB_SET:
602     case CCM_ANALOG_PLL_ENET_SET:
603     case CCM_ANALOG_PFD_480_SET:
604     case CCM_ANALOG_PFD_528_SET:
605     case CCM_ANALOG_MISC0_SET:
606     case PMU_MISC1_SET:
607     case CCM_ANALOG_MISC2_SET:
608     case USB_ANALOG_USB1_VBUS_DETECT_SET:
609     case USB_ANALOG_USB1_CHRG_DETECT_SET:
610     case USB_ANALOG_USB1_MISC_SET:
611     case USB_ANALOG_USB2_VBUS_DETECT_SET:
612     case USB_ANALOG_USB2_CHRG_DETECT_SET:
613     case USB_ANALOG_USB2_MISC_SET:
614         /*
615          * All REG_NAME_SET register access are in fact targeting the
616          * the REG_NAME register. So we change the value of the
617          * REG_NAME register, setting bits passed in the value.
618          */
619         s->analog[index - 1] |= value;
620         break;
621     case CCM_ANALOG_PLL_ARM_CLR:
622     case CCM_ANALOG_PLL_USB1_CLR:
623     case CCM_ANALOG_PLL_USB2_CLR:
624     case CCM_ANALOG_PLL_SYS_CLR:
625     case CCM_ANALOG_PLL_AUDIO_CLR:
626     case CCM_ANALOG_PLL_VIDEO_CLR:
627     case CCM_ANALOG_PLL_MLB_CLR:
628     case CCM_ANALOG_PLL_ENET_CLR:
629     case CCM_ANALOG_PFD_480_CLR:
630     case CCM_ANALOG_PFD_528_CLR:
631     case CCM_ANALOG_MISC0_CLR:
632     case PMU_MISC1_CLR:
633     case CCM_ANALOG_MISC2_CLR:
634     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
635     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
636     case USB_ANALOG_USB1_MISC_CLR:
637     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
638     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
639     case USB_ANALOG_USB2_MISC_CLR:
640         /*
641          * All REG_NAME_CLR register access are in fact targeting the
642          * the REG_NAME register. So we change the value of the
643          * REG_NAME register, unsetting bits passed in the value.
644          */
645         s->analog[index - 2] &= ~value;
646         break;
647     case CCM_ANALOG_PLL_ARM_TOG:
648     case CCM_ANALOG_PLL_USB1_TOG:
649     case CCM_ANALOG_PLL_USB2_TOG:
650     case CCM_ANALOG_PLL_SYS_TOG:
651     case CCM_ANALOG_PLL_AUDIO_TOG:
652     case CCM_ANALOG_PLL_VIDEO_TOG:
653     case CCM_ANALOG_PLL_MLB_TOG:
654     case CCM_ANALOG_PLL_ENET_TOG:
655     case CCM_ANALOG_PFD_480_TOG:
656     case CCM_ANALOG_PFD_528_TOG:
657     case CCM_ANALOG_MISC0_TOG:
658     case PMU_MISC1_TOG:
659     case CCM_ANALOG_MISC2_TOG:
660     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
661     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
662     case USB_ANALOG_USB1_MISC_TOG:
663     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
664     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
665     case USB_ANALOG_USB2_MISC_TOG:
666         /*
667          * All REG_NAME_TOG register access are in fact targeting the
668          * the REG_NAME register. So we change the value of the
669          * REG_NAME register, toggling bits passed in the value.
670          */
671         s->analog[index - 3] ^= value;
672         break;
673     default:
674         /*
675          * We will do a better implementation later. In particular some bits
676          * cannot be written to.
677          */
678         s->analog[index] = value;
679         break;
680     }
681 }
682 
683 static const struct MemoryRegionOps imx6_ccm_ops = {
684     .read = imx6_ccm_read,
685     .write = imx6_ccm_write,
686     .endianness = DEVICE_NATIVE_ENDIAN,
687     .valid = {
688         /*
689          * Our device would not work correctly if the guest was doing
690          * unaligned access. This might not be a limitation on the real
691          * device but in practice there is no reason for a guest to access
692          * this device unaligned.
693          */
694         .min_access_size = 4,
695         .max_access_size = 4,
696         .unaligned = false,
697     },
698 };
699 
700 static const struct MemoryRegionOps imx6_analog_ops = {
701     .read = imx6_analog_read,
702     .write = imx6_analog_write,
703     .endianness = DEVICE_NATIVE_ENDIAN,
704     .valid = {
705         /*
706          * Our device would not work correctly if the guest was doing
707          * unaligned access. This might not be a limitation on the real
708          * device but in practice there is no reason for a guest to access
709          * this device unaligned.
710          */
711         .min_access_size = 4,
712         .max_access_size = 4,
713         .unaligned = false,
714     },
715 };
716 
717 static void imx6_ccm_init(Object *obj)
718 {
719     DeviceState *dev = DEVICE(obj);
720     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
721     IMX6CCMState *s = IMX6_CCM(obj);
722 
723     /* initialize a container for the all memory range */
724     memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
725 
726     /* We initialize an IO memory region for the CCM part */
727     memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
728                           TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
729 
730     /* Add the CCM as a subregion at offset 0 */
731     memory_region_add_subregion(&s->container, 0, &s->ioccm);
732 
733     /* We initialize an IO memory region for the ANALOG part */
734     memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
735                           TYPE_IMX6_CCM ".analog",
736                           CCM_ANALOG_MAX * sizeof(uint32_t));
737 
738     /* Add the ANALOG as a subregion at offset 0x4000 */
739     memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
740 
741     sysbus_init_mmio(sd, &s->container);
742 }
743 
744 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
745 {
746     DeviceClass *dc = DEVICE_CLASS(klass);
747     IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
748 
749     device_class_set_legacy_reset(dc, imx6_ccm_reset);
750     dc->vmsd = &vmstate_imx6_ccm;
751     dc->desc = "i.MX6 Clock Control Module";
752 
753     ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
754 }
755 
756 static const TypeInfo imx6_ccm_info = {
757     .name          = TYPE_IMX6_CCM,
758     .parent        = TYPE_IMX_CCM,
759     .instance_size = sizeof(IMX6CCMState),
760     .instance_init = imx6_ccm_init,
761     .class_init    = imx6_ccm_class_init,
762 };
763 
764 static void imx6_ccm_register_types(void)
765 {
766     type_register_static(&imx6_ccm_info);
767 }
768 
769 type_init(imx6_ccm_register_types)
770