xref: /openbmc/qemu/hw/misc/imx6_ccm.c (revision 8e6fe6b8)
1 /*
2  * IMX6 Clock Control Module
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  * To get the timer frequencies right, we need to emulate at least part of
10  * the CCM.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 
18 #ifndef DEBUG_IMX6_CCM
19 #define DEBUG_IMX6_CCM 0
20 #endif
21 
22 #define DPRINTF(fmt, args...) \
23     do { \
24         if (DEBUG_IMX6_CCM) { \
25             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
26                                              __func__, ##args); \
27         } \
28     } while (0)
29 
30 static const char *imx6_ccm_reg_name(uint32_t reg)
31 {
32     static char unknown[20];
33 
34     switch (reg) {
35     case CCM_CCR:
36         return "CCR";
37     case CCM_CCDR:
38         return "CCDR";
39     case CCM_CSR:
40         return "CSR";
41     case CCM_CCSR:
42         return "CCSR";
43     case CCM_CACRR:
44         return "CACRR";
45     case CCM_CBCDR:
46         return "CBCDR";
47     case CCM_CBCMR:
48         return "CBCMR";
49     case CCM_CSCMR1:
50         return "CSCMR1";
51     case CCM_CSCMR2:
52         return "CSCMR2";
53     case CCM_CSCDR1:
54         return "CSCDR1";
55     case CCM_CS1CDR:
56         return "CS1CDR";
57     case CCM_CS2CDR:
58         return "CS2CDR";
59     case CCM_CDCDR:
60         return "CDCDR";
61     case CCM_CHSCCDR:
62         return "CHSCCDR";
63     case CCM_CSCDR2:
64         return "CSCDR2";
65     case CCM_CSCDR3:
66         return "CSCDR3";
67     case CCM_CDHIPR:
68         return "CDHIPR";
69     case CCM_CTOR:
70         return "CTOR";
71     case CCM_CLPCR:
72         return "CLPCR";
73     case CCM_CISR:
74         return "CISR";
75     case CCM_CIMR:
76         return "CIMR";
77     case CCM_CCOSR:
78         return "CCOSR";
79     case CCM_CGPR:
80         return "CGPR";
81     case CCM_CCGR0:
82         return "CCGR0";
83     case CCM_CCGR1:
84         return "CCGR1";
85     case CCM_CCGR2:
86         return "CCGR2";
87     case CCM_CCGR3:
88         return "CCGR3";
89     case CCM_CCGR4:
90         return "CCGR4";
91     case CCM_CCGR5:
92         return "CCGR5";
93     case CCM_CCGR6:
94         return "CCGR6";
95     case CCM_CMEOR:
96         return "CMEOR";
97     default:
98         sprintf(unknown, "%d ?", reg);
99         return unknown;
100     }
101 }
102 
103 static const char *imx6_analog_reg_name(uint32_t reg)
104 {
105     static char unknown[20];
106 
107     switch (reg) {
108     case CCM_ANALOG_PLL_ARM:
109         return "PLL_ARM";
110     case CCM_ANALOG_PLL_ARM_SET:
111         return "PLL_ARM_SET";
112     case CCM_ANALOG_PLL_ARM_CLR:
113         return "PLL_ARM_CLR";
114     case CCM_ANALOG_PLL_ARM_TOG:
115         return "PLL_ARM_TOG";
116     case CCM_ANALOG_PLL_USB1:
117         return "PLL_USB1";
118     case CCM_ANALOG_PLL_USB1_SET:
119         return "PLL_USB1_SET";
120     case CCM_ANALOG_PLL_USB1_CLR:
121         return "PLL_USB1_CLR";
122     case CCM_ANALOG_PLL_USB1_TOG:
123         return "PLL_USB1_TOG";
124     case CCM_ANALOG_PLL_USB2:
125         return "PLL_USB2";
126     case CCM_ANALOG_PLL_USB2_SET:
127         return "PLL_USB2_SET";
128     case CCM_ANALOG_PLL_USB2_CLR:
129         return "PLL_USB2_CLR";
130     case CCM_ANALOG_PLL_USB2_TOG:
131         return "PLL_USB2_TOG";
132     case CCM_ANALOG_PLL_SYS:
133         return "PLL_SYS";
134     case CCM_ANALOG_PLL_SYS_SET:
135         return "PLL_SYS_SET";
136     case CCM_ANALOG_PLL_SYS_CLR:
137         return "PLL_SYS_CLR";
138     case CCM_ANALOG_PLL_SYS_TOG:
139         return "PLL_SYS_TOG";
140     case CCM_ANALOG_PLL_SYS_SS:
141         return "PLL_SYS_SS";
142     case CCM_ANALOG_PLL_SYS_NUM:
143         return "PLL_SYS_NUM";
144     case CCM_ANALOG_PLL_SYS_DENOM:
145         return "PLL_SYS_DENOM";
146     case CCM_ANALOG_PLL_AUDIO:
147         return "PLL_AUDIO";
148     case CCM_ANALOG_PLL_AUDIO_SET:
149         return "PLL_AUDIO_SET";
150     case CCM_ANALOG_PLL_AUDIO_CLR:
151         return "PLL_AUDIO_CLR";
152     case CCM_ANALOG_PLL_AUDIO_TOG:
153         return "PLL_AUDIO_TOG";
154     case CCM_ANALOG_PLL_AUDIO_NUM:
155         return "PLL_AUDIO_NUM";
156     case CCM_ANALOG_PLL_AUDIO_DENOM:
157         return "PLL_AUDIO_DENOM";
158     case CCM_ANALOG_PLL_VIDEO:
159         return "PLL_VIDEO";
160     case CCM_ANALOG_PLL_VIDEO_SET:
161         return "PLL_VIDEO_SET";
162     case CCM_ANALOG_PLL_VIDEO_CLR:
163         return "PLL_VIDEO_CLR";
164     case CCM_ANALOG_PLL_VIDEO_TOG:
165         return "PLL_VIDEO_TOG";
166     case CCM_ANALOG_PLL_VIDEO_NUM:
167         return "PLL_VIDEO_NUM";
168     case CCM_ANALOG_PLL_VIDEO_DENOM:
169         return "PLL_VIDEO_DENOM";
170     case CCM_ANALOG_PLL_MLB:
171         return "PLL_MLB";
172     case CCM_ANALOG_PLL_MLB_SET:
173         return "PLL_MLB_SET";
174     case CCM_ANALOG_PLL_MLB_CLR:
175         return "PLL_MLB_CLR";
176     case CCM_ANALOG_PLL_MLB_TOG:
177         return "PLL_MLB_TOG";
178     case CCM_ANALOG_PLL_ENET:
179         return "PLL_ENET";
180     case CCM_ANALOG_PLL_ENET_SET:
181         return "PLL_ENET_SET";
182     case CCM_ANALOG_PLL_ENET_CLR:
183         return "PLL_ENET_CLR";
184     case CCM_ANALOG_PLL_ENET_TOG:
185         return "PLL_ENET_TOG";
186     case CCM_ANALOG_PFD_480:
187         return "PFD_480";
188     case CCM_ANALOG_PFD_480_SET:
189         return "PFD_480_SET";
190     case CCM_ANALOG_PFD_480_CLR:
191         return "PFD_480_CLR";
192     case CCM_ANALOG_PFD_480_TOG:
193         return "PFD_480_TOG";
194     case CCM_ANALOG_PFD_528:
195         return "PFD_528";
196     case CCM_ANALOG_PFD_528_SET:
197         return "PFD_528_SET";
198     case CCM_ANALOG_PFD_528_CLR:
199         return "PFD_528_CLR";
200     case CCM_ANALOG_PFD_528_TOG:
201         return "PFD_528_TOG";
202     case CCM_ANALOG_MISC0:
203         return "MISC0";
204     case CCM_ANALOG_MISC0_SET:
205         return "MISC0_SET";
206     case CCM_ANALOG_MISC0_CLR:
207         return "MISC0_CLR";
208     case CCM_ANALOG_MISC0_TOG:
209         return "MISC0_TOG";
210     case CCM_ANALOG_MISC2:
211         return "MISC2";
212     case CCM_ANALOG_MISC2_SET:
213         return "MISC2_SET";
214     case CCM_ANALOG_MISC2_CLR:
215         return "MISC2_CLR";
216     case CCM_ANALOG_MISC2_TOG:
217         return "MISC2_TOG";
218     case PMU_REG_1P1:
219         return "PMU_REG_1P1";
220     case PMU_REG_3P0:
221         return "PMU_REG_3P0";
222     case PMU_REG_2P5:
223         return "PMU_REG_2P5";
224     case PMU_REG_CORE:
225         return "PMU_REG_CORE";
226     case PMU_MISC1:
227         return "PMU_MISC1";
228     case PMU_MISC1_SET:
229         return "PMU_MISC1_SET";
230     case PMU_MISC1_CLR:
231         return "PMU_MISC1_CLR";
232     case PMU_MISC1_TOG:
233         return "PMU_MISC1_TOG";
234     case USB_ANALOG_DIGPROG:
235         return "USB_ANALOG_DIGPROG";
236     default:
237         sprintf(unknown, "%d ?", reg);
238         return unknown;
239     }
240 }
241 
242 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
243 
244 static const VMStateDescription vmstate_imx6_ccm = {
245     .name = TYPE_IMX6_CCM,
246     .version_id = 1,
247     .minimum_version_id = 1,
248     .fields = (VMStateField[]) {
249         VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
250         VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
251         VMSTATE_END_OF_LIST()
252     },
253 };
254 
255 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
256 {
257     uint64_t freq = 24000000;
258 
259     if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
260         freq *= 22;
261     } else {
262         freq *= 20;
263     }
264 
265     DPRINTF("freq = %d\n", (uint32_t)freq);
266 
267     return freq;
268 }
269 
270 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
271 {
272     uint64_t freq = 0;
273 
274     freq = imx6_analog_get_pll2_clk(dev) * 18
275            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
276 
277     DPRINTF("freq = %d\n", (uint32_t)freq);
278 
279     return freq;
280 }
281 
282 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
283 {
284     uint64_t freq = 0;
285 
286     freq = imx6_analog_get_pll2_clk(dev) * 18
287            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
288 
289     DPRINTF("freq = %d\n", (uint32_t)freq);
290 
291     return freq;
292 }
293 
294 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
295 {
296     uint64_t freq = 0;
297 
298     switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
299     case 0:
300         freq = imx6_analog_get_pll2_clk(dev);
301         break;
302     case 1:
303         freq = imx6_analog_get_pll2_pfd2_clk(dev);
304         break;
305     case 2:
306         freq = imx6_analog_get_pll2_pfd0_clk(dev);
307         break;
308     case 3:
309         freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
310         break;
311     default:
312         /* We should never get there */
313         g_assert_not_reached();
314         break;
315     }
316 
317     DPRINTF("freq = %d\n", (uint32_t)freq);
318 
319     return freq;
320 }
321 
322 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
323 {
324     uint64_t freq = 0;
325 
326     freq = imx6_analog_get_periph_clk(dev)
327            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
328 
329     DPRINTF("freq = %d\n", (uint32_t)freq);
330 
331     return freq;
332 }
333 
334 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
335 {
336     uint64_t freq = 0;
337 
338     freq = imx6_ccm_get_ahb_clk(dev)
339            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
340 
341     DPRINTF("freq = %d\n", (uint32_t)freq);
342 
343     return freq;
344 }
345 
346 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
347 {
348     uint64_t freq = 0;
349 
350     freq = imx6_ccm_get_ipg_clk(dev)
351            / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
352 
353     DPRINTF("freq = %d\n", (uint32_t)freq);
354 
355     return freq;
356 }
357 
358 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
359 {
360     uint32_t freq = 0;
361     IMX6CCMState *s = IMX6_CCM(dev);
362 
363     switch (clock) {
364     case CLK_NONE:
365         break;
366     case CLK_IPG:
367         freq = imx6_ccm_get_ipg_clk(s);
368         break;
369     case CLK_IPG_HIGH:
370         freq = imx6_ccm_get_per_clk(s);
371         break;
372     case CLK_32k:
373         freq = CKIL_FREQ;
374         break;
375     case CLK_HIGH:
376         freq = 24000000;
377         break;
378     case CLK_HIGH_DIV:
379         freq = 24000000 / 8;
380         break;
381     default:
382         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
383                       TYPE_IMX6_CCM, __func__, clock);
384         break;
385     }
386 
387     DPRINTF("Clock = %d) = %d\n", clock, freq);
388 
389     return freq;
390 }
391 
392 static void imx6_ccm_reset(DeviceState *dev)
393 {
394     IMX6CCMState *s = IMX6_CCM(dev);
395 
396     DPRINTF("\n");
397 
398     s->ccm[CCM_CCR] = 0x040116FF;
399     s->ccm[CCM_CCDR] = 0x00000000;
400     s->ccm[CCM_CSR] = 0x00000010;
401     s->ccm[CCM_CCSR] = 0x00000100;
402     s->ccm[CCM_CACRR] = 0x00000000;
403     s->ccm[CCM_CBCDR] = 0x00018D40;
404     s->ccm[CCM_CBCMR] = 0x00022324;
405     s->ccm[CCM_CSCMR1] = 0x00F00000;
406     s->ccm[CCM_CSCMR2] = 0x02B92F06;
407     s->ccm[CCM_CSCDR1] = 0x00490B00;
408     s->ccm[CCM_CS1CDR] = 0x0EC102C1;
409     s->ccm[CCM_CS2CDR] = 0x000736C1;
410     s->ccm[CCM_CDCDR] = 0x33F71F92;
411     s->ccm[CCM_CHSCCDR] = 0x0002A150;
412     s->ccm[CCM_CSCDR2] = 0x0002A150;
413     s->ccm[CCM_CSCDR3] = 0x00014841;
414     s->ccm[CCM_CDHIPR] = 0x00000000;
415     s->ccm[CCM_CTOR] = 0x00000000;
416     s->ccm[CCM_CLPCR] = 0x00000079;
417     s->ccm[CCM_CISR] = 0x00000000;
418     s->ccm[CCM_CIMR] = 0xFFFFFFFF;
419     s->ccm[CCM_CCOSR] = 0x000A0001;
420     s->ccm[CCM_CGPR] = 0x0000FE62;
421     s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
422     s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
423     s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
424     s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
425     s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
426     s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
427     s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
428     s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
429 
430     s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
431     s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
432     s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
433     s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
434     s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
435     s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
436     s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
437     s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
438     s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
439     s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
440     s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
441     s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
442     s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
443     s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
444     s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
445     s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
446     s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
447 
448     s->analog[PMU_REG_1P1] = 0x00001073;
449     s->analog[PMU_REG_3P0] = 0x00000F74;
450     s->analog[PMU_REG_2P5] = 0x00005071;
451     s->analog[PMU_REG_CORE] = 0x00402010;
452     s->analog[PMU_MISC0] = 0x04000000;
453     s->analog[PMU_MISC1] = 0x00000000;
454     s->analog[PMU_MISC2] = 0x00272727;
455 
456     s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
457     s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
458     s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
459     s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
460     s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
461     s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
462     s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
463     s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
464     s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
465 
466     /* all PLLs need to be locked */
467     s->analog[CCM_ANALOG_PLL_ARM]   |= CCM_ANALOG_PLL_LOCK;
468     s->analog[CCM_ANALOG_PLL_USB1]  |= CCM_ANALOG_PLL_LOCK;
469     s->analog[CCM_ANALOG_PLL_USB2]  |= CCM_ANALOG_PLL_LOCK;
470     s->analog[CCM_ANALOG_PLL_SYS]   |= CCM_ANALOG_PLL_LOCK;
471     s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
472     s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
473     s->analog[CCM_ANALOG_PLL_MLB]   |= CCM_ANALOG_PLL_LOCK;
474     s->analog[CCM_ANALOG_PLL_ENET]  |= CCM_ANALOG_PLL_LOCK;
475 }
476 
477 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
478 {
479     uint32_t value = 0;
480     uint32_t index = offset >> 2;
481     IMX6CCMState *s = (IMX6CCMState *)opaque;
482 
483     value = s->ccm[index];
484 
485     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
486 
487     return (uint64_t)value;
488 }
489 
490 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
491                            unsigned size)
492 {
493     uint32_t index = offset >> 2;
494     IMX6CCMState *s = (IMX6CCMState *)opaque;
495 
496     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
497             (uint32_t)value);
498 
499     /*
500      * We will do a better implementation later. In particular some bits
501      * cannot be written to.
502      */
503     s->ccm[index] = (uint32_t)value;
504 }
505 
506 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
507 {
508     uint32_t value;
509     uint32_t index = offset >> 2;
510     IMX6CCMState *s = (IMX6CCMState *)opaque;
511 
512     switch (index) {
513     case CCM_ANALOG_PLL_ARM_SET:
514     case CCM_ANALOG_PLL_USB1_SET:
515     case CCM_ANALOG_PLL_USB2_SET:
516     case CCM_ANALOG_PLL_SYS_SET:
517     case CCM_ANALOG_PLL_AUDIO_SET:
518     case CCM_ANALOG_PLL_VIDEO_SET:
519     case CCM_ANALOG_PLL_MLB_SET:
520     case CCM_ANALOG_PLL_ENET_SET:
521     case CCM_ANALOG_PFD_480_SET:
522     case CCM_ANALOG_PFD_528_SET:
523     case CCM_ANALOG_MISC0_SET:
524     case PMU_MISC1_SET:
525     case CCM_ANALOG_MISC2_SET:
526     case USB_ANALOG_USB1_VBUS_DETECT_SET:
527     case USB_ANALOG_USB1_CHRG_DETECT_SET:
528     case USB_ANALOG_USB1_MISC_SET:
529     case USB_ANALOG_USB2_VBUS_DETECT_SET:
530     case USB_ANALOG_USB2_CHRG_DETECT_SET:
531     case USB_ANALOG_USB2_MISC_SET:
532         /*
533          * All REG_NAME_SET register access are in fact targeting the
534          * the REG_NAME register.
535          */
536         value = s->analog[index - 1];
537         break;
538     case CCM_ANALOG_PLL_ARM_CLR:
539     case CCM_ANALOG_PLL_USB1_CLR:
540     case CCM_ANALOG_PLL_USB2_CLR:
541     case CCM_ANALOG_PLL_SYS_CLR:
542     case CCM_ANALOG_PLL_AUDIO_CLR:
543     case CCM_ANALOG_PLL_VIDEO_CLR:
544     case CCM_ANALOG_PLL_MLB_CLR:
545     case CCM_ANALOG_PLL_ENET_CLR:
546     case CCM_ANALOG_PFD_480_CLR:
547     case CCM_ANALOG_PFD_528_CLR:
548     case CCM_ANALOG_MISC0_CLR:
549     case PMU_MISC1_CLR:
550     case CCM_ANALOG_MISC2_CLR:
551     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
552     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
553     case USB_ANALOG_USB1_MISC_CLR:
554     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
555     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
556     case USB_ANALOG_USB2_MISC_CLR:
557         /*
558          * All REG_NAME_CLR register access are in fact targeting the
559          * the REG_NAME register.
560          */
561         value = s->analog[index - 2];
562         break;
563     case CCM_ANALOG_PLL_ARM_TOG:
564     case CCM_ANALOG_PLL_USB1_TOG:
565     case CCM_ANALOG_PLL_USB2_TOG:
566     case CCM_ANALOG_PLL_SYS_TOG:
567     case CCM_ANALOG_PLL_AUDIO_TOG:
568     case CCM_ANALOG_PLL_VIDEO_TOG:
569     case CCM_ANALOG_PLL_MLB_TOG:
570     case CCM_ANALOG_PLL_ENET_TOG:
571     case CCM_ANALOG_PFD_480_TOG:
572     case CCM_ANALOG_PFD_528_TOG:
573     case CCM_ANALOG_MISC0_TOG:
574     case PMU_MISC1_TOG:
575     case CCM_ANALOG_MISC2_TOG:
576     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
577     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
578     case USB_ANALOG_USB1_MISC_TOG:
579     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
580     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
581     case USB_ANALOG_USB2_MISC_TOG:
582         /*
583          * All REG_NAME_TOG register access are in fact targeting the
584          * the REG_NAME register.
585          */
586         value = s->analog[index - 3];
587         break;
588     default:
589         value = s->analog[index];
590         break;
591     }
592 
593     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
594 
595     return (uint64_t)value;
596 }
597 
598 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
599                               unsigned size)
600 {
601     uint32_t index = offset >> 2;
602     IMX6CCMState *s = (IMX6CCMState *)opaque;
603 
604     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
605             (uint32_t)value);
606 
607     switch (index) {
608     case CCM_ANALOG_PLL_ARM_SET:
609     case CCM_ANALOG_PLL_USB1_SET:
610     case CCM_ANALOG_PLL_USB2_SET:
611     case CCM_ANALOG_PLL_SYS_SET:
612     case CCM_ANALOG_PLL_AUDIO_SET:
613     case CCM_ANALOG_PLL_VIDEO_SET:
614     case CCM_ANALOG_PLL_MLB_SET:
615     case CCM_ANALOG_PLL_ENET_SET:
616     case CCM_ANALOG_PFD_480_SET:
617     case CCM_ANALOG_PFD_528_SET:
618     case CCM_ANALOG_MISC0_SET:
619     case PMU_MISC1_SET:
620     case CCM_ANALOG_MISC2_SET:
621     case USB_ANALOG_USB1_VBUS_DETECT_SET:
622     case USB_ANALOG_USB1_CHRG_DETECT_SET:
623     case USB_ANALOG_USB1_MISC_SET:
624     case USB_ANALOG_USB2_VBUS_DETECT_SET:
625     case USB_ANALOG_USB2_CHRG_DETECT_SET:
626     case USB_ANALOG_USB2_MISC_SET:
627         /*
628          * All REG_NAME_SET register access are in fact targeting the
629          * the REG_NAME register. So we change the value of the
630          * REG_NAME register, setting bits passed in the value.
631          */
632         s->analog[index - 1] |= value;
633         break;
634     case CCM_ANALOG_PLL_ARM_CLR:
635     case CCM_ANALOG_PLL_USB1_CLR:
636     case CCM_ANALOG_PLL_USB2_CLR:
637     case CCM_ANALOG_PLL_SYS_CLR:
638     case CCM_ANALOG_PLL_AUDIO_CLR:
639     case CCM_ANALOG_PLL_VIDEO_CLR:
640     case CCM_ANALOG_PLL_MLB_CLR:
641     case CCM_ANALOG_PLL_ENET_CLR:
642     case CCM_ANALOG_PFD_480_CLR:
643     case CCM_ANALOG_PFD_528_CLR:
644     case CCM_ANALOG_MISC0_CLR:
645     case PMU_MISC1_CLR:
646     case CCM_ANALOG_MISC2_CLR:
647     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
648     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
649     case USB_ANALOG_USB1_MISC_CLR:
650     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
651     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
652     case USB_ANALOG_USB2_MISC_CLR:
653         /*
654          * All REG_NAME_CLR register access are in fact targeting the
655          * the REG_NAME register. So we change the value of the
656          * REG_NAME register, unsetting bits passed in the value.
657          */
658         s->analog[index - 2] &= ~value;
659         break;
660     case CCM_ANALOG_PLL_ARM_TOG:
661     case CCM_ANALOG_PLL_USB1_TOG:
662     case CCM_ANALOG_PLL_USB2_TOG:
663     case CCM_ANALOG_PLL_SYS_TOG:
664     case CCM_ANALOG_PLL_AUDIO_TOG:
665     case CCM_ANALOG_PLL_VIDEO_TOG:
666     case CCM_ANALOG_PLL_MLB_TOG:
667     case CCM_ANALOG_PLL_ENET_TOG:
668     case CCM_ANALOG_PFD_480_TOG:
669     case CCM_ANALOG_PFD_528_TOG:
670     case CCM_ANALOG_MISC0_TOG:
671     case PMU_MISC1_TOG:
672     case CCM_ANALOG_MISC2_TOG:
673     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
674     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
675     case USB_ANALOG_USB1_MISC_TOG:
676     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
677     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
678     case USB_ANALOG_USB2_MISC_TOG:
679         /*
680          * All REG_NAME_TOG register access are in fact targeting the
681          * the REG_NAME register. So we change the value of the
682          * REG_NAME register, toggling bits passed in the value.
683          */
684         s->analog[index - 3] ^= value;
685         break;
686     default:
687         /*
688          * We will do a better implementation later. In particular some bits
689          * cannot be written to.
690          */
691         s->analog[index] = value;
692         break;
693     }
694 }
695 
696 static const struct MemoryRegionOps imx6_ccm_ops = {
697     .read = imx6_ccm_read,
698     .write = imx6_ccm_write,
699     .endianness = DEVICE_NATIVE_ENDIAN,
700     .valid = {
701         /*
702          * Our device would not work correctly if the guest was doing
703          * unaligned access. This might not be a limitation on the real
704          * device but in practice there is no reason for a guest to access
705          * this device unaligned.
706          */
707         .min_access_size = 4,
708         .max_access_size = 4,
709         .unaligned = false,
710     },
711 };
712 
713 static const struct MemoryRegionOps imx6_analog_ops = {
714     .read = imx6_analog_read,
715     .write = imx6_analog_write,
716     .endianness = DEVICE_NATIVE_ENDIAN,
717     .valid = {
718         /*
719          * Our device would not work correctly if the guest was doing
720          * unaligned access. This might not be a limitation on the real
721          * device but in practice there is no reason for a guest to access
722          * this device unaligned.
723          */
724         .min_access_size = 4,
725         .max_access_size = 4,
726         .unaligned = false,
727     },
728 };
729 
730 static void imx6_ccm_init(Object *obj)
731 {
732     DeviceState *dev = DEVICE(obj);
733     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
734     IMX6CCMState *s = IMX6_CCM(obj);
735 
736     /* initialize a container for the all memory range */
737     memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
738 
739     /* We initialize an IO memory region for the CCM part */
740     memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
741                           TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
742 
743     /* Add the CCM as a subregion at offset 0 */
744     memory_region_add_subregion(&s->container, 0, &s->ioccm);
745 
746     /* We initialize an IO memory region for the ANALOG part */
747     memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
748                           TYPE_IMX6_CCM ".analog",
749                           CCM_ANALOG_MAX * sizeof(uint32_t));
750 
751     /* Add the ANALOG as a subregion at offset 0x4000 */
752     memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
753 
754     sysbus_init_mmio(sd, &s->container);
755 }
756 
757 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
758 {
759     DeviceClass *dc = DEVICE_CLASS(klass);
760     IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
761 
762     dc->reset = imx6_ccm_reset;
763     dc->vmsd = &vmstate_imx6_ccm;
764     dc->desc = "i.MX6 Clock Control Module";
765 
766     ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
767 }
768 
769 static const TypeInfo imx6_ccm_info = {
770     .name          = TYPE_IMX6_CCM,
771     .parent        = TYPE_IMX_CCM,
772     .instance_size = sizeof(IMX6CCMState),
773     .instance_init = imx6_ccm_init,
774     .class_init    = imx6_ccm_class_init,
775 };
776 
777 static void imx6_ccm_register_types(void)
778 {
779     type_register_static(&imx6_ccm_info);
780 }
781 
782 type_init(imx6_ccm_register_types)
783