1 /* 2 * IMX6 Clock Control Module 3 * 4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 * To get the timer frequencies right, we need to emulate at least part of 10 * the CCM. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "hw/misc/imx6_ccm.h" 15 #include "migration/vmstate.h" 16 #include "qemu/log.h" 17 #include "qemu/module.h" 18 #include "trace.h" 19 20 static const char *imx6_ccm_reg_name(uint32_t reg) 21 { 22 static char unknown[20]; 23 24 switch (reg) { 25 case CCM_CCR: 26 return "CCR"; 27 case CCM_CCDR: 28 return "CCDR"; 29 case CCM_CSR: 30 return "CSR"; 31 case CCM_CCSR: 32 return "CCSR"; 33 case CCM_CACRR: 34 return "CACRR"; 35 case CCM_CBCDR: 36 return "CBCDR"; 37 case CCM_CBCMR: 38 return "CBCMR"; 39 case CCM_CSCMR1: 40 return "CSCMR1"; 41 case CCM_CSCMR2: 42 return "CSCMR2"; 43 case CCM_CSCDR1: 44 return "CSCDR1"; 45 case CCM_CS1CDR: 46 return "CS1CDR"; 47 case CCM_CS2CDR: 48 return "CS2CDR"; 49 case CCM_CDCDR: 50 return "CDCDR"; 51 case CCM_CHSCCDR: 52 return "CHSCCDR"; 53 case CCM_CSCDR2: 54 return "CSCDR2"; 55 case CCM_CSCDR3: 56 return "CSCDR3"; 57 case CCM_CDHIPR: 58 return "CDHIPR"; 59 case CCM_CTOR: 60 return "CTOR"; 61 case CCM_CLPCR: 62 return "CLPCR"; 63 case CCM_CISR: 64 return "CISR"; 65 case CCM_CIMR: 66 return "CIMR"; 67 case CCM_CCOSR: 68 return "CCOSR"; 69 case CCM_CGPR: 70 return "CGPR"; 71 case CCM_CCGR0: 72 return "CCGR0"; 73 case CCM_CCGR1: 74 return "CCGR1"; 75 case CCM_CCGR2: 76 return "CCGR2"; 77 case CCM_CCGR3: 78 return "CCGR3"; 79 case CCM_CCGR4: 80 return "CCGR4"; 81 case CCM_CCGR5: 82 return "CCGR5"; 83 case CCM_CCGR6: 84 return "CCGR6"; 85 case CCM_CMEOR: 86 return "CMEOR"; 87 default: 88 snprintf(unknown, sizeof(unknown), "%u ?", reg); 89 return unknown; 90 } 91 } 92 93 static const char *imx6_analog_reg_name(uint32_t reg) 94 { 95 static char unknown[20]; 96 97 switch (reg) { 98 case CCM_ANALOG_PLL_ARM: 99 return "PLL_ARM"; 100 case CCM_ANALOG_PLL_ARM_SET: 101 return "PLL_ARM_SET"; 102 case CCM_ANALOG_PLL_ARM_CLR: 103 return "PLL_ARM_CLR"; 104 case CCM_ANALOG_PLL_ARM_TOG: 105 return "PLL_ARM_TOG"; 106 case CCM_ANALOG_PLL_USB1: 107 return "PLL_USB1"; 108 case CCM_ANALOG_PLL_USB1_SET: 109 return "PLL_USB1_SET"; 110 case CCM_ANALOG_PLL_USB1_CLR: 111 return "PLL_USB1_CLR"; 112 case CCM_ANALOG_PLL_USB1_TOG: 113 return "PLL_USB1_TOG"; 114 case CCM_ANALOG_PLL_USB2: 115 return "PLL_USB2"; 116 case CCM_ANALOG_PLL_USB2_SET: 117 return "PLL_USB2_SET"; 118 case CCM_ANALOG_PLL_USB2_CLR: 119 return "PLL_USB2_CLR"; 120 case CCM_ANALOG_PLL_USB2_TOG: 121 return "PLL_USB2_TOG"; 122 case CCM_ANALOG_PLL_SYS: 123 return "PLL_SYS"; 124 case CCM_ANALOG_PLL_SYS_SET: 125 return "PLL_SYS_SET"; 126 case CCM_ANALOG_PLL_SYS_CLR: 127 return "PLL_SYS_CLR"; 128 case CCM_ANALOG_PLL_SYS_TOG: 129 return "PLL_SYS_TOG"; 130 case CCM_ANALOG_PLL_SYS_SS: 131 return "PLL_SYS_SS"; 132 case CCM_ANALOG_PLL_SYS_NUM: 133 return "PLL_SYS_NUM"; 134 case CCM_ANALOG_PLL_SYS_DENOM: 135 return "PLL_SYS_DENOM"; 136 case CCM_ANALOG_PLL_AUDIO: 137 return "PLL_AUDIO"; 138 case CCM_ANALOG_PLL_AUDIO_SET: 139 return "PLL_AUDIO_SET"; 140 case CCM_ANALOG_PLL_AUDIO_CLR: 141 return "PLL_AUDIO_CLR"; 142 case CCM_ANALOG_PLL_AUDIO_TOG: 143 return "PLL_AUDIO_TOG"; 144 case CCM_ANALOG_PLL_AUDIO_NUM: 145 return "PLL_AUDIO_NUM"; 146 case CCM_ANALOG_PLL_AUDIO_DENOM: 147 return "PLL_AUDIO_DENOM"; 148 case CCM_ANALOG_PLL_VIDEO: 149 return "PLL_VIDEO"; 150 case CCM_ANALOG_PLL_VIDEO_SET: 151 return "PLL_VIDEO_SET"; 152 case CCM_ANALOG_PLL_VIDEO_CLR: 153 return "PLL_VIDEO_CLR"; 154 case CCM_ANALOG_PLL_VIDEO_TOG: 155 return "PLL_VIDEO_TOG"; 156 case CCM_ANALOG_PLL_VIDEO_NUM: 157 return "PLL_VIDEO_NUM"; 158 case CCM_ANALOG_PLL_VIDEO_DENOM: 159 return "PLL_VIDEO_DENOM"; 160 case CCM_ANALOG_PLL_MLB: 161 return "PLL_MLB"; 162 case CCM_ANALOG_PLL_MLB_SET: 163 return "PLL_MLB_SET"; 164 case CCM_ANALOG_PLL_MLB_CLR: 165 return "PLL_MLB_CLR"; 166 case CCM_ANALOG_PLL_MLB_TOG: 167 return "PLL_MLB_TOG"; 168 case CCM_ANALOG_PLL_ENET: 169 return "PLL_ENET"; 170 case CCM_ANALOG_PLL_ENET_SET: 171 return "PLL_ENET_SET"; 172 case CCM_ANALOG_PLL_ENET_CLR: 173 return "PLL_ENET_CLR"; 174 case CCM_ANALOG_PLL_ENET_TOG: 175 return "PLL_ENET_TOG"; 176 case CCM_ANALOG_PFD_480: 177 return "PFD_480"; 178 case CCM_ANALOG_PFD_480_SET: 179 return "PFD_480_SET"; 180 case CCM_ANALOG_PFD_480_CLR: 181 return "PFD_480_CLR"; 182 case CCM_ANALOG_PFD_480_TOG: 183 return "PFD_480_TOG"; 184 case CCM_ANALOG_PFD_528: 185 return "PFD_528"; 186 case CCM_ANALOG_PFD_528_SET: 187 return "PFD_528_SET"; 188 case CCM_ANALOG_PFD_528_CLR: 189 return "PFD_528_CLR"; 190 case CCM_ANALOG_PFD_528_TOG: 191 return "PFD_528_TOG"; 192 case CCM_ANALOG_MISC0: 193 return "MISC0"; 194 case CCM_ANALOG_MISC0_SET: 195 return "MISC0_SET"; 196 case CCM_ANALOG_MISC0_CLR: 197 return "MISC0_CLR"; 198 case CCM_ANALOG_MISC0_TOG: 199 return "MISC0_TOG"; 200 case CCM_ANALOG_MISC2: 201 return "MISC2"; 202 case CCM_ANALOG_MISC2_SET: 203 return "MISC2_SET"; 204 case CCM_ANALOG_MISC2_CLR: 205 return "MISC2_CLR"; 206 case CCM_ANALOG_MISC2_TOG: 207 return "MISC2_TOG"; 208 case PMU_REG_1P1: 209 return "PMU_REG_1P1"; 210 case PMU_REG_3P0: 211 return "PMU_REG_3P0"; 212 case PMU_REG_2P5: 213 return "PMU_REG_2P5"; 214 case PMU_REG_CORE: 215 return "PMU_REG_CORE"; 216 case PMU_MISC1: 217 return "PMU_MISC1"; 218 case PMU_MISC1_SET: 219 return "PMU_MISC1_SET"; 220 case PMU_MISC1_CLR: 221 return "PMU_MISC1_CLR"; 222 case PMU_MISC1_TOG: 223 return "PMU_MISC1_TOG"; 224 case USB_ANALOG_DIGPROG: 225 return "USB_ANALOG_DIGPROG"; 226 default: 227 snprintf(unknown, sizeof(unknown), "%u ?", reg); 228 return unknown; 229 } 230 } 231 232 #define CKIH_FREQ 24000000 /* 24MHz crystal input */ 233 234 static const VMStateDescription vmstate_imx6_ccm = { 235 .name = TYPE_IMX6_CCM, 236 .version_id = 1, 237 .minimum_version_id = 1, 238 .fields = (const VMStateField[]) { 239 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX), 240 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX), 241 VMSTATE_END_OF_LIST() 242 }, 243 }; 244 245 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev) 246 { 247 uint64_t freq = 24000000; 248 249 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) { 250 freq *= 22; 251 } else { 252 freq *= 20; 253 } 254 255 trace_imx6_analog_get_pll2_clk(freq); 256 257 return freq; 258 } 259 260 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev) 261 { 262 uint64_t freq = 0; 263 264 freq = imx6_analog_get_pll2_clk(dev) * 18 265 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC); 266 267 trace_imx6_analog_get_pll2_pfd0_clk(freq); 268 269 return freq; 270 } 271 272 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev) 273 { 274 uint64_t freq = 0; 275 276 freq = imx6_analog_get_pll2_clk(dev) * 18 277 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC); 278 279 trace_imx6_analog_get_pll2_pfd2_clk(freq); 280 281 return freq; 282 } 283 284 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev) 285 { 286 uint64_t freq = 0; 287 288 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) { 289 case 0: 290 freq = imx6_analog_get_pll2_clk(dev); 291 break; 292 case 1: 293 freq = imx6_analog_get_pll2_pfd2_clk(dev); 294 break; 295 case 2: 296 freq = imx6_analog_get_pll2_pfd0_clk(dev); 297 break; 298 case 3: 299 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2; 300 break; 301 default: 302 /* We should never get there */ 303 g_assert_not_reached(); 304 } 305 306 trace_imx6_analog_get_periph_clk(freq); 307 308 return freq; 309 } 310 311 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev) 312 { 313 uint64_t freq = 0; 314 315 freq = imx6_analog_get_periph_clk(dev) 316 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF)); 317 318 trace_imx6_ccm_get_ahb_clk(freq); 319 320 return freq; 321 } 322 323 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev) 324 { 325 uint64_t freq = 0; 326 327 freq = imx6_ccm_get_ahb_clk(dev) 328 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF)); 329 330 trace_imx6_ccm_get_ipg_clk(freq); 331 332 return freq; 333 } 334 335 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev) 336 { 337 uint64_t freq = 0; 338 339 freq = imx6_ccm_get_ipg_clk(dev) 340 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF)); 341 342 trace_imx6_ccm_get_per_clk(freq); 343 344 return freq; 345 } 346 347 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock) 348 { 349 uint32_t freq = 0; 350 IMX6CCMState *s = IMX6_CCM(dev); 351 352 switch (clock) { 353 case CLK_NONE: 354 break; 355 case CLK_IPG: 356 freq = imx6_ccm_get_ipg_clk(s); 357 break; 358 case CLK_IPG_HIGH: 359 freq = imx6_ccm_get_per_clk(s); 360 break; 361 case CLK_32k: 362 freq = CKIL_FREQ; 363 break; 364 case CLK_HIGH: 365 freq = 24000000; 366 break; 367 case CLK_HIGH_DIV: 368 freq = 24000000 / 8; 369 break; 370 default: 371 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n", 372 TYPE_IMX6_CCM, __func__, clock); 373 break; 374 } 375 376 trace_imx6_ccm_get_clock_frequency(clock, freq); 377 378 return freq; 379 } 380 381 static void imx6_ccm_reset(DeviceState *dev) 382 { 383 IMX6CCMState *s = IMX6_CCM(dev); 384 385 trace_imx6_ccm_reset(); 386 387 s->ccm[CCM_CCR] = 0x040116FF; 388 s->ccm[CCM_CCDR] = 0x00000000; 389 s->ccm[CCM_CSR] = 0x00000010; 390 s->ccm[CCM_CCSR] = 0x00000100; 391 s->ccm[CCM_CACRR] = 0x00000000; 392 s->ccm[CCM_CBCDR] = 0x00018D40; 393 s->ccm[CCM_CBCMR] = 0x00022324; 394 s->ccm[CCM_CSCMR1] = 0x00F00000; 395 s->ccm[CCM_CSCMR2] = 0x02B92F06; 396 s->ccm[CCM_CSCDR1] = 0x00490B00; 397 s->ccm[CCM_CS1CDR] = 0x0EC102C1; 398 s->ccm[CCM_CS2CDR] = 0x000736C1; 399 s->ccm[CCM_CDCDR] = 0x33F71F92; 400 s->ccm[CCM_CHSCCDR] = 0x0002A150; 401 s->ccm[CCM_CSCDR2] = 0x0002A150; 402 s->ccm[CCM_CSCDR3] = 0x00014841; 403 s->ccm[CCM_CDHIPR] = 0x00000000; 404 s->ccm[CCM_CTOR] = 0x00000000; 405 s->ccm[CCM_CLPCR] = 0x00000079; 406 s->ccm[CCM_CISR] = 0x00000000; 407 s->ccm[CCM_CIMR] = 0xFFFFFFFF; 408 s->ccm[CCM_CCOSR] = 0x000A0001; 409 s->ccm[CCM_CGPR] = 0x0000FE62; 410 s->ccm[CCM_CCGR0] = 0xFFFFFFFF; 411 s->ccm[CCM_CCGR1] = 0xFFFFFFFF; 412 s->ccm[CCM_CCGR2] = 0xFC3FFFFF; 413 s->ccm[CCM_CCGR3] = 0xFFFFFFFF; 414 s->ccm[CCM_CCGR4] = 0xFFFFFFFF; 415 s->ccm[CCM_CCGR5] = 0xFFFFFFFF; 416 s->ccm[CCM_CCGR6] = 0xFFFFFFFF; 417 s->ccm[CCM_CMEOR] = 0xFFFFFFFF; 418 419 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042; 420 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000; 421 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000; 422 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001; 423 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000; 424 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000; 425 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012; 426 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006; 427 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100; 428 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C; 429 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C; 430 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100; 431 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447; 432 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000; 433 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001; 434 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C; 435 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B; 436 437 s->analog[PMU_REG_1P1] = 0x00001073; 438 s->analog[PMU_REG_3P0] = 0x00000F74; 439 s->analog[PMU_REG_2P5] = 0x00005071; 440 s->analog[PMU_REG_CORE] = 0x00402010; 441 s->analog[PMU_MISC0] = 0x04000080; 442 s->analog[PMU_MISC1] = 0x00000000; 443 s->analog[PMU_MISC2] = 0x00272727; 444 445 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004; 446 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000; 447 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000; 448 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000; 449 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002; 450 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004; 451 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000; 452 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002; 453 s->analog[USB_ANALOG_DIGPROG] = 0x00630000; 454 455 /* all PLLs need to be locked */ 456 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK; 457 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK; 458 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK; 459 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK; 460 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK; 461 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK; 462 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK; 463 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK; 464 } 465 466 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size) 467 { 468 uint32_t value = 0; 469 uint32_t index = offset >> 2; 470 IMX6CCMState *s = (IMX6CCMState *)opaque; 471 472 value = s->ccm[index]; 473 474 trace_imx6_ccm_read(imx6_ccm_reg_name(index), value); 475 476 return (uint64_t)value; 477 } 478 479 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value, 480 unsigned size) 481 { 482 uint32_t index = offset >> 2; 483 IMX6CCMState *s = (IMX6CCMState *)opaque; 484 485 trace_imx6_ccm_write(imx6_ccm_reg_name(index), (uint32_t)value); 486 487 /* 488 * We will do a better implementation later. In particular some bits 489 * cannot be written to. 490 */ 491 s->ccm[index] = (uint32_t)value; 492 } 493 494 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size) 495 { 496 uint32_t value; 497 uint32_t index = offset >> 2; 498 IMX6CCMState *s = (IMX6CCMState *)opaque; 499 500 switch (index) { 501 case CCM_ANALOG_PLL_ARM_SET: 502 case CCM_ANALOG_PLL_USB1_SET: 503 case CCM_ANALOG_PLL_USB2_SET: 504 case CCM_ANALOG_PLL_SYS_SET: 505 case CCM_ANALOG_PLL_AUDIO_SET: 506 case CCM_ANALOG_PLL_VIDEO_SET: 507 case CCM_ANALOG_PLL_MLB_SET: 508 case CCM_ANALOG_PLL_ENET_SET: 509 case CCM_ANALOG_PFD_480_SET: 510 case CCM_ANALOG_PFD_528_SET: 511 case CCM_ANALOG_MISC0_SET: 512 case PMU_MISC1_SET: 513 case CCM_ANALOG_MISC2_SET: 514 case USB_ANALOG_USB1_VBUS_DETECT_SET: 515 case USB_ANALOG_USB1_CHRG_DETECT_SET: 516 case USB_ANALOG_USB1_MISC_SET: 517 case USB_ANALOG_USB2_VBUS_DETECT_SET: 518 case USB_ANALOG_USB2_CHRG_DETECT_SET: 519 case USB_ANALOG_USB2_MISC_SET: 520 /* 521 * All REG_NAME_SET register access are in fact targeting the 522 * the REG_NAME register. 523 */ 524 value = s->analog[index - 1]; 525 break; 526 case CCM_ANALOG_PLL_ARM_CLR: 527 case CCM_ANALOG_PLL_USB1_CLR: 528 case CCM_ANALOG_PLL_USB2_CLR: 529 case CCM_ANALOG_PLL_SYS_CLR: 530 case CCM_ANALOG_PLL_AUDIO_CLR: 531 case CCM_ANALOG_PLL_VIDEO_CLR: 532 case CCM_ANALOG_PLL_MLB_CLR: 533 case CCM_ANALOG_PLL_ENET_CLR: 534 case CCM_ANALOG_PFD_480_CLR: 535 case CCM_ANALOG_PFD_528_CLR: 536 case CCM_ANALOG_MISC0_CLR: 537 case PMU_MISC1_CLR: 538 case CCM_ANALOG_MISC2_CLR: 539 case USB_ANALOG_USB1_VBUS_DETECT_CLR: 540 case USB_ANALOG_USB1_CHRG_DETECT_CLR: 541 case USB_ANALOG_USB1_MISC_CLR: 542 case USB_ANALOG_USB2_VBUS_DETECT_CLR: 543 case USB_ANALOG_USB2_CHRG_DETECT_CLR: 544 case USB_ANALOG_USB2_MISC_CLR: 545 /* 546 * All REG_NAME_CLR register access are in fact targeting the 547 * the REG_NAME register. 548 */ 549 value = s->analog[index - 2]; 550 break; 551 case CCM_ANALOG_PLL_ARM_TOG: 552 case CCM_ANALOG_PLL_USB1_TOG: 553 case CCM_ANALOG_PLL_USB2_TOG: 554 case CCM_ANALOG_PLL_SYS_TOG: 555 case CCM_ANALOG_PLL_AUDIO_TOG: 556 case CCM_ANALOG_PLL_VIDEO_TOG: 557 case CCM_ANALOG_PLL_MLB_TOG: 558 case CCM_ANALOG_PLL_ENET_TOG: 559 case CCM_ANALOG_PFD_480_TOG: 560 case CCM_ANALOG_PFD_528_TOG: 561 case CCM_ANALOG_MISC0_TOG: 562 case PMU_MISC1_TOG: 563 case CCM_ANALOG_MISC2_TOG: 564 case USB_ANALOG_USB1_VBUS_DETECT_TOG: 565 case USB_ANALOG_USB1_CHRG_DETECT_TOG: 566 case USB_ANALOG_USB1_MISC_TOG: 567 case USB_ANALOG_USB2_VBUS_DETECT_TOG: 568 case USB_ANALOG_USB2_CHRG_DETECT_TOG: 569 case USB_ANALOG_USB2_MISC_TOG: 570 /* 571 * All REG_NAME_TOG register access are in fact targeting the 572 * the REG_NAME register. 573 */ 574 value = s->analog[index - 3]; 575 break; 576 default: 577 value = s->analog[index]; 578 break; 579 } 580 581 trace_imx6_analog_read(imx6_analog_reg_name(index), value); 582 583 return (uint64_t)value; 584 } 585 586 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value, 587 unsigned size) 588 { 589 uint32_t index = offset >> 2; 590 IMX6CCMState *s = (IMX6CCMState *)opaque; 591 592 trace_imx6_analog_write(imx6_analog_reg_name(index), (uint32_t)value); 593 594 switch (index) { 595 case CCM_ANALOG_PLL_ARM_SET: 596 case CCM_ANALOG_PLL_USB1_SET: 597 case CCM_ANALOG_PLL_USB2_SET: 598 case CCM_ANALOG_PLL_SYS_SET: 599 case CCM_ANALOG_PLL_AUDIO_SET: 600 case CCM_ANALOG_PLL_VIDEO_SET: 601 case CCM_ANALOG_PLL_MLB_SET: 602 case CCM_ANALOG_PLL_ENET_SET: 603 case CCM_ANALOG_PFD_480_SET: 604 case CCM_ANALOG_PFD_528_SET: 605 case CCM_ANALOG_MISC0_SET: 606 case PMU_MISC1_SET: 607 case CCM_ANALOG_MISC2_SET: 608 case USB_ANALOG_USB1_VBUS_DETECT_SET: 609 case USB_ANALOG_USB1_CHRG_DETECT_SET: 610 case USB_ANALOG_USB1_MISC_SET: 611 case USB_ANALOG_USB2_VBUS_DETECT_SET: 612 case USB_ANALOG_USB2_CHRG_DETECT_SET: 613 case USB_ANALOG_USB2_MISC_SET: 614 /* 615 * All REG_NAME_SET register access are in fact targeting the 616 * the REG_NAME register. So we change the value of the 617 * REG_NAME register, setting bits passed in the value. 618 */ 619 s->analog[index - 1] |= value; 620 break; 621 case CCM_ANALOG_PLL_ARM_CLR: 622 case CCM_ANALOG_PLL_USB1_CLR: 623 case CCM_ANALOG_PLL_USB2_CLR: 624 case CCM_ANALOG_PLL_SYS_CLR: 625 case CCM_ANALOG_PLL_AUDIO_CLR: 626 case CCM_ANALOG_PLL_VIDEO_CLR: 627 case CCM_ANALOG_PLL_MLB_CLR: 628 case CCM_ANALOG_PLL_ENET_CLR: 629 case CCM_ANALOG_PFD_480_CLR: 630 case CCM_ANALOG_PFD_528_CLR: 631 case CCM_ANALOG_MISC0_CLR: 632 case PMU_MISC1_CLR: 633 case CCM_ANALOG_MISC2_CLR: 634 case USB_ANALOG_USB1_VBUS_DETECT_CLR: 635 case USB_ANALOG_USB1_CHRG_DETECT_CLR: 636 case USB_ANALOG_USB1_MISC_CLR: 637 case USB_ANALOG_USB2_VBUS_DETECT_CLR: 638 case USB_ANALOG_USB2_CHRG_DETECT_CLR: 639 case USB_ANALOG_USB2_MISC_CLR: 640 /* 641 * All REG_NAME_CLR register access are in fact targeting the 642 * the REG_NAME register. So we change the value of the 643 * REG_NAME register, unsetting bits passed in the value. 644 */ 645 s->analog[index - 2] &= ~value; 646 break; 647 case CCM_ANALOG_PLL_ARM_TOG: 648 case CCM_ANALOG_PLL_USB1_TOG: 649 case CCM_ANALOG_PLL_USB2_TOG: 650 case CCM_ANALOG_PLL_SYS_TOG: 651 case CCM_ANALOG_PLL_AUDIO_TOG: 652 case CCM_ANALOG_PLL_VIDEO_TOG: 653 case CCM_ANALOG_PLL_MLB_TOG: 654 case CCM_ANALOG_PLL_ENET_TOG: 655 case CCM_ANALOG_PFD_480_TOG: 656 case CCM_ANALOG_PFD_528_TOG: 657 case CCM_ANALOG_MISC0_TOG: 658 case PMU_MISC1_TOG: 659 case CCM_ANALOG_MISC2_TOG: 660 case USB_ANALOG_USB1_VBUS_DETECT_TOG: 661 case USB_ANALOG_USB1_CHRG_DETECT_TOG: 662 case USB_ANALOG_USB1_MISC_TOG: 663 case USB_ANALOG_USB2_VBUS_DETECT_TOG: 664 case USB_ANALOG_USB2_CHRG_DETECT_TOG: 665 case USB_ANALOG_USB2_MISC_TOG: 666 /* 667 * All REG_NAME_TOG register access are in fact targeting the 668 * the REG_NAME register. So we change the value of the 669 * REG_NAME register, toggling bits passed in the value. 670 */ 671 s->analog[index - 3] ^= value; 672 break; 673 default: 674 /* 675 * We will do a better implementation later. In particular some bits 676 * cannot be written to. 677 */ 678 s->analog[index] = value; 679 break; 680 } 681 } 682 683 static const struct MemoryRegionOps imx6_ccm_ops = { 684 .read = imx6_ccm_read, 685 .write = imx6_ccm_write, 686 .endianness = DEVICE_NATIVE_ENDIAN, 687 .valid = { 688 /* 689 * Our device would not work correctly if the guest was doing 690 * unaligned access. This might not be a limitation on the real 691 * device but in practice there is no reason for a guest to access 692 * this device unaligned. 693 */ 694 .min_access_size = 4, 695 .max_access_size = 4, 696 .unaligned = false, 697 }, 698 }; 699 700 static const struct MemoryRegionOps imx6_analog_ops = { 701 .read = imx6_analog_read, 702 .write = imx6_analog_write, 703 .endianness = DEVICE_NATIVE_ENDIAN, 704 .valid = { 705 /* 706 * Our device would not work correctly if the guest was doing 707 * unaligned access. This might not be a limitation on the real 708 * device but in practice there is no reason for a guest to access 709 * this device unaligned. 710 */ 711 .min_access_size = 4, 712 .max_access_size = 4, 713 .unaligned = false, 714 }, 715 }; 716 717 static void imx6_ccm_init(Object *obj) 718 { 719 DeviceState *dev = DEVICE(obj); 720 SysBusDevice *sd = SYS_BUS_DEVICE(obj); 721 IMX6CCMState *s = IMX6_CCM(obj); 722 723 /* initialize a container for the all memory range */ 724 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000); 725 726 /* We initialize an IO memory region for the CCM part */ 727 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s, 728 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t)); 729 730 /* Add the CCM as a subregion at offset 0 */ 731 memory_region_add_subregion(&s->container, 0, &s->ioccm); 732 733 /* We initialize an IO memory region for the ANALOG part */ 734 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s, 735 TYPE_IMX6_CCM ".analog", 736 CCM_ANALOG_MAX * sizeof(uint32_t)); 737 738 /* Add the ANALOG as a subregion at offset 0x4000 */ 739 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog); 740 741 sysbus_init_mmio(sd, &s->container); 742 } 743 744 static void imx6_ccm_class_init(ObjectClass *klass, void *data) 745 { 746 DeviceClass *dc = DEVICE_CLASS(klass); 747 IMXCCMClass *ccm = IMX_CCM_CLASS(klass); 748 749 device_class_set_legacy_reset(dc, imx6_ccm_reset); 750 dc->vmsd = &vmstate_imx6_ccm; 751 dc->desc = "i.MX6 Clock Control Module"; 752 753 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency; 754 } 755 756 static const TypeInfo imx6_ccm_info = { 757 .name = TYPE_IMX6_CCM, 758 .parent = TYPE_IMX_CCM, 759 .instance_size = sizeof(IMX6CCMState), 760 .instance_init = imx6_ccm_init, 761 .class_init = imx6_ccm_class_init, 762 }; 763 764 static void imx6_ccm_register_types(void) 765 { 766 type_register_static(&imx6_ccm_info); 767 } 768 769 type_init(imx6_ccm_register_types) 770