xref: /openbmc/qemu/hw/misc/imx6_ccm.c (revision 1be82d89)
1 /*
2  * IMX6 Clock Control Module
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  * To get the timer frequencies right, we need to emulate at least part of
10  * the CCM.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "qemu/log.h"
16 
17 #ifndef DEBUG_IMX6_CCM
18 #define DEBUG_IMX6_CCM 0
19 #endif
20 
21 #define DPRINTF(fmt, args...) \
22     do { \
23         if (DEBUG_IMX6_CCM) { \
24             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
25                                              __func__, ##args); \
26         } \
27     } while (0)
28 
29 static const char *imx6_ccm_reg_name(uint32_t reg)
30 {
31     static char unknown[20];
32 
33     switch (reg) {
34     case CCM_CCR:
35         return "CCR";
36     case CCM_CCDR:
37         return "CCDR";
38     case CCM_CSR:
39         return "CSR";
40     case CCM_CCSR:
41         return "CCSR";
42     case CCM_CACRR:
43         return "CACRR";
44     case CCM_CBCDR:
45         return "CBCDR";
46     case CCM_CBCMR:
47         return "CBCMR";
48     case CCM_CSCMR1:
49         return "CSCMR1";
50     case CCM_CSCMR2:
51         return "CSCMR2";
52     case CCM_CSCDR1:
53         return "CSCDR1";
54     case CCM_CS1CDR:
55         return "CS1CDR";
56     case CCM_CS2CDR:
57         return "CS2CDR";
58     case CCM_CDCDR:
59         return "CDCDR";
60     case CCM_CHSCCDR:
61         return "CHSCCDR";
62     case CCM_CSCDR2:
63         return "CSCDR2";
64     case CCM_CSCDR3:
65         return "CSCDR3";
66     case CCM_CDHIPR:
67         return "CDHIPR";
68     case CCM_CTOR:
69         return "CTOR";
70     case CCM_CLPCR:
71         return "CLPCR";
72     case CCM_CISR:
73         return "CISR";
74     case CCM_CIMR:
75         return "CIMR";
76     case CCM_CCOSR:
77         return "CCOSR";
78     case CCM_CGPR:
79         return "CGPR";
80     case CCM_CCGR0:
81         return "CCGR0";
82     case CCM_CCGR1:
83         return "CCGR1";
84     case CCM_CCGR2:
85         return "CCGR2";
86     case CCM_CCGR3:
87         return "CCGR3";
88     case CCM_CCGR4:
89         return "CCGR4";
90     case CCM_CCGR5:
91         return "CCGR5";
92     case CCM_CCGR6:
93         return "CCGR6";
94     case CCM_CMEOR:
95         return "CMEOR";
96     default:
97         sprintf(unknown, "%d ?", reg);
98         return unknown;
99     }
100 }
101 
102 static const char *imx6_analog_reg_name(uint32_t reg)
103 {
104     static char unknown[20];
105 
106     switch (reg) {
107     case CCM_ANALOG_PLL_ARM:
108         return "PLL_ARM";
109     case CCM_ANALOG_PLL_ARM_SET:
110         return "PLL_ARM_SET";
111     case CCM_ANALOG_PLL_ARM_CLR:
112         return "PLL_ARM_CLR";
113     case CCM_ANALOG_PLL_ARM_TOG:
114         return "PLL_ARM_TOG";
115     case CCM_ANALOG_PLL_USB1:
116         return "PLL_USB1";
117     case CCM_ANALOG_PLL_USB1_SET:
118         return "PLL_USB1_SET";
119     case CCM_ANALOG_PLL_USB1_CLR:
120         return "PLL_USB1_CLR";
121     case CCM_ANALOG_PLL_USB1_TOG:
122         return "PLL_USB1_TOG";
123     case CCM_ANALOG_PLL_USB2:
124         return "PLL_USB2";
125     case CCM_ANALOG_PLL_USB2_SET:
126         return "PLL_USB2_SET";
127     case CCM_ANALOG_PLL_USB2_CLR:
128         return "PLL_USB2_CLR";
129     case CCM_ANALOG_PLL_USB2_TOG:
130         return "PLL_USB2_TOG";
131     case CCM_ANALOG_PLL_SYS:
132         return "PLL_SYS";
133     case CCM_ANALOG_PLL_SYS_SET:
134         return "PLL_SYS_SET";
135     case CCM_ANALOG_PLL_SYS_CLR:
136         return "PLL_SYS_CLR";
137     case CCM_ANALOG_PLL_SYS_TOG:
138         return "PLL_SYS_TOG";
139     case CCM_ANALOG_PLL_SYS_SS:
140         return "PLL_SYS_SS";
141     case CCM_ANALOG_PLL_SYS_NUM:
142         return "PLL_SYS_NUM";
143     case CCM_ANALOG_PLL_SYS_DENOM:
144         return "PLL_SYS_DENOM";
145     case CCM_ANALOG_PLL_AUDIO:
146         return "PLL_AUDIO";
147     case CCM_ANALOG_PLL_AUDIO_SET:
148         return "PLL_AUDIO_SET";
149     case CCM_ANALOG_PLL_AUDIO_CLR:
150         return "PLL_AUDIO_CLR";
151     case CCM_ANALOG_PLL_AUDIO_TOG:
152         return "PLL_AUDIO_TOG";
153     case CCM_ANALOG_PLL_AUDIO_NUM:
154         return "PLL_AUDIO_NUM";
155     case CCM_ANALOG_PLL_AUDIO_DENOM:
156         return "PLL_AUDIO_DENOM";
157     case CCM_ANALOG_PLL_VIDEO:
158         return "PLL_VIDEO";
159     case CCM_ANALOG_PLL_VIDEO_SET:
160         return "PLL_VIDEO_SET";
161     case CCM_ANALOG_PLL_VIDEO_CLR:
162         return "PLL_VIDEO_CLR";
163     case CCM_ANALOG_PLL_VIDEO_TOG:
164         return "PLL_VIDEO_TOG";
165     case CCM_ANALOG_PLL_VIDEO_NUM:
166         return "PLL_VIDEO_NUM";
167     case CCM_ANALOG_PLL_VIDEO_DENOM:
168         return "PLL_VIDEO_DENOM";
169     case CCM_ANALOG_PLL_MLB:
170         return "PLL_MLB";
171     case CCM_ANALOG_PLL_MLB_SET:
172         return "PLL_MLB_SET";
173     case CCM_ANALOG_PLL_MLB_CLR:
174         return "PLL_MLB_CLR";
175     case CCM_ANALOG_PLL_MLB_TOG:
176         return "PLL_MLB_TOG";
177     case CCM_ANALOG_PLL_ENET:
178         return "PLL_ENET";
179     case CCM_ANALOG_PLL_ENET_SET:
180         return "PLL_ENET_SET";
181     case CCM_ANALOG_PLL_ENET_CLR:
182         return "PLL_ENET_CLR";
183     case CCM_ANALOG_PLL_ENET_TOG:
184         return "PLL_ENET_TOG";
185     case CCM_ANALOG_PFD_480:
186         return "PFD_480";
187     case CCM_ANALOG_PFD_480_SET:
188         return "PFD_480_SET";
189     case CCM_ANALOG_PFD_480_CLR:
190         return "PFD_480_CLR";
191     case CCM_ANALOG_PFD_480_TOG:
192         return "PFD_480_TOG";
193     case CCM_ANALOG_PFD_528:
194         return "PFD_528";
195     case CCM_ANALOG_PFD_528_SET:
196         return "PFD_528_SET";
197     case CCM_ANALOG_PFD_528_CLR:
198         return "PFD_528_CLR";
199     case CCM_ANALOG_PFD_528_TOG:
200         return "PFD_528_TOG";
201     case CCM_ANALOG_MISC0:
202         return "MISC0";
203     case CCM_ANALOG_MISC0_SET:
204         return "MISC0_SET";
205     case CCM_ANALOG_MISC0_CLR:
206         return "MISC0_CLR";
207     case CCM_ANALOG_MISC0_TOG:
208         return "MISC0_TOG";
209     case CCM_ANALOG_MISC2:
210         return "MISC2";
211     case CCM_ANALOG_MISC2_SET:
212         return "MISC2_SET";
213     case CCM_ANALOG_MISC2_CLR:
214         return "MISC2_CLR";
215     case CCM_ANALOG_MISC2_TOG:
216         return "MISC2_TOG";
217     case PMU_REG_1P1:
218         return "PMU_REG_1P1";
219     case PMU_REG_3P0:
220         return "PMU_REG_3P0";
221     case PMU_REG_2P5:
222         return "PMU_REG_2P5";
223     case PMU_REG_CORE:
224         return "PMU_REG_CORE";
225     case PMU_MISC1:
226         return "PMU_MISC1";
227     case PMU_MISC1_SET:
228         return "PMU_MISC1_SET";
229     case PMU_MISC1_CLR:
230         return "PMU_MISC1_CLR";
231     case PMU_MISC1_TOG:
232         return "PMU_MISC1_TOG";
233     case USB_ANALOG_DIGPROG:
234         return "USB_ANALOG_DIGPROG";
235     default:
236         sprintf(unknown, "%d ?", reg);
237         return unknown;
238     }
239 }
240 
241 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
242 
243 static const VMStateDescription vmstate_imx6_ccm = {
244     .name = TYPE_IMX6_CCM,
245     .version_id = 1,
246     .minimum_version_id = 1,
247     .fields = (VMStateField[]) {
248         VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
249         VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
250         VMSTATE_END_OF_LIST()
251     },
252 };
253 
254 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
255 {
256     uint64_t freq = 24000000;
257 
258     if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
259         freq *= 22;
260     } else {
261         freq *= 20;
262     }
263 
264     DPRINTF("freq = %d\n", (uint32_t)freq);
265 
266     return freq;
267 }
268 
269 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
270 {
271     uint64_t freq = 0;
272 
273     freq = imx6_analog_get_pll2_clk(dev) * 18
274            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
275 
276     DPRINTF("freq = %d\n", (uint32_t)freq);
277 
278     return freq;
279 }
280 
281 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
282 {
283     uint64_t freq = 0;
284 
285     freq = imx6_analog_get_pll2_clk(dev) * 18
286            / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
287 
288     DPRINTF("freq = %d\n", (uint32_t)freq);
289 
290     return freq;
291 }
292 
293 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
294 {
295     uint64_t freq = 0;
296 
297     switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
298     case 0:
299         freq = imx6_analog_get_pll2_clk(dev);
300         break;
301     case 1:
302         freq = imx6_analog_get_pll2_pfd2_clk(dev);
303         break;
304     case 2:
305         freq = imx6_analog_get_pll2_pfd0_clk(dev);
306         break;
307     case 3:
308         freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
309         break;
310     default:
311         /* We should never get there */
312         g_assert_not_reached();
313         break;
314     }
315 
316     DPRINTF("freq = %d\n", (uint32_t)freq);
317 
318     return freq;
319 }
320 
321 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
322 {
323     uint64_t freq = 0;
324 
325     freq = imx6_analog_get_periph_clk(dev)
326            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
327 
328     DPRINTF("freq = %d\n", (uint32_t)freq);
329 
330     return freq;
331 }
332 
333 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
334 {
335     uint64_t freq = 0;
336 
337     freq = imx6_ccm_get_ahb_clk(dev)
338            / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
339 
340     DPRINTF("freq = %d\n", (uint32_t)freq);
341 
342     return freq;
343 }
344 
345 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
346 {
347     uint64_t freq = 0;
348 
349     freq = imx6_ccm_get_ipg_clk(dev)
350            / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
351 
352     DPRINTF("freq = %d\n", (uint32_t)freq);
353 
354     return freq;
355 }
356 
357 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
358 {
359     uint32_t freq = 0;
360     IMX6CCMState *s = IMX6_CCM(dev);
361 
362     switch (clock) {
363     case CLK_NONE:
364         break;
365     case CLK_IPG:
366         freq = imx6_ccm_get_ipg_clk(s);
367         break;
368     case CLK_IPG_HIGH:
369         freq = imx6_ccm_get_per_clk(s);
370         break;
371     case CLK_32k:
372         freq = CKIL_FREQ;
373         break;
374     case CLK_HIGH:
375         freq = 24000000;
376         break;
377     case CLK_HIGH_DIV:
378         freq = 24000000 / 8;
379         break;
380     default:
381         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
382                       TYPE_IMX6_CCM, __func__, clock);
383         break;
384     }
385 
386     DPRINTF("Clock = %d) = %d\n", clock, freq);
387 
388     return freq;
389 }
390 
391 static void imx6_ccm_reset(DeviceState *dev)
392 {
393     IMX6CCMState *s = IMX6_CCM(dev);
394 
395     DPRINTF("\n");
396 
397     s->ccm[CCM_CCR] = 0x040116FF;
398     s->ccm[CCM_CCDR] = 0x00000000;
399     s->ccm[CCM_CSR] = 0x00000010;
400     s->ccm[CCM_CCSR] = 0x00000100;
401     s->ccm[CCM_CACRR] = 0x00000000;
402     s->ccm[CCM_CBCDR] = 0x00018D40;
403     s->ccm[CCM_CBCMR] = 0x00022324;
404     s->ccm[CCM_CSCMR1] = 0x00F00000;
405     s->ccm[CCM_CSCMR2] = 0x02B92F06;
406     s->ccm[CCM_CSCDR1] = 0x00490B00;
407     s->ccm[CCM_CS1CDR] = 0x0EC102C1;
408     s->ccm[CCM_CS2CDR] = 0x000736C1;
409     s->ccm[CCM_CDCDR] = 0x33F71F92;
410     s->ccm[CCM_CHSCCDR] = 0x0002A150;
411     s->ccm[CCM_CSCDR2] = 0x0002A150;
412     s->ccm[CCM_CSCDR3] = 0x00014841;
413     s->ccm[CCM_CDHIPR] = 0x00000000;
414     s->ccm[CCM_CTOR] = 0x00000000;
415     s->ccm[CCM_CLPCR] = 0x00000079;
416     s->ccm[CCM_CISR] = 0x00000000;
417     s->ccm[CCM_CIMR] = 0xFFFFFFFF;
418     s->ccm[CCM_CCOSR] = 0x000A0001;
419     s->ccm[CCM_CGPR] = 0x0000FE62;
420     s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
421     s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
422     s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
423     s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
424     s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
425     s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
426     s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
427     s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
428 
429     s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
430     s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
431     s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
432     s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
433     s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
434     s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
435     s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
436     s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
437     s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
438     s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
439     s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
440     s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
441     s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
442     s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
443     s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
444     s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
445     s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
446 
447     s->analog[PMU_REG_1P1] = 0x00001073;
448     s->analog[PMU_REG_3P0] = 0x00000F74;
449     s->analog[PMU_REG_2P5] = 0x00005071;
450     s->analog[PMU_REG_CORE] = 0x00402010;
451     s->analog[PMU_MISC0] = 0x04000000;
452     s->analog[PMU_MISC1] = 0x00000000;
453     s->analog[PMU_MISC2] = 0x00272727;
454 
455     s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
456     s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
457     s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
458     s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
459     s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
460     s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
461     s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
462     s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
463     s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
464 
465     /* all PLLs need to be locked */
466     s->analog[CCM_ANALOG_PLL_ARM]   |= CCM_ANALOG_PLL_LOCK;
467     s->analog[CCM_ANALOG_PLL_USB1]  |= CCM_ANALOG_PLL_LOCK;
468     s->analog[CCM_ANALOG_PLL_USB2]  |= CCM_ANALOG_PLL_LOCK;
469     s->analog[CCM_ANALOG_PLL_SYS]   |= CCM_ANALOG_PLL_LOCK;
470     s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
471     s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
472     s->analog[CCM_ANALOG_PLL_MLB]   |= CCM_ANALOG_PLL_LOCK;
473     s->analog[CCM_ANALOG_PLL_ENET]  |= CCM_ANALOG_PLL_LOCK;
474 }
475 
476 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
477 {
478     uint32_t value = 0;
479     uint32_t index = offset >> 2;
480     IMX6CCMState *s = (IMX6CCMState *)opaque;
481 
482     value = s->ccm[index];
483 
484     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
485 
486     return (uint64_t)value;
487 }
488 
489 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
490                            unsigned size)
491 {
492     uint32_t index = offset >> 2;
493     IMX6CCMState *s = (IMX6CCMState *)opaque;
494 
495     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
496             (uint32_t)value);
497 
498     /*
499      * We will do a better implementation later. In particular some bits
500      * cannot be written to.
501      */
502     s->ccm[index] = (uint32_t)value;
503 }
504 
505 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
506 {
507     uint32_t value;
508     uint32_t index = offset >> 2;
509     IMX6CCMState *s = (IMX6CCMState *)opaque;
510 
511     switch (index) {
512     case CCM_ANALOG_PLL_ARM_SET:
513     case CCM_ANALOG_PLL_USB1_SET:
514     case CCM_ANALOG_PLL_USB2_SET:
515     case CCM_ANALOG_PLL_SYS_SET:
516     case CCM_ANALOG_PLL_AUDIO_SET:
517     case CCM_ANALOG_PLL_VIDEO_SET:
518     case CCM_ANALOG_PLL_MLB_SET:
519     case CCM_ANALOG_PLL_ENET_SET:
520     case CCM_ANALOG_PFD_480_SET:
521     case CCM_ANALOG_PFD_528_SET:
522     case CCM_ANALOG_MISC0_SET:
523     case PMU_MISC1_SET:
524     case CCM_ANALOG_MISC2_SET:
525     case USB_ANALOG_USB1_VBUS_DETECT_SET:
526     case USB_ANALOG_USB1_CHRG_DETECT_SET:
527     case USB_ANALOG_USB1_MISC_SET:
528     case USB_ANALOG_USB2_VBUS_DETECT_SET:
529     case USB_ANALOG_USB2_CHRG_DETECT_SET:
530     case USB_ANALOG_USB2_MISC_SET:
531         /*
532          * All REG_NAME_SET register access are in fact targeting the
533          * the REG_NAME register.
534          */
535         value = s->analog[index - 1];
536         break;
537     case CCM_ANALOG_PLL_ARM_CLR:
538     case CCM_ANALOG_PLL_USB1_CLR:
539     case CCM_ANALOG_PLL_USB2_CLR:
540     case CCM_ANALOG_PLL_SYS_CLR:
541     case CCM_ANALOG_PLL_AUDIO_CLR:
542     case CCM_ANALOG_PLL_VIDEO_CLR:
543     case CCM_ANALOG_PLL_MLB_CLR:
544     case CCM_ANALOG_PLL_ENET_CLR:
545     case CCM_ANALOG_PFD_480_CLR:
546     case CCM_ANALOG_PFD_528_CLR:
547     case CCM_ANALOG_MISC0_CLR:
548     case PMU_MISC1_CLR:
549     case CCM_ANALOG_MISC2_CLR:
550     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
551     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
552     case USB_ANALOG_USB1_MISC_CLR:
553     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
554     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
555     case USB_ANALOG_USB2_MISC_CLR:
556         /*
557          * All REG_NAME_CLR register access are in fact targeting the
558          * the REG_NAME register.
559          */
560         value = s->analog[index - 2];
561         break;
562     case CCM_ANALOG_PLL_ARM_TOG:
563     case CCM_ANALOG_PLL_USB1_TOG:
564     case CCM_ANALOG_PLL_USB2_TOG:
565     case CCM_ANALOG_PLL_SYS_TOG:
566     case CCM_ANALOG_PLL_AUDIO_TOG:
567     case CCM_ANALOG_PLL_VIDEO_TOG:
568     case CCM_ANALOG_PLL_MLB_TOG:
569     case CCM_ANALOG_PLL_ENET_TOG:
570     case CCM_ANALOG_PFD_480_TOG:
571     case CCM_ANALOG_PFD_528_TOG:
572     case CCM_ANALOG_MISC0_TOG:
573     case PMU_MISC1_TOG:
574     case CCM_ANALOG_MISC2_TOG:
575     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
576     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
577     case USB_ANALOG_USB1_MISC_TOG:
578     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
579     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
580     case USB_ANALOG_USB2_MISC_TOG:
581         /*
582          * All REG_NAME_TOG register access are in fact targeting the
583          * the REG_NAME register.
584          */
585         value = s->analog[index - 3];
586         break;
587     default:
588         value = s->analog[index];
589         break;
590     }
591 
592     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
593 
594     return (uint64_t)value;
595 }
596 
597 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
598                               unsigned size)
599 {
600     uint32_t index = offset >> 2;
601     IMX6CCMState *s = (IMX6CCMState *)opaque;
602 
603     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
604             (uint32_t)value);
605 
606     switch (index) {
607     case CCM_ANALOG_PLL_ARM_SET:
608     case CCM_ANALOG_PLL_USB1_SET:
609     case CCM_ANALOG_PLL_USB2_SET:
610     case CCM_ANALOG_PLL_SYS_SET:
611     case CCM_ANALOG_PLL_AUDIO_SET:
612     case CCM_ANALOG_PLL_VIDEO_SET:
613     case CCM_ANALOG_PLL_MLB_SET:
614     case CCM_ANALOG_PLL_ENET_SET:
615     case CCM_ANALOG_PFD_480_SET:
616     case CCM_ANALOG_PFD_528_SET:
617     case CCM_ANALOG_MISC0_SET:
618     case PMU_MISC1_SET:
619     case CCM_ANALOG_MISC2_SET:
620     case USB_ANALOG_USB1_VBUS_DETECT_SET:
621     case USB_ANALOG_USB1_CHRG_DETECT_SET:
622     case USB_ANALOG_USB1_MISC_SET:
623     case USB_ANALOG_USB2_VBUS_DETECT_SET:
624     case USB_ANALOG_USB2_CHRG_DETECT_SET:
625     case USB_ANALOG_USB2_MISC_SET:
626         /*
627          * All REG_NAME_SET register access are in fact targeting the
628          * the REG_NAME register. So we change the value of the
629          * REG_NAME register, setting bits passed in the value.
630          */
631         s->analog[index - 1] |= value;
632         break;
633     case CCM_ANALOG_PLL_ARM_CLR:
634     case CCM_ANALOG_PLL_USB1_CLR:
635     case CCM_ANALOG_PLL_USB2_CLR:
636     case CCM_ANALOG_PLL_SYS_CLR:
637     case CCM_ANALOG_PLL_AUDIO_CLR:
638     case CCM_ANALOG_PLL_VIDEO_CLR:
639     case CCM_ANALOG_PLL_MLB_CLR:
640     case CCM_ANALOG_PLL_ENET_CLR:
641     case CCM_ANALOG_PFD_480_CLR:
642     case CCM_ANALOG_PFD_528_CLR:
643     case CCM_ANALOG_MISC0_CLR:
644     case PMU_MISC1_CLR:
645     case CCM_ANALOG_MISC2_CLR:
646     case USB_ANALOG_USB1_VBUS_DETECT_CLR:
647     case USB_ANALOG_USB1_CHRG_DETECT_CLR:
648     case USB_ANALOG_USB1_MISC_CLR:
649     case USB_ANALOG_USB2_VBUS_DETECT_CLR:
650     case USB_ANALOG_USB2_CHRG_DETECT_CLR:
651     case USB_ANALOG_USB2_MISC_CLR:
652         /*
653          * All REG_NAME_CLR register access are in fact targeting the
654          * the REG_NAME register. So we change the value of the
655          * REG_NAME register, unsetting bits passed in the value.
656          */
657         s->analog[index - 2] &= ~value;
658         break;
659     case CCM_ANALOG_PLL_ARM_TOG:
660     case CCM_ANALOG_PLL_USB1_TOG:
661     case CCM_ANALOG_PLL_USB2_TOG:
662     case CCM_ANALOG_PLL_SYS_TOG:
663     case CCM_ANALOG_PLL_AUDIO_TOG:
664     case CCM_ANALOG_PLL_VIDEO_TOG:
665     case CCM_ANALOG_PLL_MLB_TOG:
666     case CCM_ANALOG_PLL_ENET_TOG:
667     case CCM_ANALOG_PFD_480_TOG:
668     case CCM_ANALOG_PFD_528_TOG:
669     case CCM_ANALOG_MISC0_TOG:
670     case PMU_MISC1_TOG:
671     case CCM_ANALOG_MISC2_TOG:
672     case USB_ANALOG_USB1_VBUS_DETECT_TOG:
673     case USB_ANALOG_USB1_CHRG_DETECT_TOG:
674     case USB_ANALOG_USB1_MISC_TOG:
675     case USB_ANALOG_USB2_VBUS_DETECT_TOG:
676     case USB_ANALOG_USB2_CHRG_DETECT_TOG:
677     case USB_ANALOG_USB2_MISC_TOG:
678         /*
679          * All REG_NAME_TOG register access are in fact targeting the
680          * the REG_NAME register. So we change the value of the
681          * REG_NAME register, toggling bits passed in the value.
682          */
683         s->analog[index - 3] ^= value;
684         break;
685     default:
686         /*
687          * We will do a better implementation later. In particular some bits
688          * cannot be written to.
689          */
690         s->analog[index] = value;
691         break;
692     }
693 }
694 
695 static const struct MemoryRegionOps imx6_ccm_ops = {
696     .read = imx6_ccm_read,
697     .write = imx6_ccm_write,
698     .endianness = DEVICE_NATIVE_ENDIAN,
699     .valid = {
700         /*
701          * Our device would not work correctly if the guest was doing
702          * unaligned access. This might not be a limitation on the real
703          * device but in practice there is no reason for a guest to access
704          * this device unaligned.
705          */
706         .min_access_size = 4,
707         .max_access_size = 4,
708         .unaligned = false,
709     },
710 };
711 
712 static const struct MemoryRegionOps imx6_analog_ops = {
713     .read = imx6_analog_read,
714     .write = imx6_analog_write,
715     .endianness = DEVICE_NATIVE_ENDIAN,
716     .valid = {
717         /*
718          * Our device would not work correctly if the guest was doing
719          * unaligned access. This might not be a limitation on the real
720          * device but in practice there is no reason for a guest to access
721          * this device unaligned.
722          */
723         .min_access_size = 4,
724         .max_access_size = 4,
725         .unaligned = false,
726     },
727 };
728 
729 static void imx6_ccm_init(Object *obj)
730 {
731     DeviceState *dev = DEVICE(obj);
732     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
733     IMX6CCMState *s = IMX6_CCM(obj);
734 
735     /* initialize a container for the all memory range */
736     memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
737 
738     /* We initialize an IO memory region for the CCM part */
739     memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
740                           TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
741 
742     /* Add the CCM as a subregion at offset 0 */
743     memory_region_add_subregion(&s->container, 0, &s->ioccm);
744 
745     /* We initialize an IO memory region for the ANALOG part */
746     memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
747                           TYPE_IMX6_CCM ".analog",
748                           CCM_ANALOG_MAX * sizeof(uint32_t));
749 
750     /* Add the ANALOG as a subregion at offset 0x4000 */
751     memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
752 
753     sysbus_init_mmio(sd, &s->container);
754 }
755 
756 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
757 {
758     DeviceClass *dc = DEVICE_CLASS(klass);
759     IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
760 
761     dc->reset = imx6_ccm_reset;
762     dc->vmsd = &vmstate_imx6_ccm;
763     dc->desc = "i.MX6 Clock Control Module";
764 
765     ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
766 }
767 
768 static const TypeInfo imx6_ccm_info = {
769     .name          = TYPE_IMX6_CCM,
770     .parent        = TYPE_IMX_CCM,
771     .instance_size = sizeof(IMX6CCMState),
772     .instance_init = imx6_ccm_init,
773     .class_init    = imx6_ccm_class_init,
774 };
775 
776 static void imx6_ccm_register_types(void)
777 {
778     type_register_static(&imx6_ccm_info);
779 }
780 
781 type_init(imx6_ccm_register_types)
782