1 /* 2 * IMX6 Clock Control Module 3 * 4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 * To get the timer frequencies right, we need to emulate at least part of 10 * the CCM. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "hw/misc/imx6_ccm.h" 15 #include "migration/vmstate.h" 16 #include "qemu/log.h" 17 #include "qemu/module.h" 18 19 #ifndef DEBUG_IMX6_CCM 20 #define DEBUG_IMX6_CCM 0 21 #endif 22 23 #define DPRINTF(fmt, args...) \ 24 do { \ 25 if (DEBUG_IMX6_CCM) { \ 26 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \ 27 __func__, ##args); \ 28 } \ 29 } while (0) 30 31 static const char *imx6_ccm_reg_name(uint32_t reg) 32 { 33 static char unknown[20]; 34 35 switch (reg) { 36 case CCM_CCR: 37 return "CCR"; 38 case CCM_CCDR: 39 return "CCDR"; 40 case CCM_CSR: 41 return "CSR"; 42 case CCM_CCSR: 43 return "CCSR"; 44 case CCM_CACRR: 45 return "CACRR"; 46 case CCM_CBCDR: 47 return "CBCDR"; 48 case CCM_CBCMR: 49 return "CBCMR"; 50 case CCM_CSCMR1: 51 return "CSCMR1"; 52 case CCM_CSCMR2: 53 return "CSCMR2"; 54 case CCM_CSCDR1: 55 return "CSCDR1"; 56 case CCM_CS1CDR: 57 return "CS1CDR"; 58 case CCM_CS2CDR: 59 return "CS2CDR"; 60 case CCM_CDCDR: 61 return "CDCDR"; 62 case CCM_CHSCCDR: 63 return "CHSCCDR"; 64 case CCM_CSCDR2: 65 return "CSCDR2"; 66 case CCM_CSCDR3: 67 return "CSCDR3"; 68 case CCM_CDHIPR: 69 return "CDHIPR"; 70 case CCM_CTOR: 71 return "CTOR"; 72 case CCM_CLPCR: 73 return "CLPCR"; 74 case CCM_CISR: 75 return "CISR"; 76 case CCM_CIMR: 77 return "CIMR"; 78 case CCM_CCOSR: 79 return "CCOSR"; 80 case CCM_CGPR: 81 return "CGPR"; 82 case CCM_CCGR0: 83 return "CCGR0"; 84 case CCM_CCGR1: 85 return "CCGR1"; 86 case CCM_CCGR2: 87 return "CCGR2"; 88 case CCM_CCGR3: 89 return "CCGR3"; 90 case CCM_CCGR4: 91 return "CCGR4"; 92 case CCM_CCGR5: 93 return "CCGR5"; 94 case CCM_CCGR6: 95 return "CCGR6"; 96 case CCM_CMEOR: 97 return "CMEOR"; 98 default: 99 sprintf(unknown, "%d ?", reg); 100 return unknown; 101 } 102 } 103 104 static const char *imx6_analog_reg_name(uint32_t reg) 105 { 106 static char unknown[20]; 107 108 switch (reg) { 109 case CCM_ANALOG_PLL_ARM: 110 return "PLL_ARM"; 111 case CCM_ANALOG_PLL_ARM_SET: 112 return "PLL_ARM_SET"; 113 case CCM_ANALOG_PLL_ARM_CLR: 114 return "PLL_ARM_CLR"; 115 case CCM_ANALOG_PLL_ARM_TOG: 116 return "PLL_ARM_TOG"; 117 case CCM_ANALOG_PLL_USB1: 118 return "PLL_USB1"; 119 case CCM_ANALOG_PLL_USB1_SET: 120 return "PLL_USB1_SET"; 121 case CCM_ANALOG_PLL_USB1_CLR: 122 return "PLL_USB1_CLR"; 123 case CCM_ANALOG_PLL_USB1_TOG: 124 return "PLL_USB1_TOG"; 125 case CCM_ANALOG_PLL_USB2: 126 return "PLL_USB2"; 127 case CCM_ANALOG_PLL_USB2_SET: 128 return "PLL_USB2_SET"; 129 case CCM_ANALOG_PLL_USB2_CLR: 130 return "PLL_USB2_CLR"; 131 case CCM_ANALOG_PLL_USB2_TOG: 132 return "PLL_USB2_TOG"; 133 case CCM_ANALOG_PLL_SYS: 134 return "PLL_SYS"; 135 case CCM_ANALOG_PLL_SYS_SET: 136 return "PLL_SYS_SET"; 137 case CCM_ANALOG_PLL_SYS_CLR: 138 return "PLL_SYS_CLR"; 139 case CCM_ANALOG_PLL_SYS_TOG: 140 return "PLL_SYS_TOG"; 141 case CCM_ANALOG_PLL_SYS_SS: 142 return "PLL_SYS_SS"; 143 case CCM_ANALOG_PLL_SYS_NUM: 144 return "PLL_SYS_NUM"; 145 case CCM_ANALOG_PLL_SYS_DENOM: 146 return "PLL_SYS_DENOM"; 147 case CCM_ANALOG_PLL_AUDIO: 148 return "PLL_AUDIO"; 149 case CCM_ANALOG_PLL_AUDIO_SET: 150 return "PLL_AUDIO_SET"; 151 case CCM_ANALOG_PLL_AUDIO_CLR: 152 return "PLL_AUDIO_CLR"; 153 case CCM_ANALOG_PLL_AUDIO_TOG: 154 return "PLL_AUDIO_TOG"; 155 case CCM_ANALOG_PLL_AUDIO_NUM: 156 return "PLL_AUDIO_NUM"; 157 case CCM_ANALOG_PLL_AUDIO_DENOM: 158 return "PLL_AUDIO_DENOM"; 159 case CCM_ANALOG_PLL_VIDEO: 160 return "PLL_VIDEO"; 161 case CCM_ANALOG_PLL_VIDEO_SET: 162 return "PLL_VIDEO_SET"; 163 case CCM_ANALOG_PLL_VIDEO_CLR: 164 return "PLL_VIDEO_CLR"; 165 case CCM_ANALOG_PLL_VIDEO_TOG: 166 return "PLL_VIDEO_TOG"; 167 case CCM_ANALOG_PLL_VIDEO_NUM: 168 return "PLL_VIDEO_NUM"; 169 case CCM_ANALOG_PLL_VIDEO_DENOM: 170 return "PLL_VIDEO_DENOM"; 171 case CCM_ANALOG_PLL_MLB: 172 return "PLL_MLB"; 173 case CCM_ANALOG_PLL_MLB_SET: 174 return "PLL_MLB_SET"; 175 case CCM_ANALOG_PLL_MLB_CLR: 176 return "PLL_MLB_CLR"; 177 case CCM_ANALOG_PLL_MLB_TOG: 178 return "PLL_MLB_TOG"; 179 case CCM_ANALOG_PLL_ENET: 180 return "PLL_ENET"; 181 case CCM_ANALOG_PLL_ENET_SET: 182 return "PLL_ENET_SET"; 183 case CCM_ANALOG_PLL_ENET_CLR: 184 return "PLL_ENET_CLR"; 185 case CCM_ANALOG_PLL_ENET_TOG: 186 return "PLL_ENET_TOG"; 187 case CCM_ANALOG_PFD_480: 188 return "PFD_480"; 189 case CCM_ANALOG_PFD_480_SET: 190 return "PFD_480_SET"; 191 case CCM_ANALOG_PFD_480_CLR: 192 return "PFD_480_CLR"; 193 case CCM_ANALOG_PFD_480_TOG: 194 return "PFD_480_TOG"; 195 case CCM_ANALOG_PFD_528: 196 return "PFD_528"; 197 case CCM_ANALOG_PFD_528_SET: 198 return "PFD_528_SET"; 199 case CCM_ANALOG_PFD_528_CLR: 200 return "PFD_528_CLR"; 201 case CCM_ANALOG_PFD_528_TOG: 202 return "PFD_528_TOG"; 203 case CCM_ANALOG_MISC0: 204 return "MISC0"; 205 case CCM_ANALOG_MISC0_SET: 206 return "MISC0_SET"; 207 case CCM_ANALOG_MISC0_CLR: 208 return "MISC0_CLR"; 209 case CCM_ANALOG_MISC0_TOG: 210 return "MISC0_TOG"; 211 case CCM_ANALOG_MISC2: 212 return "MISC2"; 213 case CCM_ANALOG_MISC2_SET: 214 return "MISC2_SET"; 215 case CCM_ANALOG_MISC2_CLR: 216 return "MISC2_CLR"; 217 case CCM_ANALOG_MISC2_TOG: 218 return "MISC2_TOG"; 219 case PMU_REG_1P1: 220 return "PMU_REG_1P1"; 221 case PMU_REG_3P0: 222 return "PMU_REG_3P0"; 223 case PMU_REG_2P5: 224 return "PMU_REG_2P5"; 225 case PMU_REG_CORE: 226 return "PMU_REG_CORE"; 227 case PMU_MISC1: 228 return "PMU_MISC1"; 229 case PMU_MISC1_SET: 230 return "PMU_MISC1_SET"; 231 case PMU_MISC1_CLR: 232 return "PMU_MISC1_CLR"; 233 case PMU_MISC1_TOG: 234 return "PMU_MISC1_TOG"; 235 case USB_ANALOG_DIGPROG: 236 return "USB_ANALOG_DIGPROG"; 237 default: 238 sprintf(unknown, "%d ?", reg); 239 return unknown; 240 } 241 } 242 243 #define CKIH_FREQ 24000000 /* 24MHz crystal input */ 244 245 static const VMStateDescription vmstate_imx6_ccm = { 246 .name = TYPE_IMX6_CCM, 247 .version_id = 1, 248 .minimum_version_id = 1, 249 .fields = (VMStateField[]) { 250 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX), 251 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX), 252 VMSTATE_END_OF_LIST() 253 }, 254 }; 255 256 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev) 257 { 258 uint64_t freq = 24000000; 259 260 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) { 261 freq *= 22; 262 } else { 263 freq *= 20; 264 } 265 266 DPRINTF("freq = %d\n", (uint32_t)freq); 267 268 return freq; 269 } 270 271 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev) 272 { 273 uint64_t freq = 0; 274 275 freq = imx6_analog_get_pll2_clk(dev) * 18 276 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC); 277 278 DPRINTF("freq = %d\n", (uint32_t)freq); 279 280 return freq; 281 } 282 283 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev) 284 { 285 uint64_t freq = 0; 286 287 freq = imx6_analog_get_pll2_clk(dev) * 18 288 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC); 289 290 DPRINTF("freq = %d\n", (uint32_t)freq); 291 292 return freq; 293 } 294 295 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev) 296 { 297 uint64_t freq = 0; 298 299 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) { 300 case 0: 301 freq = imx6_analog_get_pll2_clk(dev); 302 break; 303 case 1: 304 freq = imx6_analog_get_pll2_pfd2_clk(dev); 305 break; 306 case 2: 307 freq = imx6_analog_get_pll2_pfd0_clk(dev); 308 break; 309 case 3: 310 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2; 311 break; 312 default: 313 /* We should never get there */ 314 g_assert_not_reached(); 315 break; 316 } 317 318 DPRINTF("freq = %d\n", (uint32_t)freq); 319 320 return freq; 321 } 322 323 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev) 324 { 325 uint64_t freq = 0; 326 327 freq = imx6_analog_get_periph_clk(dev) 328 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF)); 329 330 DPRINTF("freq = %d\n", (uint32_t)freq); 331 332 return freq; 333 } 334 335 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev) 336 { 337 uint64_t freq = 0; 338 339 freq = imx6_ccm_get_ahb_clk(dev) 340 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF)); 341 342 DPRINTF("freq = %d\n", (uint32_t)freq); 343 344 return freq; 345 } 346 347 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev) 348 { 349 uint64_t freq = 0; 350 351 freq = imx6_ccm_get_ipg_clk(dev) 352 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF)); 353 354 DPRINTF("freq = %d\n", (uint32_t)freq); 355 356 return freq; 357 } 358 359 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock) 360 { 361 uint32_t freq = 0; 362 IMX6CCMState *s = IMX6_CCM(dev); 363 364 switch (clock) { 365 case CLK_NONE: 366 break; 367 case CLK_IPG: 368 freq = imx6_ccm_get_ipg_clk(s); 369 break; 370 case CLK_IPG_HIGH: 371 freq = imx6_ccm_get_per_clk(s); 372 break; 373 case CLK_32k: 374 freq = CKIL_FREQ; 375 break; 376 case CLK_HIGH: 377 freq = 24000000; 378 break; 379 case CLK_HIGH_DIV: 380 freq = 24000000 / 8; 381 break; 382 default: 383 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n", 384 TYPE_IMX6_CCM, __func__, clock); 385 break; 386 } 387 388 DPRINTF("Clock = %d) = %d\n", clock, freq); 389 390 return freq; 391 } 392 393 static void imx6_ccm_reset(DeviceState *dev) 394 { 395 IMX6CCMState *s = IMX6_CCM(dev); 396 397 DPRINTF("\n"); 398 399 s->ccm[CCM_CCR] = 0x040116FF; 400 s->ccm[CCM_CCDR] = 0x00000000; 401 s->ccm[CCM_CSR] = 0x00000010; 402 s->ccm[CCM_CCSR] = 0x00000100; 403 s->ccm[CCM_CACRR] = 0x00000000; 404 s->ccm[CCM_CBCDR] = 0x00018D40; 405 s->ccm[CCM_CBCMR] = 0x00022324; 406 s->ccm[CCM_CSCMR1] = 0x00F00000; 407 s->ccm[CCM_CSCMR2] = 0x02B92F06; 408 s->ccm[CCM_CSCDR1] = 0x00490B00; 409 s->ccm[CCM_CS1CDR] = 0x0EC102C1; 410 s->ccm[CCM_CS2CDR] = 0x000736C1; 411 s->ccm[CCM_CDCDR] = 0x33F71F92; 412 s->ccm[CCM_CHSCCDR] = 0x0002A150; 413 s->ccm[CCM_CSCDR2] = 0x0002A150; 414 s->ccm[CCM_CSCDR3] = 0x00014841; 415 s->ccm[CCM_CDHIPR] = 0x00000000; 416 s->ccm[CCM_CTOR] = 0x00000000; 417 s->ccm[CCM_CLPCR] = 0x00000079; 418 s->ccm[CCM_CISR] = 0x00000000; 419 s->ccm[CCM_CIMR] = 0xFFFFFFFF; 420 s->ccm[CCM_CCOSR] = 0x000A0001; 421 s->ccm[CCM_CGPR] = 0x0000FE62; 422 s->ccm[CCM_CCGR0] = 0xFFFFFFFF; 423 s->ccm[CCM_CCGR1] = 0xFFFFFFFF; 424 s->ccm[CCM_CCGR2] = 0xFC3FFFFF; 425 s->ccm[CCM_CCGR3] = 0xFFFFFFFF; 426 s->ccm[CCM_CCGR4] = 0xFFFFFFFF; 427 s->ccm[CCM_CCGR5] = 0xFFFFFFFF; 428 s->ccm[CCM_CCGR6] = 0xFFFFFFFF; 429 s->ccm[CCM_CMEOR] = 0xFFFFFFFF; 430 431 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042; 432 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000; 433 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000; 434 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001; 435 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000; 436 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000; 437 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012; 438 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006; 439 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100; 440 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C; 441 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C; 442 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100; 443 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447; 444 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000; 445 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001; 446 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C; 447 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B; 448 449 s->analog[PMU_REG_1P1] = 0x00001073; 450 s->analog[PMU_REG_3P0] = 0x00000F74; 451 s->analog[PMU_REG_2P5] = 0x00005071; 452 s->analog[PMU_REG_CORE] = 0x00402010; 453 s->analog[PMU_MISC0] = 0x04000000; 454 s->analog[PMU_MISC1] = 0x00000000; 455 s->analog[PMU_MISC2] = 0x00272727; 456 457 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004; 458 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000; 459 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000; 460 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000; 461 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002; 462 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004; 463 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000; 464 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002; 465 s->analog[USB_ANALOG_DIGPROG] = 0x00000000; 466 467 /* all PLLs need to be locked */ 468 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK; 469 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK; 470 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK; 471 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK; 472 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK; 473 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK; 474 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK; 475 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK; 476 } 477 478 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size) 479 { 480 uint32_t value = 0; 481 uint32_t index = offset >> 2; 482 IMX6CCMState *s = (IMX6CCMState *)opaque; 483 484 value = s->ccm[index]; 485 486 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value); 487 488 return (uint64_t)value; 489 } 490 491 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value, 492 unsigned size) 493 { 494 uint32_t index = offset >> 2; 495 IMX6CCMState *s = (IMX6CCMState *)opaque; 496 497 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), 498 (uint32_t)value); 499 500 /* 501 * We will do a better implementation later. In particular some bits 502 * cannot be written to. 503 */ 504 s->ccm[index] = (uint32_t)value; 505 } 506 507 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size) 508 { 509 uint32_t value; 510 uint32_t index = offset >> 2; 511 IMX6CCMState *s = (IMX6CCMState *)opaque; 512 513 switch (index) { 514 case CCM_ANALOG_PLL_ARM_SET: 515 case CCM_ANALOG_PLL_USB1_SET: 516 case CCM_ANALOG_PLL_USB2_SET: 517 case CCM_ANALOG_PLL_SYS_SET: 518 case CCM_ANALOG_PLL_AUDIO_SET: 519 case CCM_ANALOG_PLL_VIDEO_SET: 520 case CCM_ANALOG_PLL_MLB_SET: 521 case CCM_ANALOG_PLL_ENET_SET: 522 case CCM_ANALOG_PFD_480_SET: 523 case CCM_ANALOG_PFD_528_SET: 524 case CCM_ANALOG_MISC0_SET: 525 case PMU_MISC1_SET: 526 case CCM_ANALOG_MISC2_SET: 527 case USB_ANALOG_USB1_VBUS_DETECT_SET: 528 case USB_ANALOG_USB1_CHRG_DETECT_SET: 529 case USB_ANALOG_USB1_MISC_SET: 530 case USB_ANALOG_USB2_VBUS_DETECT_SET: 531 case USB_ANALOG_USB2_CHRG_DETECT_SET: 532 case USB_ANALOG_USB2_MISC_SET: 533 /* 534 * All REG_NAME_SET register access are in fact targeting the 535 * the REG_NAME register. 536 */ 537 value = s->analog[index - 1]; 538 break; 539 case CCM_ANALOG_PLL_ARM_CLR: 540 case CCM_ANALOG_PLL_USB1_CLR: 541 case CCM_ANALOG_PLL_USB2_CLR: 542 case CCM_ANALOG_PLL_SYS_CLR: 543 case CCM_ANALOG_PLL_AUDIO_CLR: 544 case CCM_ANALOG_PLL_VIDEO_CLR: 545 case CCM_ANALOG_PLL_MLB_CLR: 546 case CCM_ANALOG_PLL_ENET_CLR: 547 case CCM_ANALOG_PFD_480_CLR: 548 case CCM_ANALOG_PFD_528_CLR: 549 case CCM_ANALOG_MISC0_CLR: 550 case PMU_MISC1_CLR: 551 case CCM_ANALOG_MISC2_CLR: 552 case USB_ANALOG_USB1_VBUS_DETECT_CLR: 553 case USB_ANALOG_USB1_CHRG_DETECT_CLR: 554 case USB_ANALOG_USB1_MISC_CLR: 555 case USB_ANALOG_USB2_VBUS_DETECT_CLR: 556 case USB_ANALOG_USB2_CHRG_DETECT_CLR: 557 case USB_ANALOG_USB2_MISC_CLR: 558 /* 559 * All REG_NAME_CLR register access are in fact targeting the 560 * the REG_NAME register. 561 */ 562 value = s->analog[index - 2]; 563 break; 564 case CCM_ANALOG_PLL_ARM_TOG: 565 case CCM_ANALOG_PLL_USB1_TOG: 566 case CCM_ANALOG_PLL_USB2_TOG: 567 case CCM_ANALOG_PLL_SYS_TOG: 568 case CCM_ANALOG_PLL_AUDIO_TOG: 569 case CCM_ANALOG_PLL_VIDEO_TOG: 570 case CCM_ANALOG_PLL_MLB_TOG: 571 case CCM_ANALOG_PLL_ENET_TOG: 572 case CCM_ANALOG_PFD_480_TOG: 573 case CCM_ANALOG_PFD_528_TOG: 574 case CCM_ANALOG_MISC0_TOG: 575 case PMU_MISC1_TOG: 576 case CCM_ANALOG_MISC2_TOG: 577 case USB_ANALOG_USB1_VBUS_DETECT_TOG: 578 case USB_ANALOG_USB1_CHRG_DETECT_TOG: 579 case USB_ANALOG_USB1_MISC_TOG: 580 case USB_ANALOG_USB2_VBUS_DETECT_TOG: 581 case USB_ANALOG_USB2_CHRG_DETECT_TOG: 582 case USB_ANALOG_USB2_MISC_TOG: 583 /* 584 * All REG_NAME_TOG register access are in fact targeting the 585 * the REG_NAME register. 586 */ 587 value = s->analog[index - 3]; 588 break; 589 default: 590 value = s->analog[index]; 591 break; 592 } 593 594 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value); 595 596 return (uint64_t)value; 597 } 598 599 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value, 600 unsigned size) 601 { 602 uint32_t index = offset >> 2; 603 IMX6CCMState *s = (IMX6CCMState *)opaque; 604 605 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index), 606 (uint32_t)value); 607 608 switch (index) { 609 case CCM_ANALOG_PLL_ARM_SET: 610 case CCM_ANALOG_PLL_USB1_SET: 611 case CCM_ANALOG_PLL_USB2_SET: 612 case CCM_ANALOG_PLL_SYS_SET: 613 case CCM_ANALOG_PLL_AUDIO_SET: 614 case CCM_ANALOG_PLL_VIDEO_SET: 615 case CCM_ANALOG_PLL_MLB_SET: 616 case CCM_ANALOG_PLL_ENET_SET: 617 case CCM_ANALOG_PFD_480_SET: 618 case CCM_ANALOG_PFD_528_SET: 619 case CCM_ANALOG_MISC0_SET: 620 case PMU_MISC1_SET: 621 case CCM_ANALOG_MISC2_SET: 622 case USB_ANALOG_USB1_VBUS_DETECT_SET: 623 case USB_ANALOG_USB1_CHRG_DETECT_SET: 624 case USB_ANALOG_USB1_MISC_SET: 625 case USB_ANALOG_USB2_VBUS_DETECT_SET: 626 case USB_ANALOG_USB2_CHRG_DETECT_SET: 627 case USB_ANALOG_USB2_MISC_SET: 628 /* 629 * All REG_NAME_SET register access are in fact targeting the 630 * the REG_NAME register. So we change the value of the 631 * REG_NAME register, setting bits passed in the value. 632 */ 633 s->analog[index - 1] |= value; 634 break; 635 case CCM_ANALOG_PLL_ARM_CLR: 636 case CCM_ANALOG_PLL_USB1_CLR: 637 case CCM_ANALOG_PLL_USB2_CLR: 638 case CCM_ANALOG_PLL_SYS_CLR: 639 case CCM_ANALOG_PLL_AUDIO_CLR: 640 case CCM_ANALOG_PLL_VIDEO_CLR: 641 case CCM_ANALOG_PLL_MLB_CLR: 642 case CCM_ANALOG_PLL_ENET_CLR: 643 case CCM_ANALOG_PFD_480_CLR: 644 case CCM_ANALOG_PFD_528_CLR: 645 case CCM_ANALOG_MISC0_CLR: 646 case PMU_MISC1_CLR: 647 case CCM_ANALOG_MISC2_CLR: 648 case USB_ANALOG_USB1_VBUS_DETECT_CLR: 649 case USB_ANALOG_USB1_CHRG_DETECT_CLR: 650 case USB_ANALOG_USB1_MISC_CLR: 651 case USB_ANALOG_USB2_VBUS_DETECT_CLR: 652 case USB_ANALOG_USB2_CHRG_DETECT_CLR: 653 case USB_ANALOG_USB2_MISC_CLR: 654 /* 655 * All REG_NAME_CLR register access are in fact targeting the 656 * the REG_NAME register. So we change the value of the 657 * REG_NAME register, unsetting bits passed in the value. 658 */ 659 s->analog[index - 2] &= ~value; 660 break; 661 case CCM_ANALOG_PLL_ARM_TOG: 662 case CCM_ANALOG_PLL_USB1_TOG: 663 case CCM_ANALOG_PLL_USB2_TOG: 664 case CCM_ANALOG_PLL_SYS_TOG: 665 case CCM_ANALOG_PLL_AUDIO_TOG: 666 case CCM_ANALOG_PLL_VIDEO_TOG: 667 case CCM_ANALOG_PLL_MLB_TOG: 668 case CCM_ANALOG_PLL_ENET_TOG: 669 case CCM_ANALOG_PFD_480_TOG: 670 case CCM_ANALOG_PFD_528_TOG: 671 case CCM_ANALOG_MISC0_TOG: 672 case PMU_MISC1_TOG: 673 case CCM_ANALOG_MISC2_TOG: 674 case USB_ANALOG_USB1_VBUS_DETECT_TOG: 675 case USB_ANALOG_USB1_CHRG_DETECT_TOG: 676 case USB_ANALOG_USB1_MISC_TOG: 677 case USB_ANALOG_USB2_VBUS_DETECT_TOG: 678 case USB_ANALOG_USB2_CHRG_DETECT_TOG: 679 case USB_ANALOG_USB2_MISC_TOG: 680 /* 681 * All REG_NAME_TOG register access are in fact targeting the 682 * the REG_NAME register. So we change the value of the 683 * REG_NAME register, toggling bits passed in the value. 684 */ 685 s->analog[index - 3] ^= value; 686 break; 687 default: 688 /* 689 * We will do a better implementation later. In particular some bits 690 * cannot be written to. 691 */ 692 s->analog[index] = value; 693 break; 694 } 695 } 696 697 static const struct MemoryRegionOps imx6_ccm_ops = { 698 .read = imx6_ccm_read, 699 .write = imx6_ccm_write, 700 .endianness = DEVICE_NATIVE_ENDIAN, 701 .valid = { 702 /* 703 * Our device would not work correctly if the guest was doing 704 * unaligned access. This might not be a limitation on the real 705 * device but in practice there is no reason for a guest to access 706 * this device unaligned. 707 */ 708 .min_access_size = 4, 709 .max_access_size = 4, 710 .unaligned = false, 711 }, 712 }; 713 714 static const struct MemoryRegionOps imx6_analog_ops = { 715 .read = imx6_analog_read, 716 .write = imx6_analog_write, 717 .endianness = DEVICE_NATIVE_ENDIAN, 718 .valid = { 719 /* 720 * Our device would not work correctly if the guest was doing 721 * unaligned access. This might not be a limitation on the real 722 * device but in practice there is no reason for a guest to access 723 * this device unaligned. 724 */ 725 .min_access_size = 4, 726 .max_access_size = 4, 727 .unaligned = false, 728 }, 729 }; 730 731 static void imx6_ccm_init(Object *obj) 732 { 733 DeviceState *dev = DEVICE(obj); 734 SysBusDevice *sd = SYS_BUS_DEVICE(obj); 735 IMX6CCMState *s = IMX6_CCM(obj); 736 737 /* initialize a container for the all memory range */ 738 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000); 739 740 /* We initialize an IO memory region for the CCM part */ 741 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s, 742 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t)); 743 744 /* Add the CCM as a subregion at offset 0 */ 745 memory_region_add_subregion(&s->container, 0, &s->ioccm); 746 747 /* We initialize an IO memory region for the ANALOG part */ 748 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s, 749 TYPE_IMX6_CCM ".analog", 750 CCM_ANALOG_MAX * sizeof(uint32_t)); 751 752 /* Add the ANALOG as a subregion at offset 0x4000 */ 753 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog); 754 755 sysbus_init_mmio(sd, &s->container); 756 } 757 758 static void imx6_ccm_class_init(ObjectClass *klass, void *data) 759 { 760 DeviceClass *dc = DEVICE_CLASS(klass); 761 IMXCCMClass *ccm = IMX_CCM_CLASS(klass); 762 763 dc->reset = imx6_ccm_reset; 764 dc->vmsd = &vmstate_imx6_ccm; 765 dc->desc = "i.MX6 Clock Control Module"; 766 767 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency; 768 } 769 770 static const TypeInfo imx6_ccm_info = { 771 .name = TYPE_IMX6_CCM, 772 .parent = TYPE_IMX_CCM, 773 .instance_size = sizeof(IMX6CCMState), 774 .instance_init = imx6_ccm_init, 775 .class_init = imx6_ccm_class_init, 776 }; 777 778 static void imx6_ccm_register_types(void) 779 { 780 type_register_static(&imx6_ccm_info); 781 } 782 783 type_init(imx6_ccm_register_types) 784