xref: /openbmc/qemu/hw/misc/imx25_ccm.c (revision 8e6fe6b8)
1 /*
2  * IMX25 Clock Control Module
3  *
4  * Copyright (C) 2012 NICTA
5  * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  * To get the timer frequencies right, we need to emulate at least part of
11  * the CCM.
12  */
13 
14 #include "qemu/osdep.h"
15 #include "hw/misc/imx25_ccm.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
18 
19 #ifndef DEBUG_IMX25_CCM
20 #define DEBUG_IMX25_CCM 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_IMX25_CCM) { \
26             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \
27                                              __func__, ##args); \
28         } \
29     } while (0)
30 
31 static const char *imx25_ccm_reg_name(uint32_t reg)
32 {
33     static char unknown[20];
34 
35     switch (reg) {
36     case IMX25_CCM_MPCTL_REG:
37         return "mpctl";
38     case IMX25_CCM_UPCTL_REG:
39         return "upctl";
40     case IMX25_CCM_CCTL_REG:
41         return "cctl";
42     case IMX25_CCM_CGCR0_REG:
43         return "cgcr0";
44     case IMX25_CCM_CGCR1_REG:
45         return "cgcr1";
46     case IMX25_CCM_CGCR2_REG:
47         return "cgcr2";
48     case IMX25_CCM_PCDR0_REG:
49         return "pcdr0";
50     case IMX25_CCM_PCDR1_REG:
51         return "pcdr1";
52     case IMX25_CCM_PCDR2_REG:
53         return "pcdr2";
54     case IMX25_CCM_PCDR3_REG:
55         return "pcdr3";
56     case IMX25_CCM_RCSR_REG:
57         return "rcsr";
58     case IMX25_CCM_CRDR_REG:
59         return "crdr";
60     case IMX25_CCM_DCVR0_REG:
61         return "dcvr0";
62     case IMX25_CCM_DCVR1_REG:
63         return "dcvr1";
64     case IMX25_CCM_DCVR2_REG:
65         return "dcvr2";
66     case IMX25_CCM_DCVR3_REG:
67         return "dcvr3";
68     case IMX25_CCM_LTR0_REG:
69         return "ltr0";
70     case IMX25_CCM_LTR1_REG:
71         return "ltr1";
72     case IMX25_CCM_LTR2_REG:
73         return "ltr2";
74     case IMX25_CCM_LTR3_REG:
75         return "ltr3";
76     case IMX25_CCM_LTBR0_REG:
77         return "ltbr0";
78     case IMX25_CCM_LTBR1_REG:
79         return "ltbr1";
80     case IMX25_CCM_PMCR0_REG:
81         return "pmcr0";
82     case IMX25_CCM_PMCR1_REG:
83         return "pmcr1";
84     case IMX25_CCM_PMCR2_REG:
85         return "pmcr2";
86     case IMX25_CCM_MCR_REG:
87         return "mcr";
88     case IMX25_CCM_LPIMR0_REG:
89         return "lpimr0";
90     case IMX25_CCM_LPIMR1_REG:
91         return "lpimr1";
92     default:
93         sprintf(unknown, "[%d ?]", reg);
94         return unknown;
95     }
96 }
97 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
98 
99 static const VMStateDescription vmstate_imx25_ccm = {
100     .name = TYPE_IMX25_CCM,
101     .version_id = 1,
102     .minimum_version_id = 1,
103     .fields = (VMStateField[]) {
104         VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG),
105         VMSTATE_END_OF_LIST()
106     },
107 };
108 
109 static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev)
110 {
111     uint32_t freq;
112     IMX25CCMState *s = IMX25_CCM(dev);
113 
114     if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) {
115         freq = CKIH_FREQ;
116     } else {
117         freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ);
118     }
119 
120     DPRINTF("freq = %d\n", freq);
121 
122     return freq;
123 }
124 
125 static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev)
126 {
127     uint32_t freq;
128     IMX25CCMState *s = IMX25_CCM(dev);
129 
130     freq = imx25_ccm_get_mpll_clk(dev);
131 
132     if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) {
133         freq = (freq * 3 / 4);
134     }
135 
136     freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV));
137 
138     DPRINTF("freq = %d\n", freq);
139 
140     return freq;
141 }
142 
143 static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev)
144 {
145     uint32_t freq;
146     IMX25CCMState *s = IMX25_CCM(dev);
147 
148     freq = imx25_ccm_get_mcu_clk(dev)
149            / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV));
150 
151     DPRINTF("freq = %d\n", freq);
152 
153     return freq;
154 }
155 
156 static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev)
157 {
158     uint32_t freq;
159 
160     freq = imx25_ccm_get_ahb_clk(dev) / 2;
161 
162     DPRINTF("freq = %d\n", freq);
163 
164     return freq;
165 }
166 
167 static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
168 {
169     uint32_t freq = 0;
170     DPRINTF("Clock = %d)\n", clock);
171 
172     switch (clock) {
173     case CLK_NONE:
174         break;
175     case CLK_IPG:
176     case CLK_IPG_HIGH:
177         freq = imx25_ccm_get_ipg_clk(dev);
178         break;
179     case CLK_32k:
180         freq = CKIL_FREQ;
181         break;
182     default:
183         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
184                       TYPE_IMX25_CCM, __func__, clock);
185         break;
186     }
187 
188     DPRINTF("Clock = %d) = %d\n", clock, freq);
189 
190     return freq;
191 }
192 
193 static void imx25_ccm_reset(DeviceState *dev)
194 {
195     IMX25CCMState *s = IMX25_CCM(dev);
196 
197     DPRINTF("\n");
198 
199     memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t));
200     s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01;
201     s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800;
202     /*
203      * The value below gives:
204      * CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz.
205      */
206     s->reg[IMX25_CCM_CCTL_REG]  = 0xd0030000;
207     s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100;
208     s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100;
209     s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438;
210     s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101;
211     s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101;
212     s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101;
213     s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101;
214     s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000;
215     s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030;
216     s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030;
217     s->reg[IMX25_CCM_MCR_REG]   = 0x43000000;
218 
219     /*
220      * default boot will change the reset values to allow:
221      * CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz.
222      * For some reason, this doesn't work. With the value below, linux
223      * detects a 88 MHz IPG CLK instead of 66,5 MHz.
224     s->reg[IMX25_CCM_CCTL_REG]  = 0x20032000;
225      */
226 }
227 
228 static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size)
229 {
230     uint32_t value = 0;
231     IMX25CCMState *s = (IMX25CCMState *)opaque;
232 
233     if (offset < 0x70) {
234         value = s->reg[offset >> 2];
235     } else {
236         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
237                       HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
238     }
239 
240     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
241             value);
242 
243     return value;
244 }
245 
246 static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value,
247                             unsigned size)
248 {
249     IMX25CCMState *s = (IMX25CCMState *)opaque;
250 
251     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
252             (uint32_t)value);
253 
254     if (offset < 0x70) {
255         /*
256          * We will do a better implementation later. In particular some bits
257          * cannot be written to.
258          */
259         s->reg[offset >> 2] = value;
260     } else {
261         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
262                       HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
263     }
264 }
265 
266 static const struct MemoryRegionOps imx25_ccm_ops = {
267     .read = imx25_ccm_read,
268     .write = imx25_ccm_write,
269     .endianness = DEVICE_NATIVE_ENDIAN,
270     .valid = {
271         /*
272          * Our device would not work correctly if the guest was doing
273          * unaligned access. This might not be a limitation on the real
274          * device but in practice there is no reason for a guest to access
275          * this device unaligned.
276          */
277         .min_access_size = 4,
278         .max_access_size = 4,
279         .unaligned = false,
280     },
281 };
282 
283 static void imx25_ccm_init(Object *obj)
284 {
285     DeviceState *dev = DEVICE(obj);
286     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
287     IMX25CCMState *s = IMX25_CCM(obj);
288 
289     memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s,
290                           TYPE_IMX25_CCM, 0x1000);
291     sysbus_init_mmio(sd, &s->iomem);
292 }
293 
294 static void imx25_ccm_class_init(ObjectClass *klass, void *data)
295 {
296     DeviceClass *dc = DEVICE_CLASS(klass);
297     IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
298 
299     dc->reset = imx25_ccm_reset;
300     dc->vmsd = &vmstate_imx25_ccm;
301     dc->desc = "i.MX25 Clock Control Module";
302 
303     ccm->get_clock_frequency = imx25_ccm_get_clock_frequency;
304 }
305 
306 static const TypeInfo imx25_ccm_info = {
307     .name          = TYPE_IMX25_CCM,
308     .parent        = TYPE_IMX_CCM,
309     .instance_size = sizeof(IMX25CCMState),
310     .instance_init = imx25_ccm_init,
311     .class_init    = imx25_ccm_class_init,
312 };
313 
314 static void imx25_ccm_register_types(void)
315 {
316     type_register_static(&imx25_ccm_info);
317 }
318 
319 type_init(imx25_ccm_register_types)
320