xref: /openbmc/qemu/hw/misc/edu.c (revision d36f7de8)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "qemu/timer.h"
30 #include "qemu/main-loop.h" /* iothread mutex */
31 #include "qapi/visitor.h"
32 
33 #define EDU(obj)        OBJECT_CHECK(EduState, obj, "edu")
34 
35 #define FACT_IRQ        0x00000001
36 #define DMA_IRQ         0x00000100
37 
38 #define DMA_START       0x40000
39 #define DMA_SIZE        4096
40 
41 typedef struct {
42     PCIDevice pdev;
43     MemoryRegion mmio;
44 
45     QemuThread thread;
46     QemuMutex thr_mutex;
47     QemuCond thr_cond;
48     bool stopping;
49 
50     uint32_t addr4;
51     uint32_t fact;
52 #define EDU_STATUS_COMPUTING    0x01
53 #define EDU_STATUS_IRQFACT      0x80
54     uint32_t status;
55 
56     uint32_t irq_status;
57 
58 #define EDU_DMA_RUN             0x1
59 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
60 # define EDU_DMA_FROM_PCI       0
61 # define EDU_DMA_TO_PCI         1
62 #define EDU_DMA_IRQ             0x4
63     struct dma_state {
64         dma_addr_t src;
65         dma_addr_t dst;
66         dma_addr_t cnt;
67         dma_addr_t cmd;
68     } dma;
69     QEMUTimer dma_timer;
70     char dma_buf[DMA_SIZE];
71     uint64_t dma_mask;
72 } EduState;
73 
74 static bool edu_msi_enabled(EduState *edu)
75 {
76     return msi_enabled(&edu->pdev);
77 }
78 
79 static void edu_raise_irq(EduState *edu, uint32_t val)
80 {
81     edu->irq_status |= val;
82     if (edu->irq_status) {
83         if (edu_msi_enabled(edu)) {
84             msi_notify(&edu->pdev, 0);
85         } else {
86             pci_set_irq(&edu->pdev, 1);
87         }
88     }
89 }
90 
91 static void edu_lower_irq(EduState *edu, uint32_t val)
92 {
93     edu->irq_status &= ~val;
94 
95     if (!edu->irq_status && !edu_msi_enabled(edu)) {
96         pci_set_irq(&edu->pdev, 0);
97     }
98 }
99 
100 static bool within(uint32_t addr, uint32_t start, uint32_t end)
101 {
102     return start <= addr && addr < end;
103 }
104 
105 static void edu_check_range(uint32_t addr, uint32_t size1, uint32_t start,
106                 uint32_t size2)
107 {
108     uint32_t end1 = addr + size1;
109     uint32_t end2 = start + size2;
110 
111     if (within(addr, start, end2) &&
112             end1 > addr && within(end1, start, end2)) {
113         return;
114     }
115 
116     hw_error("EDU: DMA range 0x%.8x-0x%.8x out of bounds (0x%.8x-0x%.8x)!",
117             addr, end1 - 1, start, end2 - 1);
118 }
119 
120 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
121 {
122     dma_addr_t res = addr & edu->dma_mask;
123 
124     if (addr != res) {
125         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
126     }
127 
128     return res;
129 }
130 
131 static void edu_dma_timer(void *opaque)
132 {
133     EduState *edu = opaque;
134     bool raise_irq = false;
135 
136     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
137         return;
138     }
139 
140     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
141         uint32_t dst = edu->dma.dst;
142         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
143         dst -= DMA_START;
144         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
145                 edu->dma_buf + dst, edu->dma.cnt);
146     } else {
147         uint32_t src = edu->dma.src;
148         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
149         src -= DMA_START;
150         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
151                 edu->dma_buf + src, edu->dma.cnt);
152     }
153 
154     edu->dma.cmd &= ~EDU_DMA_RUN;
155     if (edu->dma.cmd & EDU_DMA_IRQ) {
156         raise_irq = true;
157     }
158 
159     if (raise_irq) {
160         edu_raise_irq(edu, DMA_IRQ);
161     }
162 }
163 
164 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
165                 bool timer)
166 {
167     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
168         return;
169     }
170 
171     if (write) {
172         *dma = *val;
173     } else {
174         *val = *dma;
175     }
176 
177     if (timer) {
178         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
179     }
180 }
181 
182 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
183 {
184     EduState *edu = opaque;
185     uint64_t val = ~0ULL;
186 
187     if (size != 4) {
188         return val;
189     }
190 
191     switch (addr) {
192     case 0x00:
193         val = 0x010000edu;
194         break;
195     case 0x04:
196         val = edu->addr4;
197         break;
198     case 0x08:
199         qemu_mutex_lock(&edu->thr_mutex);
200         val = edu->fact;
201         qemu_mutex_unlock(&edu->thr_mutex);
202         break;
203     case 0x20:
204         val = atomic_read(&edu->status);
205         break;
206     case 0x24:
207         val = edu->irq_status;
208         break;
209     case 0x80:
210         dma_rw(edu, false, &val, &edu->dma.src, false);
211         break;
212     case 0x88:
213         dma_rw(edu, false, &val, &edu->dma.dst, false);
214         break;
215     case 0x90:
216         dma_rw(edu, false, &val, &edu->dma.cnt, false);
217         break;
218     case 0x98:
219         dma_rw(edu, false, &val, &edu->dma.cmd, false);
220         break;
221     }
222 
223     return val;
224 }
225 
226 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
227                 unsigned size)
228 {
229     EduState *edu = opaque;
230 
231     if (addr < 0x80 && size != 4) {
232         return;
233     }
234 
235     if (addr >= 0x80 && size != 4 && size != 8) {
236         return;
237     }
238 
239     switch (addr) {
240     case 0x04:
241         edu->addr4 = ~val;
242         break;
243     case 0x08:
244         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
245             break;
246         }
247         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
248          * set in this function and it is under the iothread mutex.
249          */
250         qemu_mutex_lock(&edu->thr_mutex);
251         edu->fact = val;
252         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
253         qemu_cond_signal(&edu->thr_cond);
254         qemu_mutex_unlock(&edu->thr_mutex);
255         break;
256     case 0x20:
257         if (val & EDU_STATUS_IRQFACT) {
258             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
259         } else {
260             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
261         }
262         break;
263     case 0x60:
264         edu_raise_irq(edu, val);
265         break;
266     case 0x64:
267         edu_lower_irq(edu, val);
268         break;
269     case 0x80:
270         dma_rw(edu, true, &val, &edu->dma.src, false);
271         break;
272     case 0x88:
273         dma_rw(edu, true, &val, &edu->dma.dst, false);
274         break;
275     case 0x90:
276         dma_rw(edu, true, &val, &edu->dma.cnt, false);
277         break;
278     case 0x98:
279         if (!(val & EDU_DMA_RUN)) {
280             break;
281         }
282         dma_rw(edu, true, &val, &edu->dma.cmd, true);
283         break;
284     }
285 }
286 
287 static const MemoryRegionOps edu_mmio_ops = {
288     .read = edu_mmio_read,
289     .write = edu_mmio_write,
290     .endianness = DEVICE_NATIVE_ENDIAN,
291 };
292 
293 /*
294  * We purposely use a thread, so that users are forced to wait for the status
295  * register.
296  */
297 static void *edu_fact_thread(void *opaque)
298 {
299     EduState *edu = opaque;
300 
301     while (1) {
302         uint32_t val, ret = 1;
303 
304         qemu_mutex_lock(&edu->thr_mutex);
305         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
306                         !edu->stopping) {
307             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
308         }
309 
310         if (edu->stopping) {
311             qemu_mutex_unlock(&edu->thr_mutex);
312             break;
313         }
314 
315         val = edu->fact;
316         qemu_mutex_unlock(&edu->thr_mutex);
317 
318         while (val > 0) {
319             ret *= val--;
320         }
321 
322         /*
323          * We should sleep for a random period here, so that students are
324          * forced to check the status properly.
325          */
326 
327         qemu_mutex_lock(&edu->thr_mutex);
328         edu->fact = ret;
329         qemu_mutex_unlock(&edu->thr_mutex);
330         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
331 
332         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
333             qemu_mutex_lock_iothread();
334             edu_raise_irq(edu, FACT_IRQ);
335             qemu_mutex_unlock_iothread();
336         }
337     }
338 
339     return NULL;
340 }
341 
342 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
343 {
344     EduState *edu = DO_UPCAST(EduState, pdev, pdev);
345     uint8_t *pci_conf = pdev->config;
346 
347     pci_config_set_interrupt_pin(pci_conf, 1);
348 
349     if (msi_init(pdev, 0, 1, true, false, errp)) {
350         return;
351     }
352 
353     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
354 
355     qemu_mutex_init(&edu->thr_mutex);
356     qemu_cond_init(&edu->thr_cond);
357     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
358                        edu, QEMU_THREAD_JOINABLE);
359 
360     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
361                     "edu-mmio", 1 * MiB);
362     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
363 }
364 
365 static void pci_edu_uninit(PCIDevice *pdev)
366 {
367     EduState *edu = DO_UPCAST(EduState, pdev, pdev);
368 
369     qemu_mutex_lock(&edu->thr_mutex);
370     edu->stopping = true;
371     qemu_mutex_unlock(&edu->thr_mutex);
372     qemu_cond_signal(&edu->thr_cond);
373     qemu_thread_join(&edu->thread);
374 
375     qemu_cond_destroy(&edu->thr_cond);
376     qemu_mutex_destroy(&edu->thr_mutex);
377 
378     timer_del(&edu->dma_timer);
379 }
380 
381 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
382                            void *opaque, Error **errp)
383 {
384     uint64_t *val = opaque;
385 
386     visit_type_uint64(v, name, val, errp);
387 }
388 
389 static void edu_instance_init(Object *obj)
390 {
391     EduState *edu = EDU(obj);
392 
393     edu->dma_mask = (1UL << 28) - 1;
394     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
395                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
396 }
397 
398 static void edu_class_init(ObjectClass *class, void *data)
399 {
400     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
401 
402     k->realize = pci_edu_realize;
403     k->exit = pci_edu_uninit;
404     k->vendor_id = PCI_VENDOR_ID_QEMU;
405     k->device_id = 0x11e8;
406     k->revision = 0x10;
407     k->class_id = PCI_CLASS_OTHERS;
408 }
409 
410 static void pci_edu_register_types(void)
411 {
412     static InterfaceInfo interfaces[] = {
413         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
414         { },
415     };
416     static const TypeInfo edu_info = {
417         .name          = "edu",
418         .parent        = TYPE_PCI_DEVICE,
419         .instance_size = sizeof(EduState),
420         .instance_init = edu_instance_init,
421         .class_init    = edu_class_init,
422         .interfaces = interfaces,
423     };
424 
425     type_register_static(&edu_info);
426 }
427 type_init(pci_edu_register_types)
428