xref: /openbmc/qemu/hw/misc/edu.c (revision b9c0a2e0)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/log.h"
27 #include "qemu/units.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "qemu/timer.h"
31 #include "qom/object.h"
32 #include "qemu/main-loop.h" /* iothread mutex */
33 #include "qemu/module.h"
34 #include "qapi/visitor.h"
35 
36 #define TYPE_PCI_EDU_DEVICE "edu"
37 typedef struct EduState EduState;
38 DECLARE_INSTANCE_CHECKER(EduState, EDU,
39                          TYPE_PCI_EDU_DEVICE)
40 
41 #define FACT_IRQ        0x00000001
42 #define DMA_IRQ         0x00000100
43 
44 #define DMA_START       0x40000
45 #define DMA_SIZE        4096
46 
47 struct EduState {
48     PCIDevice pdev;
49     MemoryRegion mmio;
50 
51     QemuThread thread;
52     QemuMutex thr_mutex;
53     QemuCond thr_cond;
54     bool stopping;
55 
56     uint32_t addr4;
57     uint32_t fact;
58 #define EDU_STATUS_COMPUTING    0x01
59 #define EDU_STATUS_IRQFACT      0x80
60     uint32_t status;
61 
62     uint32_t irq_status;
63 
64 #define EDU_DMA_RUN             0x1
65 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
66 # define EDU_DMA_FROM_PCI       0
67 # define EDU_DMA_TO_PCI         1
68 #define EDU_DMA_IRQ             0x4
69     struct dma_state {
70         dma_addr_t src;
71         dma_addr_t dst;
72         dma_addr_t cnt;
73         dma_addr_t cmd;
74     } dma;
75     QEMUTimer dma_timer;
76     char dma_buf[DMA_SIZE];
77     uint64_t dma_mask;
78 };
79 
80 static bool edu_msi_enabled(EduState *edu)
81 {
82     return msi_enabled(&edu->pdev);
83 }
84 
85 static void edu_raise_irq(EduState *edu, uint32_t val)
86 {
87     edu->irq_status |= val;
88     if (edu->irq_status) {
89         if (edu_msi_enabled(edu)) {
90             msi_notify(&edu->pdev, 0);
91         } else {
92             pci_set_irq(&edu->pdev, 1);
93         }
94     }
95 }
96 
97 static void edu_lower_irq(EduState *edu, uint32_t val)
98 {
99     edu->irq_status &= ~val;
100 
101     if (!edu->irq_status && !edu_msi_enabled(edu)) {
102         pci_set_irq(&edu->pdev, 0);
103     }
104 }
105 
106 static void edu_check_range(uint64_t xfer_start, uint64_t xfer_size,
107                 uint64_t dma_start, uint64_t dma_size)
108 {
109     uint64_t xfer_end = xfer_start + xfer_size;
110     uint64_t dma_end = dma_start + dma_size;
111 
112     /*
113      * 1. ensure we aren't overflowing
114      * 2. ensure that xfer is within dma address range
115      */
116     if (dma_end >= dma_start && xfer_end >= xfer_start &&
117         xfer_start >= dma_start && xfer_end <= dma_end) {
118         return;
119     }
120 
121     qemu_log_mask(LOG_GUEST_ERROR,
122                   "EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
123                   " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
124                   xfer_start, xfer_end - 1, dma_start, dma_end - 1);
125 }
126 
127 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
128 {
129     dma_addr_t res = addr & edu->dma_mask;
130 
131     if (addr != res) {
132         qemu_log_mask(LOG_GUEST_ERROR,
133                       "EDU: clamping DMA 0x%016"PRIx64" to 0x%016"PRIx64"!",
134                       addr, res);
135     }
136 
137     return res;
138 }
139 
140 static void edu_dma_timer(void *opaque)
141 {
142     EduState *edu = opaque;
143     bool raise_irq = false;
144 
145     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
146         return;
147     }
148 
149     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
150         uint64_t dst = edu->dma.dst;
151         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
152         dst -= DMA_START;
153         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
154                 edu->dma_buf + dst, edu->dma.cnt);
155     } else {
156         uint64_t src = edu->dma.src;
157         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
158         src -= DMA_START;
159         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
160                 edu->dma_buf + src, edu->dma.cnt);
161     }
162 
163     edu->dma.cmd &= ~EDU_DMA_RUN;
164     if (edu->dma.cmd & EDU_DMA_IRQ) {
165         raise_irq = true;
166     }
167 
168     if (raise_irq) {
169         edu_raise_irq(edu, DMA_IRQ);
170     }
171 }
172 
173 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
174                 bool timer)
175 {
176     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
177         return;
178     }
179 
180     if (write) {
181         *dma = *val;
182     } else {
183         *val = *dma;
184     }
185 
186     if (timer) {
187         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
188     }
189 }
190 
191 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
192 {
193     EduState *edu = opaque;
194     uint64_t val = ~0ULL;
195 
196     if (addr < 0x80 && size != 4) {
197         return val;
198     }
199 
200     if (addr >= 0x80 && size != 4 && size != 8) {
201         return val;
202     }
203 
204     switch (addr) {
205     case 0x00:
206         val = 0x010000edu;
207         break;
208     case 0x04:
209         val = edu->addr4;
210         break;
211     case 0x08:
212         qemu_mutex_lock(&edu->thr_mutex);
213         val = edu->fact;
214         qemu_mutex_unlock(&edu->thr_mutex);
215         break;
216     case 0x20:
217         val = qatomic_read(&edu->status);
218         break;
219     case 0x24:
220         val = edu->irq_status;
221         break;
222     case 0x80:
223         dma_rw(edu, false, &val, &edu->dma.src, false);
224         break;
225     case 0x88:
226         dma_rw(edu, false, &val, &edu->dma.dst, false);
227         break;
228     case 0x90:
229         dma_rw(edu, false, &val, &edu->dma.cnt, false);
230         break;
231     case 0x98:
232         dma_rw(edu, false, &val, &edu->dma.cmd, false);
233         break;
234     }
235 
236     return val;
237 }
238 
239 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
240                 unsigned size)
241 {
242     EduState *edu = opaque;
243 
244     if (addr < 0x80 && size != 4) {
245         return;
246     }
247 
248     if (addr >= 0x80 && size != 4 && size != 8) {
249         return;
250     }
251 
252     switch (addr) {
253     case 0x04:
254         edu->addr4 = ~val;
255         break;
256     case 0x08:
257         if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
258             break;
259         }
260         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
261          * set in this function and it is under the iothread mutex.
262          */
263         qemu_mutex_lock(&edu->thr_mutex);
264         edu->fact = val;
265         qatomic_or(&edu->status, EDU_STATUS_COMPUTING);
266         qemu_cond_signal(&edu->thr_cond);
267         qemu_mutex_unlock(&edu->thr_mutex);
268         break;
269     case 0x20:
270         if (val & EDU_STATUS_IRQFACT) {
271             qatomic_or(&edu->status, EDU_STATUS_IRQFACT);
272             /* Order check of the COMPUTING flag after setting IRQFACT.  */
273             smp_mb__after_rmw();
274         } else {
275             qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
276         }
277         break;
278     case 0x60:
279         edu_raise_irq(edu, val);
280         break;
281     case 0x64:
282         edu_lower_irq(edu, val);
283         break;
284     case 0x80:
285         dma_rw(edu, true, &val, &edu->dma.src, false);
286         break;
287     case 0x88:
288         dma_rw(edu, true, &val, &edu->dma.dst, false);
289         break;
290     case 0x90:
291         dma_rw(edu, true, &val, &edu->dma.cnt, false);
292         break;
293     case 0x98:
294         if (!(val & EDU_DMA_RUN)) {
295             break;
296         }
297         dma_rw(edu, true, &val, &edu->dma.cmd, true);
298         break;
299     }
300 }
301 
302 static const MemoryRegionOps edu_mmio_ops = {
303     .read = edu_mmio_read,
304     .write = edu_mmio_write,
305     .endianness = DEVICE_NATIVE_ENDIAN,
306     .valid = {
307         .min_access_size = 4,
308         .max_access_size = 8,
309     },
310     .impl = {
311         .min_access_size = 4,
312         .max_access_size = 8,
313     },
314 
315 };
316 
317 /*
318  * We purposely use a thread, so that users are forced to wait for the status
319  * register.
320  */
321 static void *edu_fact_thread(void *opaque)
322 {
323     EduState *edu = opaque;
324 
325     while (1) {
326         uint32_t val, ret = 1;
327 
328         qemu_mutex_lock(&edu->thr_mutex);
329         while ((qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
330                         !edu->stopping) {
331             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
332         }
333 
334         if (edu->stopping) {
335             qemu_mutex_unlock(&edu->thr_mutex);
336             break;
337         }
338 
339         val = edu->fact;
340         qemu_mutex_unlock(&edu->thr_mutex);
341 
342         while (val > 0) {
343             ret *= val--;
344         }
345 
346         /*
347          * We should sleep for a random period here, so that students are
348          * forced to check the status properly.
349          */
350 
351         qemu_mutex_lock(&edu->thr_mutex);
352         edu->fact = ret;
353         qemu_mutex_unlock(&edu->thr_mutex);
354         qatomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
355 
356         /* Clear COMPUTING flag before checking IRQFACT.  */
357         smp_mb__after_rmw();
358 
359         if (qatomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
360             bql_lock();
361             edu_raise_irq(edu, FACT_IRQ);
362             bql_unlock();
363         }
364     }
365 
366     return NULL;
367 }
368 
369 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
370 {
371     EduState *edu = EDU(pdev);
372     uint8_t *pci_conf = pdev->config;
373 
374     pci_config_set_interrupt_pin(pci_conf, 1);
375 
376     if (msi_init(pdev, 0, 1, true, false, errp)) {
377         return;
378     }
379 
380     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
381 
382     qemu_mutex_init(&edu->thr_mutex);
383     qemu_cond_init(&edu->thr_cond);
384     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
385                        edu, QEMU_THREAD_JOINABLE);
386 
387     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
388                     "edu-mmio", 1 * MiB);
389     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
390 }
391 
392 static void pci_edu_uninit(PCIDevice *pdev)
393 {
394     EduState *edu = EDU(pdev);
395 
396     qemu_mutex_lock(&edu->thr_mutex);
397     edu->stopping = true;
398     qemu_mutex_unlock(&edu->thr_mutex);
399     qemu_cond_signal(&edu->thr_cond);
400     qemu_thread_join(&edu->thread);
401 
402     qemu_cond_destroy(&edu->thr_cond);
403     qemu_mutex_destroy(&edu->thr_mutex);
404 
405     timer_del(&edu->dma_timer);
406     msi_uninit(pdev);
407 }
408 
409 static void edu_instance_init(Object *obj)
410 {
411     EduState *edu = EDU(obj);
412 
413     edu->dma_mask = (1UL << 28) - 1;
414     object_property_add_uint64_ptr(obj, "dma_mask",
415                                    &edu->dma_mask, OBJ_PROP_FLAG_READWRITE);
416 }
417 
418 static void edu_class_init(ObjectClass *class, void *data)
419 {
420     DeviceClass *dc = DEVICE_CLASS(class);
421     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
422 
423     k->realize = pci_edu_realize;
424     k->exit = pci_edu_uninit;
425     k->vendor_id = PCI_VENDOR_ID_QEMU;
426     k->device_id = 0x11e8;
427     k->revision = 0x10;
428     k->class_id = PCI_CLASS_OTHERS;
429     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
430 }
431 
432 static void pci_edu_register_types(void)
433 {
434     static InterfaceInfo interfaces[] = {
435         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
436         { },
437     };
438     static const TypeInfo edu_info = {
439         .name          = TYPE_PCI_EDU_DEVICE,
440         .parent        = TYPE_PCI_DEVICE,
441         .instance_size = sizeof(EduState),
442         .instance_init = edu_instance_init,
443         .class_init    = edu_class_init,
444         .interfaces = interfaces,
445     };
446 
447     type_register_static(&edu_info);
448 }
449 type_init(pci_edu_register_types)
450