xref: /openbmc/qemu/hw/misc/edu.c (revision a68694cd)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "qemu/timer.h"
31 #include "qom/object.h"
32 #include "qemu/main-loop.h" /* iothread mutex */
33 #include "qemu/module.h"
34 #include "qapi/visitor.h"
35 
36 #define TYPE_PCI_EDU_DEVICE "edu"
37 typedef struct EduState EduState;
38 DECLARE_INSTANCE_CHECKER(EduState, EDU,
39                          TYPE_PCI_EDU_DEVICE)
40 
41 #define FACT_IRQ        0x00000001
42 #define DMA_IRQ         0x00000100
43 
44 #define DMA_START       0x40000
45 #define DMA_SIZE        4096
46 
47 struct EduState {
48     PCIDevice pdev;
49     MemoryRegion mmio;
50 
51     QemuThread thread;
52     QemuMutex thr_mutex;
53     QemuCond thr_cond;
54     bool stopping;
55 
56     uint32_t addr4;
57     uint32_t fact;
58 #define EDU_STATUS_COMPUTING    0x01
59 #define EDU_STATUS_IRQFACT      0x80
60     uint32_t status;
61 
62     uint32_t irq_status;
63 
64 #define EDU_DMA_RUN             0x1
65 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
66 # define EDU_DMA_FROM_PCI       0
67 # define EDU_DMA_TO_PCI         1
68 #define EDU_DMA_IRQ             0x4
69     struct dma_state {
70         dma_addr_t src;
71         dma_addr_t dst;
72         dma_addr_t cnt;
73         dma_addr_t cmd;
74     } dma;
75     QEMUTimer dma_timer;
76     char dma_buf[DMA_SIZE];
77     uint64_t dma_mask;
78 };
79 
80 static bool edu_msi_enabled(EduState *edu)
81 {
82     return msi_enabled(&edu->pdev);
83 }
84 
85 static void edu_raise_irq(EduState *edu, uint32_t val)
86 {
87     edu->irq_status |= val;
88     if (edu->irq_status) {
89         if (edu_msi_enabled(edu)) {
90             msi_notify(&edu->pdev, 0);
91         } else {
92             pci_set_irq(&edu->pdev, 1);
93         }
94     }
95 }
96 
97 static void edu_lower_irq(EduState *edu, uint32_t val)
98 {
99     edu->irq_status &= ~val;
100 
101     if (!edu->irq_status && !edu_msi_enabled(edu)) {
102         pci_set_irq(&edu->pdev, 0);
103     }
104 }
105 
106 static bool within(uint64_t addr, uint64_t start, uint64_t end)
107 {
108     return start <= addr && addr < end;
109 }
110 
111 static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start,
112                 uint64_t size2)
113 {
114     uint64_t end1 = addr + size1;
115     uint64_t end2 = start + size2;
116 
117     if (within(addr, start, end2) &&
118             end1 > addr && within(end1, start, end2)) {
119         return;
120     }
121 
122     hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
123              " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
124             addr, end1 - 1, start, end2 - 1);
125 }
126 
127 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
128 {
129     dma_addr_t res = addr & edu->dma_mask;
130 
131     if (addr != res) {
132         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
133     }
134 
135     return res;
136 }
137 
138 static void edu_dma_timer(void *opaque)
139 {
140     EduState *edu = opaque;
141     bool raise_irq = false;
142 
143     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
144         return;
145     }
146 
147     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
148         uint64_t dst = edu->dma.dst;
149         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
150         dst -= DMA_START;
151         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
152                 edu->dma_buf + dst, edu->dma.cnt);
153     } else {
154         uint64_t src = edu->dma.src;
155         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
156         src -= DMA_START;
157         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
158                 edu->dma_buf + src, edu->dma.cnt);
159     }
160 
161     edu->dma.cmd &= ~EDU_DMA_RUN;
162     if (edu->dma.cmd & EDU_DMA_IRQ) {
163         raise_irq = true;
164     }
165 
166     if (raise_irq) {
167         edu_raise_irq(edu, DMA_IRQ);
168     }
169 }
170 
171 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
172                 bool timer)
173 {
174     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
175         return;
176     }
177 
178     if (write) {
179         *dma = *val;
180     } else {
181         *val = *dma;
182     }
183 
184     if (timer) {
185         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
186     }
187 }
188 
189 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
190 {
191     EduState *edu = opaque;
192     uint64_t val = ~0ULL;
193 
194     if (addr < 0x80 && size != 4) {
195         return val;
196     }
197 
198     if (addr >= 0x80 && size != 4 && size != 8) {
199         return val;
200     }
201 
202     switch (addr) {
203     case 0x00:
204         val = 0x010000edu;
205         break;
206     case 0x04:
207         val = edu->addr4;
208         break;
209     case 0x08:
210         qemu_mutex_lock(&edu->thr_mutex);
211         val = edu->fact;
212         qemu_mutex_unlock(&edu->thr_mutex);
213         break;
214     case 0x20:
215         val = atomic_read(&edu->status);
216         break;
217     case 0x24:
218         val = edu->irq_status;
219         break;
220     case 0x80:
221         dma_rw(edu, false, &val, &edu->dma.src, false);
222         break;
223     case 0x88:
224         dma_rw(edu, false, &val, &edu->dma.dst, false);
225         break;
226     case 0x90:
227         dma_rw(edu, false, &val, &edu->dma.cnt, false);
228         break;
229     case 0x98:
230         dma_rw(edu, false, &val, &edu->dma.cmd, false);
231         break;
232     }
233 
234     return val;
235 }
236 
237 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
238                 unsigned size)
239 {
240     EduState *edu = opaque;
241 
242     if (addr < 0x80 && size != 4) {
243         return;
244     }
245 
246     if (addr >= 0x80 && size != 4 && size != 8) {
247         return;
248     }
249 
250     switch (addr) {
251     case 0x04:
252         edu->addr4 = ~val;
253         break;
254     case 0x08:
255         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
256             break;
257         }
258         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
259          * set in this function and it is under the iothread mutex.
260          */
261         qemu_mutex_lock(&edu->thr_mutex);
262         edu->fact = val;
263         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
264         qemu_cond_signal(&edu->thr_cond);
265         qemu_mutex_unlock(&edu->thr_mutex);
266         break;
267     case 0x20:
268         if (val & EDU_STATUS_IRQFACT) {
269             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
270         } else {
271             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
272         }
273         break;
274     case 0x60:
275         edu_raise_irq(edu, val);
276         break;
277     case 0x64:
278         edu_lower_irq(edu, val);
279         break;
280     case 0x80:
281         dma_rw(edu, true, &val, &edu->dma.src, false);
282         break;
283     case 0x88:
284         dma_rw(edu, true, &val, &edu->dma.dst, false);
285         break;
286     case 0x90:
287         dma_rw(edu, true, &val, &edu->dma.cnt, false);
288         break;
289     case 0x98:
290         if (!(val & EDU_DMA_RUN)) {
291             break;
292         }
293         dma_rw(edu, true, &val, &edu->dma.cmd, true);
294         break;
295     }
296 }
297 
298 static const MemoryRegionOps edu_mmio_ops = {
299     .read = edu_mmio_read,
300     .write = edu_mmio_write,
301     .endianness = DEVICE_NATIVE_ENDIAN,
302     .valid = {
303         .min_access_size = 4,
304         .max_access_size = 8,
305     },
306     .impl = {
307         .min_access_size = 4,
308         .max_access_size = 8,
309     },
310 
311 };
312 
313 /*
314  * We purposely use a thread, so that users are forced to wait for the status
315  * register.
316  */
317 static void *edu_fact_thread(void *opaque)
318 {
319     EduState *edu = opaque;
320 
321     while (1) {
322         uint32_t val, ret = 1;
323 
324         qemu_mutex_lock(&edu->thr_mutex);
325         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
326                         !edu->stopping) {
327             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
328         }
329 
330         if (edu->stopping) {
331             qemu_mutex_unlock(&edu->thr_mutex);
332             break;
333         }
334 
335         val = edu->fact;
336         qemu_mutex_unlock(&edu->thr_mutex);
337 
338         while (val > 0) {
339             ret *= val--;
340         }
341 
342         /*
343          * We should sleep for a random period here, so that students are
344          * forced to check the status properly.
345          */
346 
347         qemu_mutex_lock(&edu->thr_mutex);
348         edu->fact = ret;
349         qemu_mutex_unlock(&edu->thr_mutex);
350         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
351 
352         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
353             qemu_mutex_lock_iothread();
354             edu_raise_irq(edu, FACT_IRQ);
355             qemu_mutex_unlock_iothread();
356         }
357     }
358 
359     return NULL;
360 }
361 
362 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
363 {
364     EduState *edu = EDU(pdev);
365     uint8_t *pci_conf = pdev->config;
366 
367     pci_config_set_interrupt_pin(pci_conf, 1);
368 
369     if (msi_init(pdev, 0, 1, true, false, errp)) {
370         return;
371     }
372 
373     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
374 
375     qemu_mutex_init(&edu->thr_mutex);
376     qemu_cond_init(&edu->thr_cond);
377     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
378                        edu, QEMU_THREAD_JOINABLE);
379 
380     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
381                     "edu-mmio", 1 * MiB);
382     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
383 }
384 
385 static void pci_edu_uninit(PCIDevice *pdev)
386 {
387     EduState *edu = EDU(pdev);
388 
389     qemu_mutex_lock(&edu->thr_mutex);
390     edu->stopping = true;
391     qemu_mutex_unlock(&edu->thr_mutex);
392     qemu_cond_signal(&edu->thr_cond);
393     qemu_thread_join(&edu->thread);
394 
395     qemu_cond_destroy(&edu->thr_cond);
396     qemu_mutex_destroy(&edu->thr_mutex);
397 
398     timer_del(&edu->dma_timer);
399     msi_uninit(pdev);
400 }
401 
402 static void edu_instance_init(Object *obj)
403 {
404     EduState *edu = EDU(obj);
405 
406     edu->dma_mask = (1UL << 28) - 1;
407     object_property_add_uint64_ptr(obj, "dma_mask",
408                                    &edu->dma_mask, OBJ_PROP_FLAG_READWRITE);
409 }
410 
411 static void edu_class_init(ObjectClass *class, void *data)
412 {
413     DeviceClass *dc = DEVICE_CLASS(class);
414     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
415 
416     k->realize = pci_edu_realize;
417     k->exit = pci_edu_uninit;
418     k->vendor_id = PCI_VENDOR_ID_QEMU;
419     k->device_id = 0x11e8;
420     k->revision = 0x10;
421     k->class_id = PCI_CLASS_OTHERS;
422     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
423 }
424 
425 static void pci_edu_register_types(void)
426 {
427     static InterfaceInfo interfaces[] = {
428         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
429         { },
430     };
431     static const TypeInfo edu_info = {
432         .name          = TYPE_PCI_EDU_DEVICE,
433         .parent        = TYPE_PCI_DEVICE,
434         .instance_size = sizeof(EduState),
435         .instance_init = edu_instance_init,
436         .class_init    = edu_class_init,
437         .interfaces = interfaces,
438     };
439 
440     type_register_static(&edu_info);
441 }
442 type_init(pci_edu_register_types)
443