1 /* 2 * QEMU educational PCI device 3 * 4 * Copyright (c) 2012-2015 Jiri Slaby 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/pci/pci.h" 28 #include "hw/hw.h" 29 #include "hw/pci/msi.h" 30 #include "qemu/timer.h" 31 #include "qemu/main-loop.h" /* iothread mutex */ 32 #include "qemu/module.h" 33 #include "qapi/visitor.h" 34 35 #define TYPE_PCI_EDU_DEVICE "edu" 36 #define EDU(obj) OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE) 37 38 #define FACT_IRQ 0x00000001 39 #define DMA_IRQ 0x00000100 40 41 #define DMA_START 0x40000 42 #define DMA_SIZE 4096 43 44 typedef struct { 45 PCIDevice pdev; 46 MemoryRegion mmio; 47 48 QemuThread thread; 49 QemuMutex thr_mutex; 50 QemuCond thr_cond; 51 bool stopping; 52 53 uint32_t addr4; 54 uint32_t fact; 55 #define EDU_STATUS_COMPUTING 0x01 56 #define EDU_STATUS_IRQFACT 0x80 57 uint32_t status; 58 59 uint32_t irq_status; 60 61 #define EDU_DMA_RUN 0x1 62 #define EDU_DMA_DIR(cmd) (((cmd) & 0x2) >> 1) 63 # define EDU_DMA_FROM_PCI 0 64 # define EDU_DMA_TO_PCI 1 65 #define EDU_DMA_IRQ 0x4 66 struct dma_state { 67 dma_addr_t src; 68 dma_addr_t dst; 69 dma_addr_t cnt; 70 dma_addr_t cmd; 71 } dma; 72 QEMUTimer dma_timer; 73 char dma_buf[DMA_SIZE]; 74 uint64_t dma_mask; 75 } EduState; 76 77 static bool edu_msi_enabled(EduState *edu) 78 { 79 return msi_enabled(&edu->pdev); 80 } 81 82 static void edu_raise_irq(EduState *edu, uint32_t val) 83 { 84 edu->irq_status |= val; 85 if (edu->irq_status) { 86 if (edu_msi_enabled(edu)) { 87 msi_notify(&edu->pdev, 0); 88 } else { 89 pci_set_irq(&edu->pdev, 1); 90 } 91 } 92 } 93 94 static void edu_lower_irq(EduState *edu, uint32_t val) 95 { 96 edu->irq_status &= ~val; 97 98 if (!edu->irq_status && !edu_msi_enabled(edu)) { 99 pci_set_irq(&edu->pdev, 0); 100 } 101 } 102 103 static bool within(uint64_t addr, uint64_t start, uint64_t end) 104 { 105 return start <= addr && addr < end; 106 } 107 108 static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start, 109 uint64_t size2) 110 { 111 uint64_t end1 = addr + size1; 112 uint64_t end2 = start + size2; 113 114 if (within(addr, start, end2) && 115 end1 > addr && within(end1, start, end2)) { 116 return; 117 } 118 119 hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64 120 " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!", 121 addr, end1 - 1, start, end2 - 1); 122 } 123 124 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr) 125 { 126 dma_addr_t res = addr & edu->dma_mask; 127 128 if (addr != res) { 129 printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res); 130 } 131 132 return res; 133 } 134 135 static void edu_dma_timer(void *opaque) 136 { 137 EduState *edu = opaque; 138 bool raise_irq = false; 139 140 if (!(edu->dma.cmd & EDU_DMA_RUN)) { 141 return; 142 } 143 144 if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) { 145 uint64_t dst = edu->dma.dst; 146 edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE); 147 dst -= DMA_START; 148 pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src), 149 edu->dma_buf + dst, edu->dma.cnt); 150 } else { 151 uint64_t src = edu->dma.src; 152 edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE); 153 src -= DMA_START; 154 pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst), 155 edu->dma_buf + src, edu->dma.cnt); 156 } 157 158 edu->dma.cmd &= ~EDU_DMA_RUN; 159 if (edu->dma.cmd & EDU_DMA_IRQ) { 160 raise_irq = true; 161 } 162 163 if (raise_irq) { 164 edu_raise_irq(edu, DMA_IRQ); 165 } 166 } 167 168 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma, 169 bool timer) 170 { 171 if (write && (edu->dma.cmd & EDU_DMA_RUN)) { 172 return; 173 } 174 175 if (write) { 176 *dma = *val; 177 } else { 178 *val = *dma; 179 } 180 181 if (timer) { 182 timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100); 183 } 184 } 185 186 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size) 187 { 188 EduState *edu = opaque; 189 uint64_t val = ~0ULL; 190 191 if (addr < 0x80 && size != 4) { 192 return val; 193 } 194 195 if (addr >= 0x80 && size != 4 && size != 8) { 196 return val; 197 } 198 199 switch (addr) { 200 case 0x00: 201 val = 0x010000edu; 202 break; 203 case 0x04: 204 val = edu->addr4; 205 break; 206 case 0x08: 207 qemu_mutex_lock(&edu->thr_mutex); 208 val = edu->fact; 209 qemu_mutex_unlock(&edu->thr_mutex); 210 break; 211 case 0x20: 212 val = atomic_read(&edu->status); 213 break; 214 case 0x24: 215 val = edu->irq_status; 216 break; 217 case 0x80: 218 dma_rw(edu, false, &val, &edu->dma.src, false); 219 break; 220 case 0x88: 221 dma_rw(edu, false, &val, &edu->dma.dst, false); 222 break; 223 case 0x90: 224 dma_rw(edu, false, &val, &edu->dma.cnt, false); 225 break; 226 case 0x98: 227 dma_rw(edu, false, &val, &edu->dma.cmd, false); 228 break; 229 } 230 231 return val; 232 } 233 234 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val, 235 unsigned size) 236 { 237 EduState *edu = opaque; 238 239 if (addr < 0x80 && size != 4) { 240 return; 241 } 242 243 if (addr >= 0x80 && size != 4 && size != 8) { 244 return; 245 } 246 247 switch (addr) { 248 case 0x04: 249 edu->addr4 = ~val; 250 break; 251 case 0x08: 252 if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) { 253 break; 254 } 255 /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only 256 * set in this function and it is under the iothread mutex. 257 */ 258 qemu_mutex_lock(&edu->thr_mutex); 259 edu->fact = val; 260 atomic_or(&edu->status, EDU_STATUS_COMPUTING); 261 qemu_cond_signal(&edu->thr_cond); 262 qemu_mutex_unlock(&edu->thr_mutex); 263 break; 264 case 0x20: 265 if (val & EDU_STATUS_IRQFACT) { 266 atomic_or(&edu->status, EDU_STATUS_IRQFACT); 267 } else { 268 atomic_and(&edu->status, ~EDU_STATUS_IRQFACT); 269 } 270 break; 271 case 0x60: 272 edu_raise_irq(edu, val); 273 break; 274 case 0x64: 275 edu_lower_irq(edu, val); 276 break; 277 case 0x80: 278 dma_rw(edu, true, &val, &edu->dma.src, false); 279 break; 280 case 0x88: 281 dma_rw(edu, true, &val, &edu->dma.dst, false); 282 break; 283 case 0x90: 284 dma_rw(edu, true, &val, &edu->dma.cnt, false); 285 break; 286 case 0x98: 287 if (!(val & EDU_DMA_RUN)) { 288 break; 289 } 290 dma_rw(edu, true, &val, &edu->dma.cmd, true); 291 break; 292 } 293 } 294 295 static const MemoryRegionOps edu_mmio_ops = { 296 .read = edu_mmio_read, 297 .write = edu_mmio_write, 298 .endianness = DEVICE_NATIVE_ENDIAN, 299 .valid = { 300 .min_access_size = 4, 301 .max_access_size = 8, 302 }, 303 .impl = { 304 .min_access_size = 4, 305 .max_access_size = 8, 306 }, 307 308 }; 309 310 /* 311 * We purposely use a thread, so that users are forced to wait for the status 312 * register. 313 */ 314 static void *edu_fact_thread(void *opaque) 315 { 316 EduState *edu = opaque; 317 318 while (1) { 319 uint32_t val, ret = 1; 320 321 qemu_mutex_lock(&edu->thr_mutex); 322 while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 && 323 !edu->stopping) { 324 qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex); 325 } 326 327 if (edu->stopping) { 328 qemu_mutex_unlock(&edu->thr_mutex); 329 break; 330 } 331 332 val = edu->fact; 333 qemu_mutex_unlock(&edu->thr_mutex); 334 335 while (val > 0) { 336 ret *= val--; 337 } 338 339 /* 340 * We should sleep for a random period here, so that students are 341 * forced to check the status properly. 342 */ 343 344 qemu_mutex_lock(&edu->thr_mutex); 345 edu->fact = ret; 346 qemu_mutex_unlock(&edu->thr_mutex); 347 atomic_and(&edu->status, ~EDU_STATUS_COMPUTING); 348 349 if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) { 350 qemu_mutex_lock_iothread(); 351 edu_raise_irq(edu, FACT_IRQ); 352 qemu_mutex_unlock_iothread(); 353 } 354 } 355 356 return NULL; 357 } 358 359 static void pci_edu_realize(PCIDevice *pdev, Error **errp) 360 { 361 EduState *edu = EDU(pdev); 362 uint8_t *pci_conf = pdev->config; 363 364 pci_config_set_interrupt_pin(pci_conf, 1); 365 366 if (msi_init(pdev, 0, 1, true, false, errp)) { 367 return; 368 } 369 370 timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu); 371 372 qemu_mutex_init(&edu->thr_mutex); 373 qemu_cond_init(&edu->thr_cond); 374 qemu_thread_create(&edu->thread, "edu", edu_fact_thread, 375 edu, QEMU_THREAD_JOINABLE); 376 377 memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu, 378 "edu-mmio", 1 * MiB); 379 pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio); 380 } 381 382 static void pci_edu_uninit(PCIDevice *pdev) 383 { 384 EduState *edu = EDU(pdev); 385 386 qemu_mutex_lock(&edu->thr_mutex); 387 edu->stopping = true; 388 qemu_mutex_unlock(&edu->thr_mutex); 389 qemu_cond_signal(&edu->thr_cond); 390 qemu_thread_join(&edu->thread); 391 392 qemu_cond_destroy(&edu->thr_cond); 393 qemu_mutex_destroy(&edu->thr_mutex); 394 395 timer_del(&edu->dma_timer); 396 msi_uninit(pdev); 397 } 398 399 static void edu_instance_init(Object *obj) 400 { 401 EduState *edu = EDU(obj); 402 403 edu->dma_mask = (1UL << 28) - 1; 404 object_property_add_uint64_ptr(obj, "dma_mask", 405 &edu->dma_mask, OBJ_PROP_FLAG_READWRITE, 406 NULL); 407 } 408 409 static void edu_class_init(ObjectClass *class, void *data) 410 { 411 DeviceClass *dc = DEVICE_CLASS(class); 412 PCIDeviceClass *k = PCI_DEVICE_CLASS(class); 413 414 k->realize = pci_edu_realize; 415 k->exit = pci_edu_uninit; 416 k->vendor_id = PCI_VENDOR_ID_QEMU; 417 k->device_id = 0x11e8; 418 k->revision = 0x10; 419 k->class_id = PCI_CLASS_OTHERS; 420 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 421 } 422 423 static void pci_edu_register_types(void) 424 { 425 static InterfaceInfo interfaces[] = { 426 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 427 { }, 428 }; 429 static const TypeInfo edu_info = { 430 .name = TYPE_PCI_EDU_DEVICE, 431 .parent = TYPE_PCI_DEVICE, 432 .instance_size = sizeof(EduState), 433 .instance_init = edu_instance_init, 434 .class_init = edu_class_init, 435 .interfaces = interfaces, 436 }; 437 438 type_register_static(&edu_info); 439 } 440 type_init(pci_edu_register_types) 441