xref: /openbmc/qemu/hw/misc/edu.c (revision 59a3a1c0)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "qemu/timer.h"
31 #include "qemu/main-loop.h" /* iothread mutex */
32 #include "qemu/module.h"
33 #include "qapi/visitor.h"
34 
35 #define TYPE_PCI_EDU_DEVICE "edu"
36 #define EDU(obj)        OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
37 
38 #define FACT_IRQ        0x00000001
39 #define DMA_IRQ         0x00000100
40 
41 #define DMA_START       0x40000
42 #define DMA_SIZE        4096
43 
44 typedef struct {
45     PCIDevice pdev;
46     MemoryRegion mmio;
47 
48     QemuThread thread;
49     QemuMutex thr_mutex;
50     QemuCond thr_cond;
51     bool stopping;
52 
53     uint32_t addr4;
54     uint32_t fact;
55 #define EDU_STATUS_COMPUTING    0x01
56 #define EDU_STATUS_IRQFACT      0x80
57     uint32_t status;
58 
59     uint32_t irq_status;
60 
61 #define EDU_DMA_RUN             0x1
62 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
63 # define EDU_DMA_FROM_PCI       0
64 # define EDU_DMA_TO_PCI         1
65 #define EDU_DMA_IRQ             0x4
66     struct dma_state {
67         dma_addr_t src;
68         dma_addr_t dst;
69         dma_addr_t cnt;
70         dma_addr_t cmd;
71     } dma;
72     QEMUTimer dma_timer;
73     char dma_buf[DMA_SIZE];
74     uint64_t dma_mask;
75 } EduState;
76 
77 static bool edu_msi_enabled(EduState *edu)
78 {
79     return msi_enabled(&edu->pdev);
80 }
81 
82 static void edu_raise_irq(EduState *edu, uint32_t val)
83 {
84     edu->irq_status |= val;
85     if (edu->irq_status) {
86         if (edu_msi_enabled(edu)) {
87             msi_notify(&edu->pdev, 0);
88         } else {
89             pci_set_irq(&edu->pdev, 1);
90         }
91     }
92 }
93 
94 static void edu_lower_irq(EduState *edu, uint32_t val)
95 {
96     edu->irq_status &= ~val;
97 
98     if (!edu->irq_status && !edu_msi_enabled(edu)) {
99         pci_set_irq(&edu->pdev, 0);
100     }
101 }
102 
103 static bool within(uint64_t addr, uint64_t start, uint64_t end)
104 {
105     return start <= addr && addr < end;
106 }
107 
108 static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start,
109                 uint64_t size2)
110 {
111     uint64_t end1 = addr + size1;
112     uint64_t end2 = start + size2;
113 
114     if (within(addr, start, end2) &&
115             end1 > addr && within(end1, start, end2)) {
116         return;
117     }
118 
119     hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
120              " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
121             addr, end1 - 1, start, end2 - 1);
122 }
123 
124 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
125 {
126     dma_addr_t res = addr & edu->dma_mask;
127 
128     if (addr != res) {
129         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
130     }
131 
132     return res;
133 }
134 
135 static void edu_dma_timer(void *opaque)
136 {
137     EduState *edu = opaque;
138     bool raise_irq = false;
139 
140     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
141         return;
142     }
143 
144     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
145         uint64_t dst = edu->dma.dst;
146         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
147         dst -= DMA_START;
148         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
149                 edu->dma_buf + dst, edu->dma.cnt);
150     } else {
151         uint64_t src = edu->dma.src;
152         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
153         src -= DMA_START;
154         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
155                 edu->dma_buf + src, edu->dma.cnt);
156     }
157 
158     edu->dma.cmd &= ~EDU_DMA_RUN;
159     if (edu->dma.cmd & EDU_DMA_IRQ) {
160         raise_irq = true;
161     }
162 
163     if (raise_irq) {
164         edu_raise_irq(edu, DMA_IRQ);
165     }
166 }
167 
168 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
169                 bool timer)
170 {
171     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
172         return;
173     }
174 
175     if (write) {
176         *dma = *val;
177     } else {
178         *val = *dma;
179     }
180 
181     if (timer) {
182         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
183     }
184 }
185 
186 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
187 {
188     EduState *edu = opaque;
189     uint64_t val = ~0ULL;
190 
191     if (addr < 0x80 && size != 4) {
192         return val;
193     }
194 
195     if (addr >= 0x80 && size != 4 && size != 8) {
196         return val;
197     }
198 
199     switch (addr) {
200     case 0x00:
201         val = 0x010000edu;
202         break;
203     case 0x04:
204         val = edu->addr4;
205         break;
206     case 0x08:
207         qemu_mutex_lock(&edu->thr_mutex);
208         val = edu->fact;
209         qemu_mutex_unlock(&edu->thr_mutex);
210         break;
211     case 0x20:
212         val = atomic_read(&edu->status);
213         break;
214     case 0x24:
215         val = edu->irq_status;
216         break;
217     case 0x80:
218         dma_rw(edu, false, &val, &edu->dma.src, false);
219         break;
220     case 0x88:
221         dma_rw(edu, false, &val, &edu->dma.dst, false);
222         break;
223     case 0x90:
224         dma_rw(edu, false, &val, &edu->dma.cnt, false);
225         break;
226     case 0x98:
227         dma_rw(edu, false, &val, &edu->dma.cmd, false);
228         break;
229     }
230 
231     return val;
232 }
233 
234 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
235                 unsigned size)
236 {
237     EduState *edu = opaque;
238 
239     if (addr < 0x80 && size != 4) {
240         return;
241     }
242 
243     if (addr >= 0x80 && size != 4 && size != 8) {
244         return;
245     }
246 
247     switch (addr) {
248     case 0x04:
249         edu->addr4 = ~val;
250         break;
251     case 0x08:
252         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
253             break;
254         }
255         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
256          * set in this function and it is under the iothread mutex.
257          */
258         qemu_mutex_lock(&edu->thr_mutex);
259         edu->fact = val;
260         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
261         qemu_cond_signal(&edu->thr_cond);
262         qemu_mutex_unlock(&edu->thr_mutex);
263         break;
264     case 0x20:
265         if (val & EDU_STATUS_IRQFACT) {
266             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
267         } else {
268             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
269         }
270         break;
271     case 0x60:
272         edu_raise_irq(edu, val);
273         break;
274     case 0x64:
275         edu_lower_irq(edu, val);
276         break;
277     case 0x80:
278         dma_rw(edu, true, &val, &edu->dma.src, false);
279         break;
280     case 0x88:
281         dma_rw(edu, true, &val, &edu->dma.dst, false);
282         break;
283     case 0x90:
284         dma_rw(edu, true, &val, &edu->dma.cnt, false);
285         break;
286     case 0x98:
287         if (!(val & EDU_DMA_RUN)) {
288             break;
289         }
290         dma_rw(edu, true, &val, &edu->dma.cmd, true);
291         break;
292     }
293 }
294 
295 static const MemoryRegionOps edu_mmio_ops = {
296     .read = edu_mmio_read,
297     .write = edu_mmio_write,
298     .endianness = DEVICE_NATIVE_ENDIAN,
299     .valid = {
300         .min_access_size = 4,
301         .max_access_size = 8,
302     },
303     .impl = {
304         .min_access_size = 4,
305         .max_access_size = 8,
306     },
307 
308 };
309 
310 /*
311  * We purposely use a thread, so that users are forced to wait for the status
312  * register.
313  */
314 static void *edu_fact_thread(void *opaque)
315 {
316     EduState *edu = opaque;
317 
318     while (1) {
319         uint32_t val, ret = 1;
320 
321         qemu_mutex_lock(&edu->thr_mutex);
322         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
323                         !edu->stopping) {
324             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
325         }
326 
327         if (edu->stopping) {
328             qemu_mutex_unlock(&edu->thr_mutex);
329             break;
330         }
331 
332         val = edu->fact;
333         qemu_mutex_unlock(&edu->thr_mutex);
334 
335         while (val > 0) {
336             ret *= val--;
337         }
338 
339         /*
340          * We should sleep for a random period here, so that students are
341          * forced to check the status properly.
342          */
343 
344         qemu_mutex_lock(&edu->thr_mutex);
345         edu->fact = ret;
346         qemu_mutex_unlock(&edu->thr_mutex);
347         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
348 
349         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
350             qemu_mutex_lock_iothread();
351             edu_raise_irq(edu, FACT_IRQ);
352             qemu_mutex_unlock_iothread();
353         }
354     }
355 
356     return NULL;
357 }
358 
359 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
360 {
361     EduState *edu = EDU(pdev);
362     uint8_t *pci_conf = pdev->config;
363 
364     pci_config_set_interrupt_pin(pci_conf, 1);
365 
366     if (msi_init(pdev, 0, 1, true, false, errp)) {
367         return;
368     }
369 
370     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
371 
372     qemu_mutex_init(&edu->thr_mutex);
373     qemu_cond_init(&edu->thr_cond);
374     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
375                        edu, QEMU_THREAD_JOINABLE);
376 
377     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
378                     "edu-mmio", 1 * MiB);
379     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
380 }
381 
382 static void pci_edu_uninit(PCIDevice *pdev)
383 {
384     EduState *edu = EDU(pdev);
385 
386     qemu_mutex_lock(&edu->thr_mutex);
387     edu->stopping = true;
388     qemu_mutex_unlock(&edu->thr_mutex);
389     qemu_cond_signal(&edu->thr_cond);
390     qemu_thread_join(&edu->thread);
391 
392     qemu_cond_destroy(&edu->thr_cond);
393     qemu_mutex_destroy(&edu->thr_mutex);
394 
395     timer_del(&edu->dma_timer);
396     msi_uninit(pdev);
397 }
398 
399 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
400                            void *opaque, Error **errp)
401 {
402     uint64_t *val = opaque;
403 
404     visit_type_uint64(v, name, val, errp);
405 }
406 
407 static void edu_instance_init(Object *obj)
408 {
409     EduState *edu = EDU(obj);
410 
411     edu->dma_mask = (1UL << 28) - 1;
412     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
413                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
414 }
415 
416 static void edu_class_init(ObjectClass *class, void *data)
417 {
418     DeviceClass *dc = DEVICE_CLASS(class);
419     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
420 
421     k->realize = pci_edu_realize;
422     k->exit = pci_edu_uninit;
423     k->vendor_id = PCI_VENDOR_ID_QEMU;
424     k->device_id = 0x11e8;
425     k->revision = 0x10;
426     k->class_id = PCI_CLASS_OTHERS;
427     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
428 }
429 
430 static void pci_edu_register_types(void)
431 {
432     static InterfaceInfo interfaces[] = {
433         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
434         { },
435     };
436     static const TypeInfo edu_info = {
437         .name          = TYPE_PCI_EDU_DEVICE,
438         .parent        = TYPE_PCI_DEVICE,
439         .instance_size = sizeof(EduState),
440         .instance_init = edu_instance_init,
441         .class_init    = edu_class_init,
442         .interfaces = interfaces,
443     };
444 
445     type_register_static(&edu_info);
446 }
447 type_init(pci_edu_register_types)
448