xref: /openbmc/qemu/hw/misc/edu.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "qemu/timer.h"
30 #include "qemu/main-loop.h" /* iothread mutex */
31 #include "qapi/visitor.h"
32 
33 #define TYPE_PCI_EDU_DEVICE "edu"
34 #define EDU(obj)        OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
35 
36 #define FACT_IRQ        0x00000001
37 #define DMA_IRQ         0x00000100
38 
39 #define DMA_START       0x40000
40 #define DMA_SIZE        4096
41 
42 typedef struct {
43     PCIDevice pdev;
44     MemoryRegion mmio;
45 
46     QemuThread thread;
47     QemuMutex thr_mutex;
48     QemuCond thr_cond;
49     bool stopping;
50 
51     uint32_t addr4;
52     uint32_t fact;
53 #define EDU_STATUS_COMPUTING    0x01
54 #define EDU_STATUS_IRQFACT      0x80
55     uint32_t status;
56 
57     uint32_t irq_status;
58 
59 #define EDU_DMA_RUN             0x1
60 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
61 # define EDU_DMA_FROM_PCI       0
62 # define EDU_DMA_TO_PCI         1
63 #define EDU_DMA_IRQ             0x4
64     struct dma_state {
65         dma_addr_t src;
66         dma_addr_t dst;
67         dma_addr_t cnt;
68         dma_addr_t cmd;
69     } dma;
70     QEMUTimer dma_timer;
71     char dma_buf[DMA_SIZE];
72     uint64_t dma_mask;
73 } EduState;
74 
75 static bool edu_msi_enabled(EduState *edu)
76 {
77     return msi_enabled(&edu->pdev);
78 }
79 
80 static void edu_raise_irq(EduState *edu, uint32_t val)
81 {
82     edu->irq_status |= val;
83     if (edu->irq_status) {
84         if (edu_msi_enabled(edu)) {
85             msi_notify(&edu->pdev, 0);
86         } else {
87             pci_set_irq(&edu->pdev, 1);
88         }
89     }
90 }
91 
92 static void edu_lower_irq(EduState *edu, uint32_t val)
93 {
94     edu->irq_status &= ~val;
95 
96     if (!edu->irq_status && !edu_msi_enabled(edu)) {
97         pci_set_irq(&edu->pdev, 0);
98     }
99 }
100 
101 static bool within(uint64_t addr, uint64_t start, uint64_t end)
102 {
103     return start <= addr && addr < end;
104 }
105 
106 static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start,
107                 uint64_t size2)
108 {
109     uint64_t end1 = addr + size1;
110     uint64_t end2 = start + size2;
111 
112     if (within(addr, start, end2) &&
113             end1 > addr && within(end1, start, end2)) {
114         return;
115     }
116 
117     hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
118              " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
119             addr, end1 - 1, start, end2 - 1);
120 }
121 
122 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
123 {
124     dma_addr_t res = addr & edu->dma_mask;
125 
126     if (addr != res) {
127         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
128     }
129 
130     return res;
131 }
132 
133 static void edu_dma_timer(void *opaque)
134 {
135     EduState *edu = opaque;
136     bool raise_irq = false;
137 
138     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
139         return;
140     }
141 
142     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
143         uint64_t dst = edu->dma.dst;
144         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
145         dst -= DMA_START;
146         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
147                 edu->dma_buf + dst, edu->dma.cnt);
148     } else {
149         uint64_t src = edu->dma.src;
150         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
151         src -= DMA_START;
152         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
153                 edu->dma_buf + src, edu->dma.cnt);
154     }
155 
156     edu->dma.cmd &= ~EDU_DMA_RUN;
157     if (edu->dma.cmd & EDU_DMA_IRQ) {
158         raise_irq = true;
159     }
160 
161     if (raise_irq) {
162         edu_raise_irq(edu, DMA_IRQ);
163     }
164 }
165 
166 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
167                 bool timer)
168 {
169     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
170         return;
171     }
172 
173     if (write) {
174         *dma = *val;
175     } else {
176         *val = *dma;
177     }
178 
179     if (timer) {
180         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
181     }
182 }
183 
184 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
185 {
186     EduState *edu = opaque;
187     uint64_t val = ~0ULL;
188 
189     if (addr < 0x80 && size != 4) {
190         return val;
191     }
192 
193     if (addr >= 0x80 && size != 4 && size != 8) {
194         return val;
195     }
196 
197     switch (addr) {
198     case 0x00:
199         val = 0x010000edu;
200         break;
201     case 0x04:
202         val = edu->addr4;
203         break;
204     case 0x08:
205         qemu_mutex_lock(&edu->thr_mutex);
206         val = edu->fact;
207         qemu_mutex_unlock(&edu->thr_mutex);
208         break;
209     case 0x20:
210         val = atomic_read(&edu->status);
211         break;
212     case 0x24:
213         val = edu->irq_status;
214         break;
215     case 0x80:
216         dma_rw(edu, false, &val, &edu->dma.src, false);
217         break;
218     case 0x88:
219         dma_rw(edu, false, &val, &edu->dma.dst, false);
220         break;
221     case 0x90:
222         dma_rw(edu, false, &val, &edu->dma.cnt, false);
223         break;
224     case 0x98:
225         dma_rw(edu, false, &val, &edu->dma.cmd, false);
226         break;
227     }
228 
229     return val;
230 }
231 
232 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
233                 unsigned size)
234 {
235     EduState *edu = opaque;
236 
237     if (addr < 0x80 && size != 4) {
238         return;
239     }
240 
241     if (addr >= 0x80 && size != 4 && size != 8) {
242         return;
243     }
244 
245     switch (addr) {
246     case 0x04:
247         edu->addr4 = ~val;
248         break;
249     case 0x08:
250         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
251             break;
252         }
253         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
254          * set in this function and it is under the iothread mutex.
255          */
256         qemu_mutex_lock(&edu->thr_mutex);
257         edu->fact = val;
258         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
259         qemu_cond_signal(&edu->thr_cond);
260         qemu_mutex_unlock(&edu->thr_mutex);
261         break;
262     case 0x20:
263         if (val & EDU_STATUS_IRQFACT) {
264             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
265         } else {
266             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
267         }
268         break;
269     case 0x60:
270         edu_raise_irq(edu, val);
271         break;
272     case 0x64:
273         edu_lower_irq(edu, val);
274         break;
275     case 0x80:
276         dma_rw(edu, true, &val, &edu->dma.src, false);
277         break;
278     case 0x88:
279         dma_rw(edu, true, &val, &edu->dma.dst, false);
280         break;
281     case 0x90:
282         dma_rw(edu, true, &val, &edu->dma.cnt, false);
283         break;
284     case 0x98:
285         if (!(val & EDU_DMA_RUN)) {
286             break;
287         }
288         dma_rw(edu, true, &val, &edu->dma.cmd, true);
289         break;
290     }
291 }
292 
293 static const MemoryRegionOps edu_mmio_ops = {
294     .read = edu_mmio_read,
295     .write = edu_mmio_write,
296     .endianness = DEVICE_NATIVE_ENDIAN,
297     .valid = {
298         .min_access_size = 4,
299         .max_access_size = 8,
300     },
301     .impl = {
302         .min_access_size = 4,
303         .max_access_size = 8,
304     },
305 
306 };
307 
308 /*
309  * We purposely use a thread, so that users are forced to wait for the status
310  * register.
311  */
312 static void *edu_fact_thread(void *opaque)
313 {
314     EduState *edu = opaque;
315 
316     while (1) {
317         uint32_t val, ret = 1;
318 
319         qemu_mutex_lock(&edu->thr_mutex);
320         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
321                         !edu->stopping) {
322             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
323         }
324 
325         if (edu->stopping) {
326             qemu_mutex_unlock(&edu->thr_mutex);
327             break;
328         }
329 
330         val = edu->fact;
331         qemu_mutex_unlock(&edu->thr_mutex);
332 
333         while (val > 0) {
334             ret *= val--;
335         }
336 
337         /*
338          * We should sleep for a random period here, so that students are
339          * forced to check the status properly.
340          */
341 
342         qemu_mutex_lock(&edu->thr_mutex);
343         edu->fact = ret;
344         qemu_mutex_unlock(&edu->thr_mutex);
345         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
346 
347         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
348             qemu_mutex_lock_iothread();
349             edu_raise_irq(edu, FACT_IRQ);
350             qemu_mutex_unlock_iothread();
351         }
352     }
353 
354     return NULL;
355 }
356 
357 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
358 {
359     EduState *edu = EDU(pdev);
360     uint8_t *pci_conf = pdev->config;
361 
362     pci_config_set_interrupt_pin(pci_conf, 1);
363 
364     if (msi_init(pdev, 0, 1, true, false, errp)) {
365         return;
366     }
367 
368     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
369 
370     qemu_mutex_init(&edu->thr_mutex);
371     qemu_cond_init(&edu->thr_cond);
372     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
373                        edu, QEMU_THREAD_JOINABLE);
374 
375     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
376                     "edu-mmio", 1 * MiB);
377     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
378 }
379 
380 static void pci_edu_uninit(PCIDevice *pdev)
381 {
382     EduState *edu = EDU(pdev);
383 
384     qemu_mutex_lock(&edu->thr_mutex);
385     edu->stopping = true;
386     qemu_mutex_unlock(&edu->thr_mutex);
387     qemu_cond_signal(&edu->thr_cond);
388     qemu_thread_join(&edu->thread);
389 
390     qemu_cond_destroy(&edu->thr_cond);
391     qemu_mutex_destroy(&edu->thr_mutex);
392 
393     timer_del(&edu->dma_timer);
394     msi_uninit(pdev);
395 }
396 
397 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
398                            void *opaque, Error **errp)
399 {
400     uint64_t *val = opaque;
401 
402     visit_type_uint64(v, name, val, errp);
403 }
404 
405 static void edu_instance_init(Object *obj)
406 {
407     EduState *edu = EDU(obj);
408 
409     edu->dma_mask = (1UL << 28) - 1;
410     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
411                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
412 }
413 
414 static void edu_class_init(ObjectClass *class, void *data)
415 {
416     DeviceClass *dc = DEVICE_CLASS(class);
417     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
418 
419     k->realize = pci_edu_realize;
420     k->exit = pci_edu_uninit;
421     k->vendor_id = PCI_VENDOR_ID_QEMU;
422     k->device_id = 0x11e8;
423     k->revision = 0x10;
424     k->class_id = PCI_CLASS_OTHERS;
425     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
426 }
427 
428 static void pci_edu_register_types(void)
429 {
430     static InterfaceInfo interfaces[] = {
431         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
432         { },
433     };
434     static const TypeInfo edu_info = {
435         .name          = TYPE_PCI_EDU_DEVICE,
436         .parent        = TYPE_PCI_DEVICE,
437         .instance_size = sizeof(EduState),
438         .instance_init = edu_instance_init,
439         .class_init    = edu_class_init,
440         .interfaces = interfaces,
441     };
442 
443     type_register_static(&edu_info);
444 }
445 type_init(pci_edu_register_types)
446