xref: /openbmc/qemu/hw/misc/edu.c (revision 500eb6db)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "qemu/timer.h"
30 #include "qemu/main-loop.h" /* iothread mutex */
31 #include "qemu/module.h"
32 #include "qapi/visitor.h"
33 
34 #define TYPE_PCI_EDU_DEVICE "edu"
35 #define EDU(obj)        OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
36 
37 #define FACT_IRQ        0x00000001
38 #define DMA_IRQ         0x00000100
39 
40 #define DMA_START       0x40000
41 #define DMA_SIZE        4096
42 
43 typedef struct {
44     PCIDevice pdev;
45     MemoryRegion mmio;
46 
47     QemuThread thread;
48     QemuMutex thr_mutex;
49     QemuCond thr_cond;
50     bool stopping;
51 
52     uint32_t addr4;
53     uint32_t fact;
54 #define EDU_STATUS_COMPUTING    0x01
55 #define EDU_STATUS_IRQFACT      0x80
56     uint32_t status;
57 
58     uint32_t irq_status;
59 
60 #define EDU_DMA_RUN             0x1
61 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
62 # define EDU_DMA_FROM_PCI       0
63 # define EDU_DMA_TO_PCI         1
64 #define EDU_DMA_IRQ             0x4
65     struct dma_state {
66         dma_addr_t src;
67         dma_addr_t dst;
68         dma_addr_t cnt;
69         dma_addr_t cmd;
70     } dma;
71     QEMUTimer dma_timer;
72     char dma_buf[DMA_SIZE];
73     uint64_t dma_mask;
74 } EduState;
75 
76 static bool edu_msi_enabled(EduState *edu)
77 {
78     return msi_enabled(&edu->pdev);
79 }
80 
81 static void edu_raise_irq(EduState *edu, uint32_t val)
82 {
83     edu->irq_status |= val;
84     if (edu->irq_status) {
85         if (edu_msi_enabled(edu)) {
86             msi_notify(&edu->pdev, 0);
87         } else {
88             pci_set_irq(&edu->pdev, 1);
89         }
90     }
91 }
92 
93 static void edu_lower_irq(EduState *edu, uint32_t val)
94 {
95     edu->irq_status &= ~val;
96 
97     if (!edu->irq_status && !edu_msi_enabled(edu)) {
98         pci_set_irq(&edu->pdev, 0);
99     }
100 }
101 
102 static bool within(uint64_t addr, uint64_t start, uint64_t end)
103 {
104     return start <= addr && addr < end;
105 }
106 
107 static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start,
108                 uint64_t size2)
109 {
110     uint64_t end1 = addr + size1;
111     uint64_t end2 = start + size2;
112 
113     if (within(addr, start, end2) &&
114             end1 > addr && within(end1, start, end2)) {
115         return;
116     }
117 
118     hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
119              " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
120             addr, end1 - 1, start, end2 - 1);
121 }
122 
123 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
124 {
125     dma_addr_t res = addr & edu->dma_mask;
126 
127     if (addr != res) {
128         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
129     }
130 
131     return res;
132 }
133 
134 static void edu_dma_timer(void *opaque)
135 {
136     EduState *edu = opaque;
137     bool raise_irq = false;
138 
139     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
140         return;
141     }
142 
143     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
144         uint64_t dst = edu->dma.dst;
145         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
146         dst -= DMA_START;
147         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
148                 edu->dma_buf + dst, edu->dma.cnt);
149     } else {
150         uint64_t src = edu->dma.src;
151         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
152         src -= DMA_START;
153         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
154                 edu->dma_buf + src, edu->dma.cnt);
155     }
156 
157     edu->dma.cmd &= ~EDU_DMA_RUN;
158     if (edu->dma.cmd & EDU_DMA_IRQ) {
159         raise_irq = true;
160     }
161 
162     if (raise_irq) {
163         edu_raise_irq(edu, DMA_IRQ);
164     }
165 }
166 
167 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
168                 bool timer)
169 {
170     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
171         return;
172     }
173 
174     if (write) {
175         *dma = *val;
176     } else {
177         *val = *dma;
178     }
179 
180     if (timer) {
181         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
182     }
183 }
184 
185 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
186 {
187     EduState *edu = opaque;
188     uint64_t val = ~0ULL;
189 
190     if (addr < 0x80 && size != 4) {
191         return val;
192     }
193 
194     if (addr >= 0x80 && size != 4 && size != 8) {
195         return val;
196     }
197 
198     switch (addr) {
199     case 0x00:
200         val = 0x010000edu;
201         break;
202     case 0x04:
203         val = edu->addr4;
204         break;
205     case 0x08:
206         qemu_mutex_lock(&edu->thr_mutex);
207         val = edu->fact;
208         qemu_mutex_unlock(&edu->thr_mutex);
209         break;
210     case 0x20:
211         val = atomic_read(&edu->status);
212         break;
213     case 0x24:
214         val = edu->irq_status;
215         break;
216     case 0x80:
217         dma_rw(edu, false, &val, &edu->dma.src, false);
218         break;
219     case 0x88:
220         dma_rw(edu, false, &val, &edu->dma.dst, false);
221         break;
222     case 0x90:
223         dma_rw(edu, false, &val, &edu->dma.cnt, false);
224         break;
225     case 0x98:
226         dma_rw(edu, false, &val, &edu->dma.cmd, false);
227         break;
228     }
229 
230     return val;
231 }
232 
233 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
234                 unsigned size)
235 {
236     EduState *edu = opaque;
237 
238     if (addr < 0x80 && size != 4) {
239         return;
240     }
241 
242     if (addr >= 0x80 && size != 4 && size != 8) {
243         return;
244     }
245 
246     switch (addr) {
247     case 0x04:
248         edu->addr4 = ~val;
249         break;
250     case 0x08:
251         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
252             break;
253         }
254         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
255          * set in this function and it is under the iothread mutex.
256          */
257         qemu_mutex_lock(&edu->thr_mutex);
258         edu->fact = val;
259         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
260         qemu_cond_signal(&edu->thr_cond);
261         qemu_mutex_unlock(&edu->thr_mutex);
262         break;
263     case 0x20:
264         if (val & EDU_STATUS_IRQFACT) {
265             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
266         } else {
267             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
268         }
269         break;
270     case 0x60:
271         edu_raise_irq(edu, val);
272         break;
273     case 0x64:
274         edu_lower_irq(edu, val);
275         break;
276     case 0x80:
277         dma_rw(edu, true, &val, &edu->dma.src, false);
278         break;
279     case 0x88:
280         dma_rw(edu, true, &val, &edu->dma.dst, false);
281         break;
282     case 0x90:
283         dma_rw(edu, true, &val, &edu->dma.cnt, false);
284         break;
285     case 0x98:
286         if (!(val & EDU_DMA_RUN)) {
287             break;
288         }
289         dma_rw(edu, true, &val, &edu->dma.cmd, true);
290         break;
291     }
292 }
293 
294 static const MemoryRegionOps edu_mmio_ops = {
295     .read = edu_mmio_read,
296     .write = edu_mmio_write,
297     .endianness = DEVICE_NATIVE_ENDIAN,
298     .valid = {
299         .min_access_size = 4,
300         .max_access_size = 8,
301     },
302     .impl = {
303         .min_access_size = 4,
304         .max_access_size = 8,
305     },
306 
307 };
308 
309 /*
310  * We purposely use a thread, so that users are forced to wait for the status
311  * register.
312  */
313 static void *edu_fact_thread(void *opaque)
314 {
315     EduState *edu = opaque;
316 
317     while (1) {
318         uint32_t val, ret = 1;
319 
320         qemu_mutex_lock(&edu->thr_mutex);
321         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
322                         !edu->stopping) {
323             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
324         }
325 
326         if (edu->stopping) {
327             qemu_mutex_unlock(&edu->thr_mutex);
328             break;
329         }
330 
331         val = edu->fact;
332         qemu_mutex_unlock(&edu->thr_mutex);
333 
334         while (val > 0) {
335             ret *= val--;
336         }
337 
338         /*
339          * We should sleep for a random period here, so that students are
340          * forced to check the status properly.
341          */
342 
343         qemu_mutex_lock(&edu->thr_mutex);
344         edu->fact = ret;
345         qemu_mutex_unlock(&edu->thr_mutex);
346         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
347 
348         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
349             qemu_mutex_lock_iothread();
350             edu_raise_irq(edu, FACT_IRQ);
351             qemu_mutex_unlock_iothread();
352         }
353     }
354 
355     return NULL;
356 }
357 
358 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
359 {
360     EduState *edu = EDU(pdev);
361     uint8_t *pci_conf = pdev->config;
362 
363     pci_config_set_interrupt_pin(pci_conf, 1);
364 
365     if (msi_init(pdev, 0, 1, true, false, errp)) {
366         return;
367     }
368 
369     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
370 
371     qemu_mutex_init(&edu->thr_mutex);
372     qemu_cond_init(&edu->thr_cond);
373     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
374                        edu, QEMU_THREAD_JOINABLE);
375 
376     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
377                     "edu-mmio", 1 * MiB);
378     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
379 }
380 
381 static void pci_edu_uninit(PCIDevice *pdev)
382 {
383     EduState *edu = EDU(pdev);
384 
385     qemu_mutex_lock(&edu->thr_mutex);
386     edu->stopping = true;
387     qemu_mutex_unlock(&edu->thr_mutex);
388     qemu_cond_signal(&edu->thr_cond);
389     qemu_thread_join(&edu->thread);
390 
391     qemu_cond_destroy(&edu->thr_cond);
392     qemu_mutex_destroy(&edu->thr_mutex);
393 
394     timer_del(&edu->dma_timer);
395     msi_uninit(pdev);
396 }
397 
398 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
399                            void *opaque, Error **errp)
400 {
401     uint64_t *val = opaque;
402 
403     visit_type_uint64(v, name, val, errp);
404 }
405 
406 static void edu_instance_init(Object *obj)
407 {
408     EduState *edu = EDU(obj);
409 
410     edu->dma_mask = (1UL << 28) - 1;
411     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
412                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
413 }
414 
415 static void edu_class_init(ObjectClass *class, void *data)
416 {
417     DeviceClass *dc = DEVICE_CLASS(class);
418     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
419 
420     k->realize = pci_edu_realize;
421     k->exit = pci_edu_uninit;
422     k->vendor_id = PCI_VENDOR_ID_QEMU;
423     k->device_id = 0x11e8;
424     k->revision = 0x10;
425     k->class_id = PCI_CLASS_OTHERS;
426     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
427 }
428 
429 static void pci_edu_register_types(void)
430 {
431     static InterfaceInfo interfaces[] = {
432         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
433         { },
434     };
435     static const TypeInfo edu_info = {
436         .name          = TYPE_PCI_EDU_DEVICE,
437         .parent        = TYPE_PCI_DEVICE,
438         .instance_size = sizeof(EduState),
439         .instance_init = edu_instance_init,
440         .class_init    = edu_class_init,
441         .interfaces = interfaces,
442     };
443 
444     type_register_static(&edu_info);
445 }
446 type_init(pci_edu_register_types)
447