xref: /openbmc/qemu/hw/misc/edu.c (revision 1935b7ea)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/log.h"
27 #include "qemu/units.h"
28 #include "hw/pci/pci.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "qemu/timer.h"
32 #include "qom/object.h"
33 #include "qemu/main-loop.h" /* iothread mutex */
34 #include "qemu/module.h"
35 #include "qapi/visitor.h"
36 
37 #define TYPE_PCI_EDU_DEVICE "edu"
38 typedef struct EduState EduState;
39 DECLARE_INSTANCE_CHECKER(EduState, EDU,
40                          TYPE_PCI_EDU_DEVICE)
41 
42 #define FACT_IRQ        0x00000001
43 #define DMA_IRQ         0x00000100
44 
45 #define DMA_START       0x40000
46 #define DMA_SIZE        4096
47 
48 struct EduState {
49     PCIDevice pdev;
50     MemoryRegion mmio;
51 
52     QemuThread thread;
53     QemuMutex thr_mutex;
54     QemuCond thr_cond;
55     bool stopping;
56 
57     uint32_t addr4;
58     uint32_t fact;
59 #define EDU_STATUS_COMPUTING    0x01
60 #define EDU_STATUS_IRQFACT      0x80
61     uint32_t status;
62 
63     uint32_t irq_status;
64 
65 #define EDU_DMA_RUN             0x1
66 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
67 # define EDU_DMA_FROM_PCI       0
68 # define EDU_DMA_TO_PCI         1
69 #define EDU_DMA_IRQ             0x4
70     struct dma_state {
71         dma_addr_t src;
72         dma_addr_t dst;
73         dma_addr_t cnt;
74         dma_addr_t cmd;
75     } dma;
76     QEMUTimer dma_timer;
77     char dma_buf[DMA_SIZE];
78     uint64_t dma_mask;
79 };
80 
81 static bool edu_msi_enabled(EduState *edu)
82 {
83     return msi_enabled(&edu->pdev);
84 }
85 
86 static void edu_raise_irq(EduState *edu, uint32_t val)
87 {
88     edu->irq_status |= val;
89     if (edu->irq_status) {
90         if (edu_msi_enabled(edu)) {
91             msi_notify(&edu->pdev, 0);
92         } else {
93             pci_set_irq(&edu->pdev, 1);
94         }
95     }
96 }
97 
98 static void edu_lower_irq(EduState *edu, uint32_t val)
99 {
100     edu->irq_status &= ~val;
101 
102     if (!edu->irq_status && !edu_msi_enabled(edu)) {
103         pci_set_irq(&edu->pdev, 0);
104     }
105 }
106 
107 static void edu_check_range(uint64_t xfer_start, uint64_t xfer_size,
108                 uint64_t dma_start, uint64_t dma_size)
109 {
110     uint64_t xfer_end = xfer_start + xfer_size;
111     uint64_t dma_end = dma_start + dma_size;
112 
113     /*
114      * 1. ensure we aren't overflowing
115      * 2. ensure that xfer is within dma address range
116      */
117     if (dma_end >= dma_start && xfer_end >= xfer_start &&
118         xfer_start >= dma_start && xfer_end <= dma_end) {
119         return;
120     }
121 
122     qemu_log_mask(LOG_GUEST_ERROR,
123                   "EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
124                   " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
125                   xfer_start, xfer_end - 1, dma_start, dma_end - 1);
126 }
127 
128 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
129 {
130     dma_addr_t res = addr & edu->dma_mask;
131 
132     if (addr != res) {
133         qemu_log_mask(LOG_GUEST_ERROR,
134                       "EDU: clamping DMA 0x%016"PRIx64" to 0x%016"PRIx64"!",
135                       addr, res);
136     }
137 
138     return res;
139 }
140 
141 static void edu_dma_timer(void *opaque)
142 {
143     EduState *edu = opaque;
144     bool raise_irq = false;
145 
146     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
147         return;
148     }
149 
150     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
151         uint64_t dst = edu->dma.dst;
152         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
153         dst -= DMA_START;
154         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
155                 edu->dma_buf + dst, edu->dma.cnt);
156     } else {
157         uint64_t src = edu->dma.src;
158         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
159         src -= DMA_START;
160         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
161                 edu->dma_buf + src, edu->dma.cnt);
162     }
163 
164     edu->dma.cmd &= ~EDU_DMA_RUN;
165     if (edu->dma.cmd & EDU_DMA_IRQ) {
166         raise_irq = true;
167     }
168 
169     if (raise_irq) {
170         edu_raise_irq(edu, DMA_IRQ);
171     }
172 }
173 
174 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
175                 bool timer)
176 {
177     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
178         return;
179     }
180 
181     if (write) {
182         *dma = *val;
183     } else {
184         *val = *dma;
185     }
186 
187     if (timer) {
188         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
189     }
190 }
191 
192 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
193 {
194     EduState *edu = opaque;
195     uint64_t val = ~0ULL;
196 
197     if (addr < 0x80 && size != 4) {
198         return val;
199     }
200 
201     if (addr >= 0x80 && size != 4 && size != 8) {
202         return val;
203     }
204 
205     switch (addr) {
206     case 0x00:
207         val = 0x010000edu;
208         break;
209     case 0x04:
210         val = edu->addr4;
211         break;
212     case 0x08:
213         qemu_mutex_lock(&edu->thr_mutex);
214         val = edu->fact;
215         qemu_mutex_unlock(&edu->thr_mutex);
216         break;
217     case 0x20:
218         val = qatomic_read(&edu->status);
219         break;
220     case 0x24:
221         val = edu->irq_status;
222         break;
223     case 0x80:
224         dma_rw(edu, false, &val, &edu->dma.src, false);
225         break;
226     case 0x88:
227         dma_rw(edu, false, &val, &edu->dma.dst, false);
228         break;
229     case 0x90:
230         dma_rw(edu, false, &val, &edu->dma.cnt, false);
231         break;
232     case 0x98:
233         dma_rw(edu, false, &val, &edu->dma.cmd, false);
234         break;
235     }
236 
237     return val;
238 }
239 
240 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
241                 unsigned size)
242 {
243     EduState *edu = opaque;
244 
245     if (addr < 0x80 && size != 4) {
246         return;
247     }
248 
249     if (addr >= 0x80 && size != 4 && size != 8) {
250         return;
251     }
252 
253     switch (addr) {
254     case 0x04:
255         edu->addr4 = ~val;
256         break;
257     case 0x08:
258         if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
259             break;
260         }
261         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
262          * set in this function and it is under the iothread mutex.
263          */
264         qemu_mutex_lock(&edu->thr_mutex);
265         edu->fact = val;
266         qatomic_or(&edu->status, EDU_STATUS_COMPUTING);
267         qemu_cond_signal(&edu->thr_cond);
268         qemu_mutex_unlock(&edu->thr_mutex);
269         break;
270     case 0x20:
271         if (val & EDU_STATUS_IRQFACT) {
272             qatomic_or(&edu->status, EDU_STATUS_IRQFACT);
273             /* Order check of the COMPUTING flag after setting IRQFACT.  */
274             smp_mb__after_rmw();
275         } else {
276             qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
277         }
278         break;
279     case 0x60:
280         edu_raise_irq(edu, val);
281         break;
282     case 0x64:
283         edu_lower_irq(edu, val);
284         break;
285     case 0x80:
286         dma_rw(edu, true, &val, &edu->dma.src, false);
287         break;
288     case 0x88:
289         dma_rw(edu, true, &val, &edu->dma.dst, false);
290         break;
291     case 0x90:
292         dma_rw(edu, true, &val, &edu->dma.cnt, false);
293         break;
294     case 0x98:
295         if (!(val & EDU_DMA_RUN)) {
296             break;
297         }
298         dma_rw(edu, true, &val, &edu->dma.cmd, true);
299         break;
300     }
301 }
302 
303 static const MemoryRegionOps edu_mmio_ops = {
304     .read = edu_mmio_read,
305     .write = edu_mmio_write,
306     .endianness = DEVICE_NATIVE_ENDIAN,
307     .valid = {
308         .min_access_size = 4,
309         .max_access_size = 8,
310     },
311     .impl = {
312         .min_access_size = 4,
313         .max_access_size = 8,
314     },
315 
316 };
317 
318 /*
319  * We purposely use a thread, so that users are forced to wait for the status
320  * register.
321  */
322 static void *edu_fact_thread(void *opaque)
323 {
324     EduState *edu = opaque;
325 
326     while (1) {
327         uint32_t val, ret = 1;
328 
329         qemu_mutex_lock(&edu->thr_mutex);
330         while ((qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
331                         !edu->stopping) {
332             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
333         }
334 
335         if (edu->stopping) {
336             qemu_mutex_unlock(&edu->thr_mutex);
337             break;
338         }
339 
340         val = edu->fact;
341         qemu_mutex_unlock(&edu->thr_mutex);
342 
343         while (val > 0) {
344             ret *= val--;
345         }
346 
347         /*
348          * We should sleep for a random period here, so that students are
349          * forced to check the status properly.
350          */
351 
352         qemu_mutex_lock(&edu->thr_mutex);
353         edu->fact = ret;
354         qemu_mutex_unlock(&edu->thr_mutex);
355         qatomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
356 
357         /* Clear COMPUTING flag before checking IRQFACT.  */
358         smp_mb__after_rmw();
359 
360         if (qatomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
361             bql_lock();
362             edu_raise_irq(edu, FACT_IRQ);
363             bql_unlock();
364         }
365     }
366 
367     return NULL;
368 }
369 
370 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
371 {
372     EduState *edu = EDU(pdev);
373     uint8_t *pci_conf = pdev->config;
374 
375     pci_config_set_interrupt_pin(pci_conf, 1);
376 
377     if (msi_init(pdev, 0, 1, true, false, errp)) {
378         return;
379     }
380 
381     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
382 
383     qemu_mutex_init(&edu->thr_mutex);
384     qemu_cond_init(&edu->thr_cond);
385     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
386                        edu, QEMU_THREAD_JOINABLE);
387 
388     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
389                     "edu-mmio", 1 * MiB);
390     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
391 }
392 
393 static void pci_edu_uninit(PCIDevice *pdev)
394 {
395     EduState *edu = EDU(pdev);
396 
397     qemu_mutex_lock(&edu->thr_mutex);
398     edu->stopping = true;
399     qemu_mutex_unlock(&edu->thr_mutex);
400     qemu_cond_signal(&edu->thr_cond);
401     qemu_thread_join(&edu->thread);
402 
403     qemu_cond_destroy(&edu->thr_cond);
404     qemu_mutex_destroy(&edu->thr_mutex);
405 
406     timer_del(&edu->dma_timer);
407     msi_uninit(pdev);
408 }
409 
410 static void edu_instance_init(Object *obj)
411 {
412     EduState *edu = EDU(obj);
413 
414     edu->dma_mask = (1UL << 28) - 1;
415     object_property_add_uint64_ptr(obj, "dma_mask",
416                                    &edu->dma_mask, OBJ_PROP_FLAG_READWRITE);
417 }
418 
419 static void edu_class_init(ObjectClass *class, void *data)
420 {
421     DeviceClass *dc = DEVICE_CLASS(class);
422     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
423 
424     k->realize = pci_edu_realize;
425     k->exit = pci_edu_uninit;
426     k->vendor_id = PCI_VENDOR_ID_QEMU;
427     k->device_id = 0x11e8;
428     k->revision = 0x10;
429     k->class_id = PCI_CLASS_OTHERS;
430     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
431 }
432 
433 static void pci_edu_register_types(void)
434 {
435     static InterfaceInfo interfaces[] = {
436         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
437         { },
438     };
439     static const TypeInfo edu_info = {
440         .name          = TYPE_PCI_EDU_DEVICE,
441         .parent        = TYPE_PCI_DEVICE,
442         .instance_size = sizeof(EduState),
443         .instance_init = edu_instance_init,
444         .class_init    = edu_class_init,
445         .interfaces = interfaces,
446     };
447 
448     type_register_static(&edu_info);
449 }
450 type_init(pci_edu_register_types)
451