xref: /openbmc/qemu/hw/misc/edu.c (revision 083fab02)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "qemu/timer.h"
29 #include "qemu/main-loop.h" /* iothread mutex */
30 #include "qapi/visitor.h"
31 
32 #define EDU(obj)        OBJECT_CHECK(EduState, obj, "edu")
33 
34 #define FACT_IRQ        0x00000001
35 #define DMA_IRQ         0x00000100
36 
37 #define DMA_START       0x40000
38 #define DMA_SIZE        4096
39 
40 typedef struct {
41     PCIDevice pdev;
42     MemoryRegion mmio;
43 
44     QemuThread thread;
45     QemuMutex thr_mutex;
46     QemuCond thr_cond;
47     bool stopping;
48 
49     uint32_t addr4;
50     uint32_t fact;
51 #define EDU_STATUS_COMPUTING    0x01
52 #define EDU_STATUS_IRQFACT      0x80
53     uint32_t status;
54 
55     uint32_t irq_status;
56 
57 #define EDU_DMA_RUN             0x1
58 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
59 # define EDU_DMA_FROM_PCI       0
60 # define EDU_DMA_TO_PCI         1
61 #define EDU_DMA_IRQ             0x4
62     struct dma_state {
63         dma_addr_t src;
64         dma_addr_t dst;
65         dma_addr_t cnt;
66         dma_addr_t cmd;
67     } dma;
68     QEMUTimer dma_timer;
69     char dma_buf[DMA_SIZE];
70     uint64_t dma_mask;
71 } EduState;
72 
73 static bool edu_msi_enabled(EduState *edu)
74 {
75     return msi_enabled(&edu->pdev);
76 }
77 
78 static void edu_raise_irq(EduState *edu, uint32_t val)
79 {
80     edu->irq_status |= val;
81     if (edu->irq_status) {
82         if (edu_msi_enabled(edu)) {
83             msi_notify(&edu->pdev, 0);
84         } else {
85             pci_set_irq(&edu->pdev, 1);
86         }
87     }
88 }
89 
90 static void edu_lower_irq(EduState *edu, uint32_t val)
91 {
92     edu->irq_status &= ~val;
93 
94     if (!edu->irq_status && !edu_msi_enabled(edu)) {
95         pci_set_irq(&edu->pdev, 0);
96     }
97 }
98 
99 static bool within(uint32_t addr, uint32_t start, uint32_t end)
100 {
101     return start <= addr && addr < end;
102 }
103 
104 static void edu_check_range(uint32_t addr, uint32_t size1, uint32_t start,
105                 uint32_t size2)
106 {
107     uint32_t end1 = addr + size1;
108     uint32_t end2 = start + size2;
109 
110     if (within(addr, start, end2) &&
111             end1 > addr && within(end1, start, end2)) {
112         return;
113     }
114 
115     hw_error("EDU: DMA range 0x%.8x-0x%.8x out of bounds (0x%.8x-0x%.8x)!",
116             addr, end1 - 1, start, end2 - 1);
117 }
118 
119 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
120 {
121     dma_addr_t res = addr & edu->dma_mask;
122 
123     if (addr != res) {
124         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
125     }
126 
127     return res;
128 }
129 
130 static void edu_dma_timer(void *opaque)
131 {
132     EduState *edu = opaque;
133     bool raise_irq = false;
134 
135     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
136         return;
137     }
138 
139     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
140         uint32_t dst = edu->dma.dst;
141         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
142         dst -= DMA_START;
143         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
144                 edu->dma_buf + dst, edu->dma.cnt);
145     } else {
146         uint32_t src = edu->dma.src;
147         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
148         src -= DMA_START;
149         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
150                 edu->dma_buf + src, edu->dma.cnt);
151     }
152 
153     edu->dma.cmd &= ~EDU_DMA_RUN;
154     if (edu->dma.cmd & EDU_DMA_IRQ) {
155         raise_irq = true;
156     }
157 
158     if (raise_irq) {
159         edu_raise_irq(edu, DMA_IRQ);
160     }
161 }
162 
163 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
164                 bool timer)
165 {
166     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
167         return;
168     }
169 
170     if (write) {
171         *dma = *val;
172     } else {
173         *val = *dma;
174     }
175 
176     if (timer) {
177         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
178     }
179 }
180 
181 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
182 {
183     EduState *edu = opaque;
184     uint64_t val = ~0ULL;
185 
186     if (size != 4) {
187         return val;
188     }
189 
190     switch (addr) {
191     case 0x00:
192         val = 0x010000edu;
193         break;
194     case 0x04:
195         val = edu->addr4;
196         break;
197     case 0x08:
198         qemu_mutex_lock(&edu->thr_mutex);
199         val = edu->fact;
200         qemu_mutex_unlock(&edu->thr_mutex);
201         break;
202     case 0x20:
203         val = atomic_read(&edu->status);
204         break;
205     case 0x24:
206         val = edu->irq_status;
207         break;
208     case 0x80:
209         dma_rw(edu, false, &val, &edu->dma.src, false);
210         break;
211     case 0x88:
212         dma_rw(edu, false, &val, &edu->dma.dst, false);
213         break;
214     case 0x90:
215         dma_rw(edu, false, &val, &edu->dma.cnt, false);
216         break;
217     case 0x98:
218         dma_rw(edu, false, &val, &edu->dma.cmd, false);
219         break;
220     }
221 
222     return val;
223 }
224 
225 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
226                 unsigned size)
227 {
228     EduState *edu = opaque;
229 
230     if (addr < 0x80 && size != 4) {
231         return;
232     }
233 
234     if (addr >= 0x80 && size != 4 && size != 8) {
235         return;
236     }
237 
238     switch (addr) {
239     case 0x04:
240         edu->addr4 = ~val;
241         break;
242     case 0x08:
243         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
244             break;
245         }
246         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
247          * set in this function and it is under the iothread mutex.
248          */
249         qemu_mutex_lock(&edu->thr_mutex);
250         edu->fact = val;
251         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
252         qemu_cond_signal(&edu->thr_cond);
253         qemu_mutex_unlock(&edu->thr_mutex);
254         break;
255     case 0x20:
256         if (val & EDU_STATUS_IRQFACT) {
257             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
258         } else {
259             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
260         }
261         break;
262     case 0x60:
263         edu_raise_irq(edu, val);
264         break;
265     case 0x64:
266         edu_lower_irq(edu, val);
267         break;
268     case 0x80:
269         dma_rw(edu, true, &val, &edu->dma.src, false);
270         break;
271     case 0x88:
272         dma_rw(edu, true, &val, &edu->dma.dst, false);
273         break;
274     case 0x90:
275         dma_rw(edu, true, &val, &edu->dma.cnt, false);
276         break;
277     case 0x98:
278         if (!(val & EDU_DMA_RUN)) {
279             break;
280         }
281         dma_rw(edu, true, &val, &edu->dma.cmd, true);
282         break;
283     }
284 }
285 
286 static const MemoryRegionOps edu_mmio_ops = {
287     .read = edu_mmio_read,
288     .write = edu_mmio_write,
289     .endianness = DEVICE_NATIVE_ENDIAN,
290 };
291 
292 /*
293  * We purposely use a thread, so that users are forced to wait for the status
294  * register.
295  */
296 static void *edu_fact_thread(void *opaque)
297 {
298     EduState *edu = opaque;
299 
300     while (1) {
301         uint32_t val, ret = 1;
302 
303         qemu_mutex_lock(&edu->thr_mutex);
304         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
305                         !edu->stopping) {
306             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
307         }
308 
309         if (edu->stopping) {
310             qemu_mutex_unlock(&edu->thr_mutex);
311             break;
312         }
313 
314         val = edu->fact;
315         qemu_mutex_unlock(&edu->thr_mutex);
316 
317         while (val > 0) {
318             ret *= val--;
319         }
320 
321         /*
322          * We should sleep for a random period here, so that students are
323          * forced to check the status properly.
324          */
325 
326         qemu_mutex_lock(&edu->thr_mutex);
327         edu->fact = ret;
328         qemu_mutex_unlock(&edu->thr_mutex);
329         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
330 
331         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
332             qemu_mutex_lock_iothread();
333             edu_raise_irq(edu, FACT_IRQ);
334             qemu_mutex_unlock_iothread();
335         }
336     }
337 
338     return NULL;
339 }
340 
341 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
342 {
343     EduState *edu = DO_UPCAST(EduState, pdev, pdev);
344     uint8_t *pci_conf = pdev->config;
345 
346     pci_config_set_interrupt_pin(pci_conf, 1);
347 
348     if (msi_init(pdev, 0, 1, true, false, errp)) {
349         return;
350     }
351 
352     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
353 
354     qemu_mutex_init(&edu->thr_mutex);
355     qemu_cond_init(&edu->thr_cond);
356     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
357                        edu, QEMU_THREAD_JOINABLE);
358 
359     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
360                     "edu-mmio", 1 << 20);
361     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
362 }
363 
364 static void pci_edu_uninit(PCIDevice *pdev)
365 {
366     EduState *edu = DO_UPCAST(EduState, pdev, pdev);
367 
368     qemu_mutex_lock(&edu->thr_mutex);
369     edu->stopping = true;
370     qemu_mutex_unlock(&edu->thr_mutex);
371     qemu_cond_signal(&edu->thr_cond);
372     qemu_thread_join(&edu->thread);
373 
374     qemu_cond_destroy(&edu->thr_cond);
375     qemu_mutex_destroy(&edu->thr_mutex);
376 
377     timer_del(&edu->dma_timer);
378 }
379 
380 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
381                            void *opaque, Error **errp)
382 {
383     uint64_t *val = opaque;
384 
385     visit_type_uint64(v, name, val, errp);
386 }
387 
388 static void edu_instance_init(Object *obj)
389 {
390     EduState *edu = EDU(obj);
391 
392     edu->dma_mask = (1UL << 28) - 1;
393     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
394                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
395 }
396 
397 static void edu_class_init(ObjectClass *class, void *data)
398 {
399     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
400 
401     k->realize = pci_edu_realize;
402     k->exit = pci_edu_uninit;
403     k->vendor_id = PCI_VENDOR_ID_QEMU;
404     k->device_id = 0x11e8;
405     k->revision = 0x10;
406     k->class_id = PCI_CLASS_OTHERS;
407 }
408 
409 static void pci_edu_register_types(void)
410 {
411     static InterfaceInfo interfaces[] = {
412         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
413         { },
414     };
415     static const TypeInfo edu_info = {
416         .name          = "edu",
417         .parent        = TYPE_PCI_DEVICE,
418         .instance_size = sizeof(EduState),
419         .instance_init = edu_instance_init,
420         .class_init    = edu_class_init,
421         .interfaces = interfaces,
422     };
423 
424     type_register_static(&edu_info);
425 }
426 type_init(pci_edu_register_types)
427