1 /* 2 * QEMU Sparc Sun4m ECC memory controller emulation 3 * 4 * Copyright (c) 2007 Robert Reif 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/qdev-properties.h" 28 #include "hw/sysbus.h" 29 #include "migration/vmstate.h" 30 #include "qemu/module.h" 31 #include "trace.h" 32 #include "qom/object.h" 33 34 /* There are 3 versions of this chip used in SMP sun4m systems: 35 * MCC (version 0, implementation 0) SS-600MP 36 * EMC (version 0, implementation 1) SS-10 37 * SMC (version 0, implementation 2) SS-10SX and SS-20 38 * 39 * Chipset docs: 40 * "Sun-4M System Architecture (revision 2.0) by Chuck Narad", 950-1373-01, 41 * http://mediacast.sun.com/users/Barton808/media/Sun4M_SystemArchitecture_edited2.pdf 42 */ 43 44 #define ECC_MCC 0x00000000 45 #define ECC_EMC 0x10000000 46 #define ECC_SMC 0x20000000 47 48 /* Register indexes */ 49 #define ECC_MER 0 /* Memory Enable Register */ 50 #define ECC_MDR 1 /* Memory Delay Register */ 51 #define ECC_MFSR 2 /* Memory Fault Status Register */ 52 #define ECC_VCR 3 /* Video Configuration Register */ 53 #define ECC_MFAR0 4 /* Memory Fault Address Register 0 */ 54 #define ECC_MFAR1 5 /* Memory Fault Address Register 1 */ 55 #define ECC_DR 6 /* Diagnostic Register */ 56 #define ECC_ECR0 7 /* Event Count Register 0 */ 57 #define ECC_ECR1 8 /* Event Count Register 1 */ 58 59 /* ECC fault control register */ 60 #define ECC_MER_EE 0x00000001 /* Enable ECC checking */ 61 #define ECC_MER_EI 0x00000002 /* Enable Interrupts on 62 correctable errors */ 63 #define ECC_MER_MRR0 0x00000004 /* SIMM 0 */ 64 #define ECC_MER_MRR1 0x00000008 /* SIMM 1 */ 65 #define ECC_MER_MRR2 0x00000010 /* SIMM 2 */ 66 #define ECC_MER_MRR3 0x00000020 /* SIMM 3 */ 67 #define ECC_MER_MRR4 0x00000040 /* SIMM 4 */ 68 #define ECC_MER_MRR5 0x00000080 /* SIMM 5 */ 69 #define ECC_MER_MRR6 0x00000100 /* SIMM 6 */ 70 #define ECC_MER_MRR7 0x00000200 /* SIMM 7 */ 71 #define ECC_MER_REU 0x00000100 /* Memory Refresh Enable (600MP) */ 72 #define ECC_MER_MRR 0x000003fc /* MRR mask */ 73 #define ECC_MER_A 0x00000400 /* Memory controller addr map select */ 74 #define ECC_MER_DCI 0x00000800 /* Disables Coherent Invalidate ACK */ 75 #define ECC_MER_VER 0x0f000000 /* Version */ 76 #define ECC_MER_IMPL 0xf0000000 /* Implementation */ 77 #define ECC_MER_MASK_0 0x00000103 /* Version 0 (MCC) mask */ 78 #define ECC_MER_MASK_1 0x00000bff /* Version 1 (EMC) mask */ 79 #define ECC_MER_MASK_2 0x00000bff /* Version 2 (SMC) mask */ 80 81 /* ECC memory delay register */ 82 #define ECC_MDR_RRI 0x000003ff /* Refresh Request Interval */ 83 #define ECC_MDR_MI 0x00001c00 /* MIH Delay */ 84 #define ECC_MDR_CI 0x0000e000 /* Coherent Invalidate Delay */ 85 #define ECC_MDR_MDL 0x001f0000 /* MBus Master arbitration delay */ 86 #define ECC_MDR_MDH 0x03e00000 /* MBus Master arbitration delay */ 87 #define ECC_MDR_GAD 0x7c000000 /* Graphics Arbitration Delay */ 88 #define ECC_MDR_RSC 0x80000000 /* Refresh load control */ 89 #define ECC_MDR_MASK 0x7fffffff 90 91 /* ECC fault status register */ 92 #define ECC_MFSR_CE 0x00000001 /* Correctable error */ 93 #define ECC_MFSR_BS 0x00000002 /* C2 graphics bad slot access */ 94 #define ECC_MFSR_TO 0x00000004 /* Timeout on write */ 95 #define ECC_MFSR_UE 0x00000008 /* Uncorrectable error */ 96 #define ECC_MFSR_DW 0x000000f0 /* Index of double word in block */ 97 #define ECC_MFSR_SYND 0x0000ff00 /* Syndrome for correctable error */ 98 #define ECC_MFSR_ME 0x00010000 /* Multiple errors */ 99 #define ECC_MFSR_C2ERR 0x00020000 /* C2 graphics error */ 100 101 /* ECC fault address register 0 */ 102 #define ECC_MFAR0_PADDR 0x0000000f /* PA[32-35] */ 103 #define ECC_MFAR0_TYPE 0x000000f0 /* Transaction type */ 104 #define ECC_MFAR0_SIZE 0x00000700 /* Transaction size */ 105 #define ECC_MFAR0_CACHE 0x00000800 /* Mapped cacheable */ 106 #define ECC_MFAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */ 107 #define ECC_MFAR0_BMODE 0x00002000 /* Boot mode */ 108 #define ECC_MFAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */ 109 #define ECC_MFAR0_S 0x08000000 /* Supervisor mode */ 110 #define ECC_MFARO_MID 0xf0000000 /* Module ID */ 111 112 /* ECC diagnostic register */ 113 #define ECC_DR_CBX 0x00000001 114 #define ECC_DR_CB0 0x00000002 115 #define ECC_DR_CB1 0x00000004 116 #define ECC_DR_CB2 0x00000008 117 #define ECC_DR_CB4 0x00000010 118 #define ECC_DR_CB8 0x00000020 119 #define ECC_DR_CB16 0x00000040 120 #define ECC_DR_CB32 0x00000080 121 #define ECC_DR_DMODE 0x00000c00 122 123 #define ECC_NREGS 9 124 #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t)) 125 126 #define ECC_DIAG_SIZE 4 127 #define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1) 128 129 #define TYPE_ECC_MEMCTL "eccmemctl" 130 typedef struct ECCState ECCState; 131 DECLARE_INSTANCE_CHECKER(ECCState, ECC_MEMCTL, 132 TYPE_ECC_MEMCTL) 133 134 struct ECCState { 135 SysBusDevice parent_obj; 136 137 MemoryRegion iomem, iomem_diag; 138 qemu_irq irq; 139 uint32_t regs[ECC_NREGS]; 140 uint8_t diag[ECC_DIAG_SIZE]; 141 uint32_t version; 142 }; 143 144 static void ecc_mem_write(void *opaque, hwaddr addr, uint64_t val, 145 unsigned size) 146 { 147 ECCState *s = opaque; 148 149 switch (addr >> 2) { 150 case ECC_MER: 151 if (s->version == ECC_MCC) 152 s->regs[ECC_MER] = (val & ECC_MER_MASK_0); 153 else if (s->version == ECC_EMC) 154 s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1); 155 else if (s->version == ECC_SMC) 156 s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2); 157 trace_ecc_mem_writel_mer(val); 158 break; 159 case ECC_MDR: 160 s->regs[ECC_MDR] = val & ECC_MDR_MASK; 161 trace_ecc_mem_writel_mdr(val); 162 break; 163 case ECC_MFSR: 164 s->regs[ECC_MFSR] = val; 165 qemu_irq_lower(s->irq); 166 trace_ecc_mem_writel_mfsr(val); 167 break; 168 case ECC_VCR: 169 s->regs[ECC_VCR] = val; 170 trace_ecc_mem_writel_vcr(val); 171 break; 172 case ECC_DR: 173 s->regs[ECC_DR] = val; 174 trace_ecc_mem_writel_dr(val); 175 break; 176 case ECC_ECR0: 177 s->regs[ECC_ECR0] = val; 178 trace_ecc_mem_writel_ecr0(val); 179 break; 180 case ECC_ECR1: 181 s->regs[ECC_ECR0] = val; 182 trace_ecc_mem_writel_ecr1(val); 183 break; 184 } 185 } 186 187 static uint64_t ecc_mem_read(void *opaque, hwaddr addr, 188 unsigned size) 189 { 190 ECCState *s = opaque; 191 uint32_t ret = 0; 192 193 switch (addr >> 2) { 194 case ECC_MER: 195 ret = s->regs[ECC_MER]; 196 trace_ecc_mem_readl_mer(ret); 197 break; 198 case ECC_MDR: 199 ret = s->regs[ECC_MDR]; 200 trace_ecc_mem_readl_mdr(ret); 201 break; 202 case ECC_MFSR: 203 ret = s->regs[ECC_MFSR]; 204 trace_ecc_mem_readl_mfsr(ret); 205 break; 206 case ECC_VCR: 207 ret = s->regs[ECC_VCR]; 208 trace_ecc_mem_readl_vcr(ret); 209 break; 210 case ECC_MFAR0: 211 ret = s->regs[ECC_MFAR0]; 212 trace_ecc_mem_readl_mfar0(ret); 213 break; 214 case ECC_MFAR1: 215 ret = s->regs[ECC_MFAR1]; 216 trace_ecc_mem_readl_mfar1(ret); 217 break; 218 case ECC_DR: 219 ret = s->regs[ECC_DR]; 220 trace_ecc_mem_readl_dr(ret); 221 break; 222 case ECC_ECR0: 223 ret = s->regs[ECC_ECR0]; 224 trace_ecc_mem_readl_ecr0(ret); 225 break; 226 case ECC_ECR1: 227 ret = s->regs[ECC_ECR0]; 228 trace_ecc_mem_readl_ecr1(ret); 229 break; 230 } 231 return ret; 232 } 233 234 static const MemoryRegionOps ecc_mem_ops = { 235 .read = ecc_mem_read, 236 .write = ecc_mem_write, 237 .endianness = DEVICE_NATIVE_ENDIAN, 238 .valid = { 239 .min_access_size = 4, 240 .max_access_size = 4, 241 }, 242 }; 243 244 static void ecc_diag_mem_write(void *opaque, hwaddr addr, 245 uint64_t val, unsigned size) 246 { 247 ECCState *s = opaque; 248 249 trace_ecc_diag_mem_writeb(addr, val); 250 s->diag[addr & ECC_DIAG_MASK] = val; 251 } 252 253 static uint64_t ecc_diag_mem_read(void *opaque, hwaddr addr, 254 unsigned size) 255 { 256 ECCState *s = opaque; 257 uint32_t ret = s->diag[(int)addr]; 258 259 trace_ecc_diag_mem_readb(addr, ret); 260 return ret; 261 } 262 263 static const MemoryRegionOps ecc_diag_mem_ops = { 264 .read = ecc_diag_mem_read, 265 .write = ecc_diag_mem_write, 266 .endianness = DEVICE_NATIVE_ENDIAN, 267 .valid = { 268 .min_access_size = 1, 269 .max_access_size = 1, 270 }, 271 }; 272 273 static const VMStateDescription vmstate_ecc = { 274 .name ="ECC", 275 .version_id = 3, 276 .minimum_version_id = 3, 277 .fields = (VMStateField[]) { 278 VMSTATE_UINT32_ARRAY(regs, ECCState, ECC_NREGS), 279 VMSTATE_BUFFER(diag, ECCState), 280 VMSTATE_UINT32(version, ECCState), 281 VMSTATE_END_OF_LIST() 282 } 283 }; 284 285 static void ecc_reset(DeviceState *d) 286 { 287 ECCState *s = ECC_MEMCTL(d); 288 289 if (s->version == ECC_MCC) { 290 s->regs[ECC_MER] &= ECC_MER_REU; 291 } else { 292 s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR | 293 ECC_MER_DCI); 294 } 295 s->regs[ECC_MDR] = 0x20; 296 s->regs[ECC_MFSR] = 0; 297 s->regs[ECC_VCR] = 0; 298 s->regs[ECC_MFAR0] = 0x07c00000; 299 s->regs[ECC_MFAR1] = 0; 300 s->regs[ECC_DR] = 0; 301 s->regs[ECC_ECR0] = 0; 302 s->regs[ECC_ECR1] = 0; 303 } 304 305 static void ecc_init(Object *obj) 306 { 307 ECCState *s = ECC_MEMCTL(obj); 308 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 309 310 sysbus_init_irq(dev, &s->irq); 311 312 memory_region_init_io(&s->iomem, obj, &ecc_mem_ops, s, "ecc", ECC_SIZE); 313 sysbus_init_mmio(dev, &s->iomem); 314 } 315 316 static void ecc_realize(DeviceState *dev, Error **errp) 317 { 318 ECCState *s = ECC_MEMCTL(dev); 319 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 320 321 s->regs[0] = s->version; 322 323 if (s->version == ECC_MCC) { // SS-600MP only 324 memory_region_init_io(&s->iomem_diag, OBJECT(dev), &ecc_diag_mem_ops, s, 325 "ecc.diag", ECC_DIAG_SIZE); 326 sysbus_init_mmio(sbd, &s->iomem_diag); 327 } 328 } 329 330 static Property ecc_properties[] = { 331 DEFINE_PROP_UINT32("version", ECCState, version, -1), 332 DEFINE_PROP_END_OF_LIST(), 333 }; 334 335 static void ecc_class_init(ObjectClass *klass, void *data) 336 { 337 DeviceClass *dc = DEVICE_CLASS(klass); 338 339 dc->realize = ecc_realize; 340 dc->reset = ecc_reset; 341 dc->vmsd = &vmstate_ecc; 342 device_class_set_props(dc, ecc_properties); 343 } 344 345 static const TypeInfo ecc_info = { 346 .name = TYPE_ECC_MEMCTL, 347 .parent = TYPE_SYS_BUS_DEVICE, 348 .instance_size = sizeof(ECCState), 349 .instance_init = ecc_init, 350 .class_init = ecc_class_init, 351 }; 352 353 354 static void ecc_register_types(void) 355 { 356 type_register_static(&ecc_info); 357 } 358 359 type_init(ecc_register_types) 360