1 /* 2 * CBUS three-pin bus and the Retu / Betty / Tahvo / Vilma / Avilma / 3 * Hinku / Vinku / Ahne / Pihi chips used in various Nokia platforms. 4 * Based on reverse-engineering of a linux driver. 5 * 6 * Copyright (C) 2008 Nokia Corporation 7 * Written by Andrzej Zaborowski <andrew@openedhand.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 or 12 * (at your option) version 3 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, see <http://www.gnu.org/licenses/>. 21 */ 22 23 #include "qemu-common.h" 24 #include "hw/irq.h" 25 #include "hw/devices.h" 26 #include "sysemu/sysemu.h" 27 28 //#define DEBUG 29 30 typedef struct { 31 void *opaque; 32 void (*io)(void *opaque, int rw, int reg, uint16_t *val); 33 int addr; 34 } CBusSlave; 35 36 typedef struct { 37 CBus cbus; 38 39 int sel; 40 int dat; 41 int clk; 42 int bit; 43 int dir; 44 uint16_t val; 45 qemu_irq dat_out; 46 47 int addr; 48 int reg; 49 int rw; 50 enum { 51 cbus_address, 52 cbus_value, 53 } cycle; 54 55 CBusSlave *slave[8]; 56 } CBusPriv; 57 58 static void cbus_io(CBusPriv *s) 59 { 60 if (s->slave[s->addr]) 61 s->slave[s->addr]->io(s->slave[s->addr]->opaque, 62 s->rw, s->reg, &s->val); 63 else 64 hw_error("%s: bad slave address %i\n", __FUNCTION__, s->addr); 65 } 66 67 static void cbus_cycle(CBusPriv *s) 68 { 69 switch (s->cycle) { 70 case cbus_address: 71 s->addr = (s->val >> 6) & 7; 72 s->rw = (s->val >> 5) & 1; 73 s->reg = (s->val >> 0) & 0x1f; 74 75 s->cycle = cbus_value; 76 s->bit = 15; 77 s->dir = !s->rw; 78 s->val = 0; 79 80 if (s->rw) 81 cbus_io(s); 82 break; 83 84 case cbus_value: 85 if (!s->rw) 86 cbus_io(s); 87 88 s->cycle = cbus_address; 89 s->bit = 8; 90 s->dir = 1; 91 s->val = 0; 92 break; 93 } 94 } 95 96 static void cbus_clk(void *opaque, int line, int level) 97 { 98 CBusPriv *s = (CBusPriv *) opaque; 99 100 if (!s->sel && level && !s->clk) { 101 if (s->dir) 102 s->val |= s->dat << (s->bit --); 103 else 104 qemu_set_irq(s->dat_out, (s->val >> (s->bit --)) & 1); 105 106 if (s->bit < 0) 107 cbus_cycle(s); 108 } 109 110 s->clk = level; 111 } 112 113 static void cbus_dat(void *opaque, int line, int level) 114 { 115 CBusPriv *s = (CBusPriv *) opaque; 116 117 s->dat = level; 118 } 119 120 static void cbus_sel(void *opaque, int line, int level) 121 { 122 CBusPriv *s = (CBusPriv *) opaque; 123 124 if (!level) { 125 s->dir = 1; 126 s->bit = 8; 127 s->val = 0; 128 } 129 130 s->sel = level; 131 } 132 133 CBus *cbus_init(qemu_irq dat) 134 { 135 CBusPriv *s = (CBusPriv *) g_malloc0(sizeof(*s)); 136 137 s->dat_out = dat; 138 s->cbus.clk = qemu_allocate_irq(cbus_clk, s, 0); 139 s->cbus.dat = qemu_allocate_irq(cbus_dat, s, 0); 140 s->cbus.sel = qemu_allocate_irq(cbus_sel, s, 0); 141 142 s->sel = 1; 143 s->clk = 0; 144 s->dat = 0; 145 146 return &s->cbus; 147 } 148 149 void cbus_attach(CBus *bus, void *slave_opaque) 150 { 151 CBusSlave *slave = (CBusSlave *) slave_opaque; 152 CBusPriv *s = (CBusPriv *) bus; 153 154 s->slave[slave->addr] = slave; 155 } 156 157 /* Retu/Vilma */ 158 typedef struct { 159 uint16_t irqst; 160 uint16_t irqen; 161 uint16_t cc[2]; 162 int channel; 163 uint16_t result[16]; 164 uint16_t sample; 165 uint16_t status; 166 167 struct { 168 uint16_t cal; 169 } rtc; 170 171 int is_vilma; 172 qemu_irq irq; 173 CBusSlave cbus; 174 } CBusRetu; 175 176 static void retu_interrupt_update(CBusRetu *s) 177 { 178 qemu_set_irq(s->irq, s->irqst & ~s->irqen); 179 } 180 181 #define RETU_REG_ASICR 0x00 /* (RO) ASIC ID & revision */ 182 #define RETU_REG_IDR 0x01 /* (T) Interrupt ID */ 183 #define RETU_REG_IMR 0x02 /* (RW) Interrupt mask */ 184 #define RETU_REG_RTCDSR 0x03 /* (RW) RTC seconds register */ 185 #define RETU_REG_RTCHMR 0x04 /* (RO) RTC hours and minutes reg */ 186 #define RETU_REG_RTCHMAR 0x05 /* (RW) RTC hours and minutes set reg */ 187 #define RETU_REG_RTCCALR 0x06 /* (RW) RTC calibration register */ 188 #define RETU_REG_ADCR 0x08 /* (RW) ADC result register */ 189 #define RETU_REG_ADCSCR 0x09 /* (RW) ADC sample control register */ 190 #define RETU_REG_AFCR 0x0a /* (RW) AFC register */ 191 #define RETU_REG_ANTIFR 0x0b /* (RW) AntiF register */ 192 #define RETU_REG_CALIBR 0x0c /* (RW) CalibR register*/ 193 #define RETU_REG_CCR1 0x0d /* (RW) Common control register 1 */ 194 #define RETU_REG_CCR2 0x0e /* (RW) Common control register 2 */ 195 #define RETU_REG_RCTRL_CLR 0x0f /* (T) Regulator clear register */ 196 #define RETU_REG_RCTRL_SET 0x10 /* (T) Regulator set register */ 197 #define RETU_REG_TXCR 0x11 /* (RW) TxC register */ 198 #define RETU_REG_STATUS 0x16 /* (RO) Status register */ 199 #define RETU_REG_WATCHDOG 0x17 /* (RW) Watchdog register */ 200 #define RETU_REG_AUDTXR 0x18 /* (RW) Audio Codec Tx register */ 201 #define RETU_REG_AUDPAR 0x19 /* (RW) AudioPA register */ 202 #define RETU_REG_AUDRXR1 0x1a /* (RW) Audio receive register 1 */ 203 #define RETU_REG_AUDRXR2 0x1b /* (RW) Audio receive register 2 */ 204 #define RETU_REG_SGR1 0x1c /* (RW) */ 205 #define RETU_REG_SCR1 0x1d /* (RW) */ 206 #define RETU_REG_SGR2 0x1e /* (RW) */ 207 #define RETU_REG_SCR2 0x1f /* (RW) */ 208 209 /* Retu Interrupt sources */ 210 enum { 211 retu_int_pwr = 0, /* Power button */ 212 retu_int_char = 1, /* Charger */ 213 retu_int_rtcs = 2, /* Seconds */ 214 retu_int_rtcm = 3, /* Minutes */ 215 retu_int_rtcd = 4, /* Days */ 216 retu_int_rtca = 5, /* Alarm */ 217 retu_int_hook = 6, /* Hook */ 218 retu_int_head = 7, /* Headset */ 219 retu_int_adcs = 8, /* ADC sample */ 220 }; 221 222 /* Retu ADC channel wiring */ 223 enum { 224 retu_adc_bsi = 1, /* BSI */ 225 retu_adc_batt_temp = 2, /* Battery temperature */ 226 retu_adc_chg_volt = 3, /* Charger voltage */ 227 retu_adc_head_det = 4, /* Headset detection */ 228 retu_adc_hook_det = 5, /* Hook detection */ 229 retu_adc_rf_gp = 6, /* RF GP */ 230 retu_adc_tx_det = 7, /* Wideband Tx detection */ 231 retu_adc_batt_volt = 8, /* Battery voltage */ 232 retu_adc_sens = 10, /* Light sensor */ 233 retu_adc_sens_temp = 11, /* Light sensor temperature */ 234 retu_adc_bbatt_volt = 12, /* Backup battery voltage */ 235 retu_adc_self_temp = 13, /* RETU temperature */ 236 }; 237 238 static inline uint16_t retu_read(CBusRetu *s, int reg) 239 { 240 #ifdef DEBUG 241 printf("RETU read at %02x\n", reg); 242 #endif 243 244 switch (reg) { 245 case RETU_REG_ASICR: 246 return 0x0215 | (s->is_vilma << 7); 247 248 case RETU_REG_IDR: /* TODO: Or is this ffs(s->irqst)? */ 249 return s->irqst; 250 251 case RETU_REG_IMR: 252 return s->irqen; 253 254 case RETU_REG_RTCDSR: 255 case RETU_REG_RTCHMR: 256 case RETU_REG_RTCHMAR: 257 /* TODO */ 258 return 0x0000; 259 260 case RETU_REG_RTCCALR: 261 return s->rtc.cal; 262 263 case RETU_REG_ADCR: 264 return (s->channel << 10) | s->result[s->channel]; 265 case RETU_REG_ADCSCR: 266 return s->sample; 267 268 case RETU_REG_AFCR: 269 case RETU_REG_ANTIFR: 270 case RETU_REG_CALIBR: 271 /* TODO */ 272 return 0x0000; 273 274 case RETU_REG_CCR1: 275 return s->cc[0]; 276 case RETU_REG_CCR2: 277 return s->cc[1]; 278 279 case RETU_REG_RCTRL_CLR: 280 case RETU_REG_RCTRL_SET: 281 case RETU_REG_TXCR: 282 /* TODO */ 283 return 0x0000; 284 285 case RETU_REG_STATUS: 286 return s->status; 287 288 case RETU_REG_WATCHDOG: 289 case RETU_REG_AUDTXR: 290 case RETU_REG_AUDPAR: 291 case RETU_REG_AUDRXR1: 292 case RETU_REG_AUDRXR2: 293 case RETU_REG_SGR1: 294 case RETU_REG_SCR1: 295 case RETU_REG_SGR2: 296 case RETU_REG_SCR2: 297 /* TODO */ 298 return 0x0000; 299 300 default: 301 hw_error("%s: bad register %02x\n", __FUNCTION__, reg); 302 } 303 } 304 305 static inline void retu_write(CBusRetu *s, int reg, uint16_t val) 306 { 307 #ifdef DEBUG 308 printf("RETU write of %04x at %02x\n", val, reg); 309 #endif 310 311 switch (reg) { 312 case RETU_REG_IDR: 313 s->irqst ^= val; 314 retu_interrupt_update(s); 315 break; 316 317 case RETU_REG_IMR: 318 s->irqen = val; 319 retu_interrupt_update(s); 320 break; 321 322 case RETU_REG_RTCDSR: 323 case RETU_REG_RTCHMAR: 324 /* TODO */ 325 break; 326 327 case RETU_REG_RTCCALR: 328 s->rtc.cal = val; 329 break; 330 331 case RETU_REG_ADCR: 332 s->channel = (val >> 10) & 0xf; 333 s->irqst |= 1 << retu_int_adcs; 334 retu_interrupt_update(s); 335 break; 336 case RETU_REG_ADCSCR: 337 s->sample &= ~val; 338 break; 339 340 case RETU_REG_AFCR: 341 case RETU_REG_ANTIFR: 342 case RETU_REG_CALIBR: 343 344 case RETU_REG_CCR1: 345 s->cc[0] = val; 346 break; 347 case RETU_REG_CCR2: 348 s->cc[1] = val; 349 break; 350 351 case RETU_REG_RCTRL_CLR: 352 case RETU_REG_RCTRL_SET: 353 /* TODO */ 354 break; 355 356 case RETU_REG_WATCHDOG: 357 if (val == 0 && (s->cc[0] & 2)) 358 qemu_system_shutdown_request(); 359 break; 360 361 case RETU_REG_TXCR: 362 case RETU_REG_AUDTXR: 363 case RETU_REG_AUDPAR: 364 case RETU_REG_AUDRXR1: 365 case RETU_REG_AUDRXR2: 366 case RETU_REG_SGR1: 367 case RETU_REG_SCR1: 368 case RETU_REG_SGR2: 369 case RETU_REG_SCR2: 370 /* TODO */ 371 break; 372 373 default: 374 hw_error("%s: bad register %02x\n", __FUNCTION__, reg); 375 } 376 } 377 378 static void retu_io(void *opaque, int rw, int reg, uint16_t *val) 379 { 380 CBusRetu *s = (CBusRetu *) opaque; 381 382 if (rw) 383 *val = retu_read(s, reg); 384 else 385 retu_write(s, reg, *val); 386 } 387 388 void *retu_init(qemu_irq irq, int vilma) 389 { 390 CBusRetu *s = (CBusRetu *) g_malloc0(sizeof(*s)); 391 392 s->irq = irq; 393 s->irqen = 0xffff; 394 s->irqst = 0x0000; 395 s->status = 0x0020; 396 s->is_vilma = !!vilma; 397 s->rtc.cal = 0x01; 398 s->result[retu_adc_bsi] = 0x3c2; 399 s->result[retu_adc_batt_temp] = 0x0fc; 400 s->result[retu_adc_chg_volt] = 0x165; 401 s->result[retu_adc_head_det] = 123; 402 s->result[retu_adc_hook_det] = 1023; 403 s->result[retu_adc_rf_gp] = 0x11; 404 s->result[retu_adc_tx_det] = 0x11; 405 s->result[retu_adc_batt_volt] = 0x250; 406 s->result[retu_adc_sens] = 2; 407 s->result[retu_adc_sens_temp] = 0x11; 408 s->result[retu_adc_bbatt_volt] = 0x3d0; 409 s->result[retu_adc_self_temp] = 0x330; 410 411 s->cbus.opaque = s; 412 s->cbus.io = retu_io; 413 s->cbus.addr = 1; 414 415 return &s->cbus; 416 } 417 418 void retu_key_event(void *retu, int state) 419 { 420 CBusSlave *slave = (CBusSlave *) retu; 421 CBusRetu *s = (CBusRetu *) slave->opaque; 422 423 s->irqst |= 1 << retu_int_pwr; 424 retu_interrupt_update(s); 425 426 if (state) 427 s->status &= ~(1 << 5); 428 else 429 s->status |= 1 << 5; 430 } 431 432 #if 0 433 static void retu_head_event(void *retu, int state) 434 { 435 CBusSlave *slave = (CBusSlave *) retu; 436 CBusRetu *s = (CBusRetu *) slave->opaque; 437 438 if ((s->cc[0] & 0x500) == 0x500) { /* TODO: Which bits? */ 439 /* TODO: reissue the interrupt every 100ms or so. */ 440 s->irqst |= 1 << retu_int_head; 441 retu_interrupt_update(s); 442 } 443 444 if (state) 445 s->result[retu_adc_head_det] = 50; 446 else 447 s->result[retu_adc_head_det] = 123; 448 } 449 450 static void retu_hook_event(void *retu, int state) 451 { 452 CBusSlave *slave = (CBusSlave *) retu; 453 CBusRetu *s = (CBusRetu *) slave->opaque; 454 455 if ((s->cc[0] & 0x500) == 0x500) { 456 /* TODO: reissue the interrupt every 100ms or so. */ 457 s->irqst |= 1 << retu_int_hook; 458 retu_interrupt_update(s); 459 } 460 461 if (state) 462 s->result[retu_adc_hook_det] = 50; 463 else 464 s->result[retu_adc_hook_det] = 123; 465 } 466 #endif 467 468 /* Tahvo/Betty */ 469 typedef struct { 470 uint16_t irqst; 471 uint16_t irqen; 472 uint8_t charger; 473 uint8_t backlight; 474 uint16_t usbr; 475 uint16_t power; 476 477 int is_betty; 478 qemu_irq irq; 479 CBusSlave cbus; 480 } CBusTahvo; 481 482 static void tahvo_interrupt_update(CBusTahvo *s) 483 { 484 qemu_set_irq(s->irq, s->irqst & ~s->irqen); 485 } 486 487 #define TAHVO_REG_ASICR 0x00 /* (RO) ASIC ID & revision */ 488 #define TAHVO_REG_IDR 0x01 /* (T) Interrupt ID */ 489 #define TAHVO_REG_IDSR 0x02 /* (RO) Interrupt status */ 490 #define TAHVO_REG_IMR 0x03 /* (RW) Interrupt mask */ 491 #define TAHVO_REG_CHAPWMR 0x04 /* (RW) Charger PWM */ 492 #define TAHVO_REG_LEDPWMR 0x05 /* (RW) LED PWM */ 493 #define TAHVO_REG_USBR 0x06 /* (RW) USB control */ 494 #define TAHVO_REG_RCR 0x07 /* (RW) Some kind of power management */ 495 #define TAHVO_REG_CCR1 0x08 /* (RW) Common control register 1 */ 496 #define TAHVO_REG_CCR2 0x09 /* (RW) Common control register 2 */ 497 #define TAHVO_REG_TESTR1 0x0a /* (RW) Test register 1 */ 498 #define TAHVO_REG_TESTR2 0x0b /* (RW) Test register 2 */ 499 #define TAHVO_REG_NOPR 0x0c /* (RW) Number of periods */ 500 #define TAHVO_REG_FRR 0x0d /* (RO) FR */ 501 502 static inline uint16_t tahvo_read(CBusTahvo *s, int reg) 503 { 504 #ifdef DEBUG 505 printf("TAHVO read at %02x\n", reg); 506 #endif 507 508 switch (reg) { 509 case TAHVO_REG_ASICR: 510 return 0x0021 | (s->is_betty ? 0x0b00 : 0x0300); /* 22 in N810 */ 511 512 case TAHVO_REG_IDR: 513 case TAHVO_REG_IDSR: /* XXX: what does this do? */ 514 return s->irqst; 515 516 case TAHVO_REG_IMR: 517 return s->irqen; 518 519 case TAHVO_REG_CHAPWMR: 520 return s->charger; 521 522 case TAHVO_REG_LEDPWMR: 523 return s->backlight; 524 525 case TAHVO_REG_USBR: 526 return s->usbr; 527 528 case TAHVO_REG_RCR: 529 return s->power; 530 531 case TAHVO_REG_CCR1: 532 case TAHVO_REG_CCR2: 533 case TAHVO_REG_TESTR1: 534 case TAHVO_REG_TESTR2: 535 case TAHVO_REG_NOPR: 536 case TAHVO_REG_FRR: 537 return 0x0000; 538 539 default: 540 hw_error("%s: bad register %02x\n", __FUNCTION__, reg); 541 } 542 } 543 544 static inline void tahvo_write(CBusTahvo *s, int reg, uint16_t val) 545 { 546 #ifdef DEBUG 547 printf("TAHVO write of %04x at %02x\n", val, reg); 548 #endif 549 550 switch (reg) { 551 case TAHVO_REG_IDR: 552 s->irqst ^= val; 553 tahvo_interrupt_update(s); 554 break; 555 556 case TAHVO_REG_IMR: 557 s->irqen = val; 558 tahvo_interrupt_update(s); 559 break; 560 561 case TAHVO_REG_CHAPWMR: 562 s->charger = val; 563 break; 564 565 case TAHVO_REG_LEDPWMR: 566 if (s->backlight != (val & 0x7f)) { 567 s->backlight = val & 0x7f; 568 printf("%s: LCD backlight now at %i / 127\n", 569 __FUNCTION__, s->backlight); 570 } 571 break; 572 573 case TAHVO_REG_USBR: 574 s->usbr = val; 575 break; 576 577 case TAHVO_REG_RCR: 578 s->power = val; 579 break; 580 581 case TAHVO_REG_CCR1: 582 case TAHVO_REG_CCR2: 583 case TAHVO_REG_TESTR1: 584 case TAHVO_REG_TESTR2: 585 case TAHVO_REG_NOPR: 586 case TAHVO_REG_FRR: 587 break; 588 589 default: 590 hw_error("%s: bad register %02x\n", __FUNCTION__, reg); 591 } 592 } 593 594 static void tahvo_io(void *opaque, int rw, int reg, uint16_t *val) 595 { 596 CBusTahvo *s = (CBusTahvo *) opaque; 597 598 if (rw) 599 *val = tahvo_read(s, reg); 600 else 601 tahvo_write(s, reg, *val); 602 } 603 604 void *tahvo_init(qemu_irq irq, int betty) 605 { 606 CBusTahvo *s = (CBusTahvo *) g_malloc0(sizeof(*s)); 607 608 s->irq = irq; 609 s->irqen = 0xffff; 610 s->irqst = 0x0000; 611 s->is_betty = !!betty; 612 613 s->cbus.opaque = s; 614 s->cbus.io = tahvo_io; 615 s->cbus.addr = 2; 616 617 return &s->cbus; 618 } 619